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Simple Summary: Breast cancer is a type of cancer with several sub-types and correct sub-type
classification based on a large number of gene expressions is challenging even for artificial intelligence.
However, the accurate classification of breast cancer in a patient is mandatory for the application
of proper treatment. To obtain the equations that can be used for accurate classification of breast
cancer sub-type the genetic programming symbolic classifier was utilized. A large number of input
variables (gene expressions) were reduced using principle component analysis and the imbalance
between class samples was solved using different oversampling methods. The proposed procedure
generated equations that can classify breast cancer sub-types with high classification accuracy which
was slightly improved with the application of the decision tree classifier method.

Abstract: Breast cancer is a type of cancer with several sub-types. It occurs when cells in breast
tissue grow out of control. The accurate sub-type classification of a patient diagnosed with breast
cancer is mandatory for the application of proper treatment. Breast cancer classification based on
gene expression is challenging even for artificial intelligence (AI) due to the large number of gene
expressions. The idea in this paper is to utilize the genetic programming symbolic classifier (GPSC) on
the publicly available dataset to obtain a set of symbolic expressions (SEs) that can classify the breast
cancer sub-type using gene expressions with high classification accuracy. The initial problem with the
used dataset is a large number of input variables (54,676 gene expressions), a small number of dataset
samples (151 samples), and six classes of breast cancer sub-types that are highly imbalanced. The
large number of input variables is solved with principal component analysis (PCA), while the small
number of samples and the large imbalance between class samples are solved with the application
of different oversampling methods generating different dataset variations. On each oversampled
dataset, the GPSC with random hyperparameter values search (RHVS) method is trained using 5-fold
cross validation (5CV) to obtain a set of SEs. The best set of SEs is chosen based on mean values
of accuracy (ACC), the area under the receiving operating characteristic curve (AUC), precision,
recall, and F1-score values. In this case, the highest classification accuracy is equal to 0.992 across all
evaluation metric methods. The best set of SEs is additionally combined with a decision tree classifier,
which slightly improves ACC to 0.994.

Keywords: breast cancer; genetic programming symbolic classifier; 5-fold cross validation; random
hyperparameter value search

1. Introduction

Breast cancer is one of the most common types of cancer that can occur in both men
and women; however, it is far more common in women. Signs and symptoms of breast
cancer are varied, for example, lumps or thickening that under pressure is different from
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the surrounding tissue; a change in size, shape, or appearance; skin change (dimpling);
inverted nipple; and peeling, scaling, crusting or flaking of the pigmented area of skin
surrounding the nipple.

Breast cancer occurs when breast cells grow abnormally. Breast cancer often begins in
the milk-producing ducts but can also start in the glandular tissue or other cells and tissue.
Compared to normal cells, these cells divide more rapidly and accumulate, which results in
the formation of a lump. These cells can spread to lymph nodes or other parts of the body.

Several research papers have been published, in which various artificial intelligence
(AI) methods were applied to the breast cancer CUMIDA dataset [1,2] for breast cancer
classification. In [3], the authors used a method for gene selection based on minimal redun-
dancy maximal significance that is integrated into the gene weight imperialist competitive
algorithm. Using this approach, the insightful genes from the micro-array-containing pro-
file were classified. The parallel progressive inductive substance ensemble clustering was
used to measure the precision of the classification. In [4], the breast cancer gene expression
data were reduced using the hybrid fisher ACOC5 method for the most informative genes
out of 24,481 genes in total. The reduced dataset was used for training decision tree (DT),
support vector machines (SVM), k-nearest neighbors (KNN), and random forest classifier
for the accurate classification of breast or no breast cancer classes.

The information gain combined with genetic algorithm (IGAG) method was used in [5]
as a filtering method to reduce the number of input features (gene expressions) in the breast
cancer dataset. The reduced dataset was used in classification, which was performed with
the functional link neural network (FLNN). The trained model achieved an accuracy of
85.63%. The maximum relevance–maximum distance and principal component analysis
were used in [6] to reduce the number of input dataset features, and this reduced dataset
was used for training the random forest classifier. The training was conducted without cross
validation, and the highest accuracy achieved was 91.3%. The two-phase hybrid model
was proposed in [7] for cancer classification based on this gene-expression dataset. The
correlation-based feature selection (CFS) with improved binary particle swarm optimization
(CFS-PSO) was used to reduce the number of input dataset features, and this dataset was
used to train the naive Bayes classifier with 10-fold cross validation. This hybrid method
achieved 92.75% accuracy using only 32 gene expressions. The significant biomarkers from
gene expression data were selected in [8] using a hybrid framework that consisted of CMIM
and AGA. The reduced dataset was used for training several ML algorithms: extreme
learning machine (ELM), SVM, and KNN. The ELM achieved the highest classification
accuracy of 90.35% using only six genes.

The hybrid feature selection algorithm consisting of mutual information maximization
and the adaptive genetic algorithm (MIMAGA) was proposed in [9] to significantly reduce
the dimension of gene expression data. The reduced dataset (with 216 genes) was used
for training of ELM method, and the highest achieved accuracy was 95.21%. To perform
dataset dimensionality reduction, the modified cat swarm optimization (MCSO) method
was used in [10]. The reduced dataset of 50 genes was used to train various ML classifiers
(ridge regression (RR), online sequential ridge regression (OSRR), SVM with radial basis
function (SVMRBF), SVM polynomial (SVM Poly), and kernel ridge regression (KRR)). The
highest accuracy of 96.67% was achieved using KRR. The reduced dataset (25 genes) used
in [11] was obtained using a symmetrical uncertainty filter and harmony search algorithm
(SUF-HSA), which was then used for training the instance-based learning (IBL) algorithm.
The algorithm achieved an accuracy of 83.39%.

The hybrid machine learning approach was developed in [12] to screen optimal pre-
dictors for breast cancer classification. Since the dataset contains a large number of gene
biomarkers, the first step was to find the most optimal ones (MAPK 1, APOBEC3B, and
ENAH), which were selected with the application of a hybrid feature selection sequen-
tial framework consisting of minimum redundancy-maximum relevance, two-tailed un-
paired t-test, and meta-heuristics. Several ML algorithms (support vector machines (SVM),
k-nearest neighbors (KNN), artificial neural network (ANN), naive Bayes (NB), decision
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tree (DT), extreme gradient boosting (XGBoost), and logistic regression (LR)) were applied
for the classification of breast cancer using gene biomarkers as input variables. The XGBoost
model achieved the highest accuracy (ACC), area under the curve (AUC), and F1-score
of 0.976± 0.035, 0.961± 0.035, and 0.974± 0.030, respectively. In Table 1, the previously
described literature is presented in a more concise form.

As shown in Table 1, various methods have been developed and used to reduce the
number of input features. These selection methods reduce the number of input variables to
only the most essential genes. However, only one paper [6] used PCA to reduce the number
of input dataset variables. The benefit of using the PCA method is that this method reduces
the number of dataset input features, increases interpretability, and minimizes information
loss. In other words, the PCA creates the uncorrelated variables which maximize variance.
The PCA when compared to other input dataset variables selection methods has some
advantages and disadvantages. The advantage of PCA is that this method reduces the
number of input variables while maintaining the variance of the original set of input
variables. One potential disadvantage is that after training the AI method of choice to make
new predictions, all original dataset input variables are required.

Table 1. Research papers with described methods utilized and achieved results.

Reference Reduction Methods AI Methods Results

[4] ACOC5 DT, SVM,KNN, RF ACC: 0.954

[5] IGAG FLNN ACC: 0.856

[6] MRMD, PCA RFC ACC: 0.913

[7] CFS-PSO Naive-Bayes ACC: 0.927

[8] CMIM-AGA ELM, SVM, KNN ACC:0.903

[9] MIMAGA ELM ACC:0.952

[10] MCSO RR, OSRR, SVMRBF,
SVM Poly, and KRR ACC: 0.966

[11] SUF-HSA IBL ACC: 0.833

[12]

hybrid Feature Selection sequential
framework consisting of minimum
Redundancy-Maximum Relevance,
two-tailed unpaired t-test,
and meta-heuristics

SVM, KNN, ANN,
NB, DT, XGBoost ACC: 0.976

Although, as shown in the previous Table 1, various AI methods were used to ac-
curately classify breast cancer type, all of them require larger computation resources to
produce the output based on the provided input variables. None of those AI methods can
be transformed into simple mathematical expressions. This is especially valid for neural
networks which have a large number of interconnected neurons that cannot be transformed
into mathematical expressions.

The idea in this paper is to develop a set of symbolic expressions (mathematical
equations) (SEs) using the genetic programming symbolic classifier (GPSC), which can be
easily used by doctors/specialists to verify the type of breast cancer based on the gene
expressions. Since the publicly available dataset used has a large number of input variables,
the PCA will be applied to see if using a lower number of input variables can generate
SE with high classification accuracy. The other problem is that the dataset has a small
number of samples, and there is no equal number of samples per class. The class balance
will be solved using oversampling methods. Based on the previous research, the following
hypotheses can be defined:
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• Is it possible to apply dataset balancing methods to equalize the number of samples
per class and in the end improve the classification accuracy of obtaining SEs?

• Is it possible to use GPSC with the random hyperparameter value selection (RHVS)
method, and train using 5-fold cross validation (5CV) to obtain a set of SEs with high
classification accuracy for each dataset class?

• Is it possible to combine obtained SEs to create a robust system with high
classification accuracy?

• Is it possible to combine the SEs with the decision tree classifier to achieve high
classification accuracy?

The outline of this paper is divided into the following sections: Materials and Methods,
Results, Discussion, and Conclusions. In Materials and Methods, the results of the dataset
reduction technique are provided as well as statistical and correlation analysis. The GPSC
method is described with random hyperparameter search and 5CV. In the Results section,
the results are given, with discussion given in the Discussion section. In the Conclusions
section, the answers to the previously given hypotheses are given with advantages and
disadvantages of the proposed method and possibilities for future work. The paper also
contains two Appendixes A and B, in which the mathematical functions used in GPSC are
presented as well as the symbolic expressions (SEs) obtained with GPSC.

2. Materials and Methods

This section begins with a description of the research methodology. Then the dataset is
described with the dataset dimensionality reduction technique, and statistical and correla-
tion analyses are also given. The GPSC method is described with RHVS and 5CV methods.
The evaluation metrics are also given.

2.1. Research Methodology

The research methodology is shown in Figure 1.

Original 
Dataset

Reduced
Dataset

Oversampling 
Methods

Principal 
Component 

Analysis

Balanced 
Datasets

GPSC + RHSV + 5CVSelection of Best SEsFinal evaluation of
best SEs on the
original dataset

Figure 1. The flowchart of research methodology.

As seen from Figure 1 the research methodology can be divided into the following
sections:

• Dimensionality reduction using PCA—reduction in the number of input variables.
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• Application of different oversampling methods—the creation of datasets with an equal
number of class samples.

• Application of GPSC with RHVS and training using 5CV—using each dataset in GPSC
and trained using 5CV to obtain the set of SEs for each class; the RHVS method is
used to find the optimal combination of hyperparameters with which the GPSC will
generate SEs with high classification accuracy.

• Customized set of SEs—evaluation of the best SEs and creating a robust set of SEs.
• Final evaluation—application of customized set of SEs and SEs + DTC and evaluation

on the original dataset.

2.2. Dataset Description

In this investigation, a publicly available dataset available at Kaggle [13] was used. The
dataset consists of 54,676 input variables and 1 output variable, which contains 6 classes,
and the entire dataset has 151 samples. The 6 classes in the dataset are 5 breast cancer
sub-types (basal, human epidermal growth factor receptor 2-positive (HER2-positive)
labeled as HER, luminal_B, luminal_A, and cell_line) and 1 class labeled as normal,
i.e., healthypatients.

There are three main problems with this dataset:

• Large number of input variables (54,676 genes);
• Small number of dataset samples (151 samples);
• Large imbalance between class samples.

A large number of input variables will be solved using PCA, which is a dimensionality
reduction method. The small number of samples and large imbalance between class
samples will be solved with the application of different oversampling methods. With the
application of oversampling methods, multiple versions of the dataset will be created.

2.2.1. PCA

The PCA [14] is one of the dimensionality reduction methods used to reduce the
number of input variables of the original dataset. The method is used to decompose the
dataset with multiple variables into a set of successive orthogonal components, which can
explain the maximum amount of variance. The dimensionality reduction is achieved using
singular value decomposition to project the original data to a lower-dimensional space.
The usual application of PCA is to reduce the dataset on the first two principal components
(PCs) to plot the data in two dimensions to identify the clusters of closely related data
points. However, in this investigation, the PCA will be used to reduce the number of input
variables, i.e., the PCs are used as input variables in the GPSC algorithm.

Before the application of the PCA, the linearity of the dataset has to be investigated. If
the dataset variables are mostly linear, this can justify the application of the PCA method. To
do this, each input variable of the original dataset (gene expression) and number of samples
in the dataset is used to train the linear regression method. After the linear regression
method is trained, the coefficient of determination R2 is used to see how good the linear
approximation is, i.e., how much the trendline deviates from the real variable values. It
should be noted that the R2 range is from 0 to 1, where 0 means that the linear model
deviates from the real data (data in this case are non-linear), while 1 represents that the data
are perfectly linear. After this procedure is done for all input variables and all R2 values
are computed, the mean value and the standard deviation are computed. The results show
that the mean R2 value is 0.874 with a standard deviation of ±0.110.

However, since the input variables have a different ranges of values, it is good practice
to scale the variables to the unit variance. To perform this preprocessing step, a standard
scaler method [15] is utilized. This method standardizes the input dataset variables by
subtracting the mean and scaling each input variable to the unit variance. The standard
value of a input variable sample is calculated using the following expression:

S =
x− u

σ
, (1)



Cancers 2023, 15, 3411 6 of 27

where u and σ are the mean and standard deviation values of the input variable. After the
application of the standard scaler, the PCA is applied. The idea is to select as many PCs
whose cumulative explained variance is equal to 99%. The explained variance (individual
explained variance) is a statistical measure of how much dataset variation can be attributed
to each individual PC obtained using PCA. The cumulative explained variance represents
the variance accumulation for each PC. By setting the cumulative explained variance to
99%, a total of 144 PCs are obtained as seen from Figure 2.

In Figure 2, two measures are presented: the individual and the cumulative explained
variance. As seen from Figure 2, the first 13 PCs have individual explained variance higher
than 1%, while the rest of the PCs have individual explained variance lower than 1%.
However, 144 PCs are required to reach the cumulative explained variance of almost 100%.

After the application of the PCA method, the dataset input variables are reduced from
the initial 54,676 genes to 144, which means the total number of input variables is reduced
by 99.73%. The next step is to describe the target variable classes as well as the application
of the one-hot encoder method to obtain multiple binary categories.

Figure 2. The graphical representation individual and cumulative explained variance.

2.2.2. Target Variable Description and Transformation into Numerical Form

As stated in this dataset, there are six classes and these are basal, HER, luminal_B,
luminal_A, cell_line, and normal. Before their transformation into numerical form, a short
description of each breast cancer subtype is given.

The basal class represents basal-like breast cancer, which is the one of breast-cancer
subtypes that is characterized by its resemblance to basal cells that line the ducts in the
breast [16]. Basal breast cancers are typically estrogen receptor negative (ER−), proges-
terone receptor negative (PR−), and human epidermal growth factor receptor 2 negative
(HER2−), also known as triple-negative breast cancers. It is a common type of cancer in
younger women and women with BRCA1 gene mutations, and it is a more aggressive
type of breast cancer with a higher risk of recurrence. However, it also responds well
to chemotherapy.

The HER class represents the HER2 breast cancer sub-type, which is breast cancer
that tests positive for the HER2 protein [17]. This protein is responsible for the growth of
cancer cells. HER2-positive breast cancer accounts for about 20% of all breast cancer cases.
It tends to grow more quickly and is more aggressive than other types of breast cancer.
However, HER2-positive breast cancer can be effectively treated with targeted therapies
that specifically block the HER2 protein, such as trastuzumab (Herceptin), pertuzumab
(Perjeta), and ado-trastuzumab emtansine (Kadcyla). In addition to standard treatments,
such as surgery, radiation therapy, and chemotherapy, HER2-positive breast cancer may be
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treated with a combination of targeted therapies and chemotherapy to improve outcomes.
Treatment decisions for HER2-positive breast cancer are usually made based on the stage
of the cancer, the patient’s overall health, and other factors.

The luminal_B [18] class is luminal B breast cancer, which is a subtype of hormone
receptor-positive (HR+) breast cancer that is characterized by a high proliferation rate and a
lower level of hormone receptor expression than luminal A breast cancer. Luminal B breast
cancer accounts for about 20–30% of all HR+ breast cancer cases. Luminal B breast cancer
tends to be more aggressive than luminal A breast cancer and has a higher risk of recurrence.
It is typically treated with a combination of surgery, radiation therapy, and systemic therapy,
which may include hormone therapy, chemotherapy, and targeted therapy. The treatment
approach for luminal B breast cancer depends on various factors, such as the size and stage
of the tumor, the patient’s age and overall health, and the results of hormone receptor and
HER2 testing. In general, luminal B breast cancer is treated more aggressively than luminal
A breast cancer because of its higher risk of recurrence. However, treatment decisions are
individualized based on the unique characteristics of each patient’s cancer.

The luminal_A [19] class is a subtype of hormone receptor-positive (HR+) breast
cancer that is characterized by a low proliferation rate and a high level of hormone receptor
expression. It accounts for about 40–50% of all HR+ breast cancer cases. Luminal A breast
cancer tends to have a better prognosis than other subtypes of breast cancer because it
grows more slowly and is less likely to spread to other parts of the body. It is typically
treated with a combination of surgery, radiation therapy, and systemic therapy, which may
include hormone therapy and/or targeted therapy. Hormone therapy is the cornerstone of
treatment for luminal A breast cancer, as these tumors are typically driven by the hormones
estrogen and/or progesterone. Hormone therapy works by blocking the effects of these
hormones on cancer cells, which can slow or stop the growth of the tumor. Targeted therapy
may also be used in some cases to target specific molecules that contribute to the growth
and spread of cancer. The treatment approach for luminal A breast cancer depends on
various factors, such as the size and stage of the tumor, the patient’s age and overall health,
and the results of hormone receptor and HER2 testing. In general, luminal A breast cancer is
treated less aggressively than other subtypes of breast cancer because of its better prognosis.
However, treatment decisions are individualized based on the unique characteristics of
each patient’s cancer.

The cell-line class represents breast cancer cell lines [20], which are cells derived from
breast cancer tissue samples grown in the laboratory. Researchers use these cells to study
the biology and behavior of breast cancer and for the potential development and testing
of new treatments. There are many different breast cancer cell lines available that can be
distinguished based on their characteristics. One of the common cell line characterizations
is based on their hormone receptor status (ER-positive, PR-positive, and HER2-positive),
which can indicate how breast cancer behaves and how it responds to treatment.

The normal class represents the healthy patients in this dataset.
Using ordinal encoder [21], the classes are transformed into an integer array. In Table 2,

the transformation of class names in string format to integer form is shown.

Table 2. The original class names and their integer representation after application of ordinal encoder.

Class Original Name Integer Representation

HER 0
basal 1

cell_line 2
luminal A 3
luminal B 4

normal 5

After the application of the ordinal encoder, the one-hot encoder is applied to transform
each class into a one-hot numerical array. In other words, each original class in integer
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form is transformed to the target variable, where label one indicates a positive label (label
1) for a specific breast cancer, while the rest are labeled 0, i.e., each categorical feature is
transformed into a binary target variable. For example, with the application of one-hot
encoder on class 3 (luminal A), an additional target variable is created, where all samples
which belong to class 3 are labeled as 1, while the rest of the samples are labeled as 0. In
Table 3, the list of class labels (integer form) is shown with the number of samples after the
target variable for that class label is created.

With the application of one-hot encoder from one multiclass target variable, six binary
target variables are created as seen in Table 3. So with the application of one-hot encoder,
the multiclass dataset with six classes is divided into six datasets with binary classification.

As seen from Table 3, the problem with the creation of six different datasets is that
they are highly imbalanced, i.e., there is a large difference between the class samples. To
solve this problem, various oversampling methods are applied to achieve an equal number
of samples per class.

Table 3. The class labels in integer form with the number of samples of target variable for that class
label created after the application of one-hot encoder.

Class Labels Label 0 Label 1

0 121 30
1 110 41
2 137 14
3 122 29
4 121 30
5 144 7

2.3. Oversampling Methods

Due to the small number of samples in the original dataset, the undersampling major-
ity classes are not considered in this investigation. However, oversampling the minority
classes to reach a balance between classes is applied. Several oversampling methods are
considered, such as BorderlineSMOTE, SMOTE, and SVMSMOTE. Initially, ADASYN,
KMeansSMOTE, and RandomOverSampling were considered; however, they are omitted
due to the inability to reach a balance between class samples (ADASYN and KMeansS-
MOTE) or poor performance with the obtained SEs using GPSC (RandomOversampling).
The successfully implemented oversampling methods are briefly described below.

2.3.1. BorderlineSMOTE

The BorderlineSMOTE [22] begins its execution by defining the number of majority
and minority class samples. Then, for every minority class sample m, the nearest neighbors
are found from the entire dataset. Those nearest neighbors are identified, and the majority
of class samples are denoted by m′. If all neighbors belong to the majority class, this
minority class sample is not considered in the following steps. If only half of those samples
belong to the majority class, then the minority class sample is considered and saved in
the DANGER set. If there is a higher number of minority class samples surrounding the
minority class sample, this sample is not considered in further steps. The next step is
to calculate the k nearest neighbors from the DANGER set. The final step is to generate
synthetic data samples from the DANGER step.

2.3.2. SMOTE

For the synthetic minority oversampling technique (SMOTE) [23], each minority class
sample is selected as the basis to create new synthetic data points. Based on the distance,
several nearest neighbors of the same class are chosen from the dataset. The final step is to
apply randomized interpolation to obtain new data samples between a selected sample
and its nearest neighbors.
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2.3.3. SVM SMOTE

According to [24], the application of SVM with SMOTE works since the SVM is not
sensitive to the class imbalance problem since they base their classification on a small
number of support vectors. The borderline area is approximated by support vectors after
training an SVM. The new instances are randomly created along the lines of joining each
minority class support vector with a number of its nearest neighbors using interpolation or
extrapolation (depending on the density of majority class instances around it). In Table 4,
the number of samples for each class are shown after the oversampling methods are applied.

As seen from Table 4, for some classes, the number of samples cannot be oversampled
to match the number of samples of the majority class. For example, class 2 and class 3 are
not balanced when BorderlineSMOTE and SVMSMOTE are applied.

However, with the application of oversampling methods for each class (0, 1, 4, and 5),
five different balanced datasets are created. The datasets differ in the oversampling method
used to reach the balance between classes, i.e., the way the synthetic samples are generated
to match the number of samples of the majority class. Unfortunately, for class 2 and 3, the
datasets are balanced only using SMOTE.

Table 4. The comparisons of a number of samples per class before and after the application of
oversampling methods.

Oversampling Method Class 0 vs.
Rest

Class 1 vs.
Rest

Class 2 vs.
Rest

Class 3 vs.
Rest

Class 4 vs.
Rest

Class 5 vs.
Rest

Original Dataset 30, 120 41, 110 14, 137 29, 122 30, 121 7, 144
BorderlineSMOTE 121, 121 110, 110 14, 137 29, 122 121, 121 141, 141

SMOTE 121, 121 110, 110 137, 137 122, 122 121, 121 144, 144
SVMSMOTE 121, 121 110, 110 69, 137 71, 122 121, 121 144, 144

2.4. GPSC with RHVS

The genetic programming symbolic classifier (GPSC) is a type of genetic programming
method used for classification problems. As already stated in the Introduction section, one
of the main benefits of the GPSC method, when compared with other AI methods, is that
after training, the SE is obtained, which researchers can easily use to calculate the output
(target variable value). The SE does not require large computational resources as in the case
of other AI-trained models.

Generally, the GP begins its execution by creating naive SEs (population members) that
poorly estimate the target value. However, with the application of the genetic operations
from generation to generation (crossover and mutation), the population of SEs is evolved,
and when execution is terminated, usually through some termination criteria, the best SE is
obtained. The classification accuracy depends on GPSC hyperparameter values and the
dataset quality.

The GPSC begins its execution by generating the initial population. To do this, several
GPSC hyperparameters have to be defined, i.e., population size (SizePop), initial depth
(DepthInit), and maximum number of generations (GenNum). The size of the population
that will be used and evolved in this research is defined with the SizePop hyperparameter
value. Since in GPSC, the population members are represented as tree structures, the
DepthInit hyperparameter value defines the size (depth) of the initial population members.
To build the initial population, the ramped half-and-half method is used, where ramped
requires the definition of population members’ depth in a specific range. This method
combines the two oldest methods, i.e., full and the growing method. The full method pro-
duces population members with the same depth by selecting only mathematical functions.
After the maximum depth is reached, only variables and constants are chosen. However,
this does not mean that all population members have the same number of nodes. In the
growing method, the mathematical functions, constants, and input variables are selected
when creating population members, and after the depth limit is reached, only constants
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and input variables can be selected. The growing method creates trees with more variety in
sizes and shapes.

Aside from the size of population members, GPSC requires mathematical functions,
dataset (input) variables, and a range of constants. The mathematical functions are de-
fined with a list of FunSet hyperparameters. In this research, the following mathematical
functions are used, i.e., addition, subtraction, multiplication, division, natural logarithm,
logarithms with basis 2 and 10, square root, cube root, absolute value, sine, cosine, and
tangent. However, some of these functions are slightly modified to avoid imaginary values
or inf values. The full definition of these mathematical functions is given in Appendix A.
The range of constants is defined with the hyperparameter RangeCONST.

After the initial population is created, somehow they have to be evaluated. This is
achieved using the fitness function. However, in GPSC, the process of determining the
fitness value of a population member is a three-step process:

• The output of each population member has to be computed by providing values of
input variables;

• The previous output is used in the sigmoid function to compute the output. The
sigmoid function can be written in the following form:

Sig(x) =
1

1 + exp(−x)
. (2)

where x is the output obtained from the population member.
• After the sigmoid output is computed, then the LogLoss function is used as the

evaluation metric. The LogLoss function can be written as

LogLoss = − 1
N

N

∑
i=1

(yi log pi + (1− yi) log(1− pi)) (3)

where y and p are true value and prediction probability, respectively.

The value of hyperparameter maxSamp defines the number of samples that will be
used from the dataset to evaluate each population member. After the evaluation of the
population members, some of them have to be selected to apply the genetic operation
(crossover and mutation) to generate children of the next generation. The selection process
in GPSC is performed using tournament selection. The tournament selection begins with
a random selection of the population members. In tournament selection, these members
are compared in terms of lowest fitness function value versus population members size.
Those members with the lowest fitness function value and size can become the winner
of the tournament selection. The tournament selection size is defined with the SizeTour
hyperparameter value. In the tournament selection process, the parsimony pressure method
is also applied. This method is responsible for the prevention of the rapid growth of the
population members’ length. In the tournament selection, the fitness function value of
very large population members is modified through the use of the parsimony coefficient
(ParsCoef), making them less favorable for selection. This coefficient is one of the most
sensitive, so the initial training of GPSC is required to investigate how small or large values
would influence the evolution process. If the value is large, it will prevent the evolution
process, which would result in SE with low classification accuracy. If the value is too small,
it can lead to bloat phenomena, which are the rapid growth of population members from
generation to generation without any benefit to the fitness function value.

After multiple winners of the tournament selection are obtained, the genetic operations
(crossover or mutation) are performed on them. In GPSC, four different genetic operations
are used: crossover, point mutation, hoist mutation, and point mutation. The crossover
requires two tournament selection winners; on the first, the random subtree is selected and
replaced with a randomly chosen subtree from the second tournament selection winner, i.e.,
donor. For all three mutation operations, one tournament selection winner is required. In
the case of point mutation, the random nodes are selected and replaced. The constants are
replaced with constants, variables with other variables, and mathematical functions with
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other mathematical functions; however, the arity of these functions must be equal. In the
case of hoist mutation, the random subtree is selected and on that subtree, another subtree
is selected, which is then used to replace the entire subtree. The subtree mutation is the
process of selecting a random subtree on the tournament selection winner, which is replaced
with a randomly generated subtree created by randomly choosing constants, variables, and
mathematical functions. The probability values of these four genetic operations are defined
with hyperparameters CrossValue, HoistMute, SubMute, and PointMute.

To prevent the indefinite execution of GPSC, two stopping criteria can be used, i.e.,
GenNum and CritStop. GenNum is the maximum number of generations; GPSC execution
will be terminated after the last generation is reached. CritStop is the predefined minimum
fitness function value. If this value is reached by one of the population members during
the GPSC execution, then the GPSC execution is terminated.

To develop the RHVS function, with which the GPSC hyperparameter values will be
randomly selected from a predefined range, before each GPSC execution the initial testing
of GPSC with different hyperparameter values is required. Basically, the initial training of
GPSC is performed with the boundary values defined in Table 5. SizePop is set to a very
large range (1000–2000) to ensure large diversity between population members. GenNum
is set to the 200–300 range since a smaller number of generations generates SEs with lower
classification accuracy. The SizeTour value is set to 10–25% of the entire population since
a lower number of selected population members will drastically extend computational
time. The DepthInit is set in the 3–18 range to ensure large diversity between the initial
population members. All probabilities of genetic operations are set to the 0.001–1 range
since the idea is to investigate which of the four genetic operations is the dominating
one. However, the sum of all four genetic operations is set in the 0.999–1.0 range. The
CritStop value is in 10−6–10−3 range. The value is so small since the idea is to terminate
the GPSC execution when a maximum number of generations is reached. The maxSamp is
set between 99 and 100%; so, to evaluate each population member during GPSC execution,
almost the entire train dataset is used. The RangeConst is set from the −10,000 to 10,000
range. The ParsCoef value is the most sensitive one since values larger than 10−4 choke the
evolution process, while those that are smaller than 10−5 result in bloat phenomena.

All table ranges are shown in Table 5.

Table 5. The range of each GPSC hyperparameter range used in the RHVS method.

Hyperparameter Name Range

SizePop 1000–2000
DepthInit 3–18
GenNum 200–300

RangeConst −10,000–10,000
SizeTour 100–500
CritStop 10−6–10−3

CrossValue 0.001–0.3
HoistMute 0.001–0.3
SubMute 0.9–1.0

PointMute 0.001–0.3
ParsCoef 10−5–10−4

2.5. Decision Tree Classifier

The decision tree classifier (DTC) [25] is a supervised learning method that predicts the
value of a target variable by learning simple decision rules deduced from input variables. It
works by creating a tree-like model of decisions and their possible consequences. The tree
is built by splitting the data into smaller and smaller subsets, based on the input variable
that provides the most information gain at each node of the tree. Each internal node of the
tree represents a test on an attribute, each branch represents the outcome of the test, and
each leaf node represents a class label.
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In classification tasks, the goal of the DTC is to build a tree that can accurately predict
the class label of a new observation based on its features. The tree is constructed by
recursively splitting the data based on the values of the input features until each leaf node
contains only examples from a single class. During prediction, the decision tree algorithm
traverses the tree from the root node to a leaf node, following the path that corresponds
to the features of the new observation, and returns the class label associated with that
leaf node.

DTC has several advantages over other classification algorithms, including their
interpretability and ease of use, as well as their ability to handle both categorical and
numerical data. However, they can suffer from overfitting if the tree is too complex or
if there is noise in the data, and they may not always produce the most accurate results
compared to more sophisticated machine learning models.

The DTC will be used to improve the classification accuracy of the ensemble of the
best SEs. The DTC has many hyperparameters; however, only the most important one
will be briefly described. In this investigation, the default parameters improve predictions
made by SEs with default parameter values.

There are several functions (Gini impurity, log_loss, and entropy) that can be used in
DTC to measure the quality of the split. The function is defined with a hyperparameter
name “criterion”, and in this investigation, the Gini impurity is used. The splitter hyperpa-
rameter defines the strategy used to select the split at each node. The strategies are best and
random; however, the best split is used by default. The max_depth hyperparameter defines
the maximum depth of the decision tree. Two value types can be defined as Integer and
None. If the hyperparameter is int., the best practice is to define None since then the nodes
will be expanded until all leaves are pure or all leaves contain fewer than min_samples_split
samples. The min_samples_split is the minimum number of samples that are required to
split an internal node, shown in Table 6.

Table 6. The default DTC hyperparameter values.

DTC Hyperparameter Value

criterion ‘gini’
splitter best

max_depth None
min_samples_split 2

2.6. Training Procedure

Each oversampled dataset is divided into train and test datasets in a 70:30 ratio. The
larger portion of the dataset is used for 5CV, while the remaining part is used for testing
the obtained SEs, as in [26,27]. In 5CV, GPSC is trained five times so that each time, one SE
is obtained. In total, after 5CV, five SEs are obtained. In Figure 3, the entire training and
testing process of GPSC is shown.

To evaluate the obtained SEs throughout the training and testing process, several
evaluation metrics are utilized, i.e., the accuracy (ACC), area under the receiver operating
characteristic curve (AUC), precision, recall, and F1-score. The ACC [28] is defined as the
ratio of the number of correct predictions and the total number of predictions. In the case of
binary classification, accuracy can be calculated in terms of positives and negatives using
the following formula:

ACC =
TP + TN

TP + TN + FP + FN
, (4)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives. The AUC score computes the area under the receiver operating characteristic
curve and by doing so, the curve information is summarized in one number [15]. The
precision metric [29] provides information on how many positive identifications made by
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the trained AI method are actually correct. Using TP and FP, the precision of the AI model
can be calculated as

Precision =
TP

TP + FP
(5)

The recall metric [29] provides the information on what proportion of actual positives
is correctly identified by the trained AI model. The recall metric value can be obtained with
the following expression:

Recall =
TP

TP + FN
. (6)

The F1-score [30] is a metric that represents the harmonic mean between precision and
recall, and its value can be determined using the following expression:

F1-score = 2
Precision · Recall

Precision + Recall
. (7)

The value of all the evaluation metrics described is between 0 and 1.

Train Dataset Test Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Are all evaluation 
metric values (ACC, 

AUC, Precision, 
Recall and F1-Score 
higher than 0.99?

Oversampled 
dataset Test dataset

Train dataset

RHVS

NO

GPSC

YES

5 Fold
Cross-

Validation

Process Completed

Calculation of 
evaluation 

metric values

Evaluation of 
SEs on Test 

dataset

Figure 3. The flowchart of the training and testing process using the GPSC algorithm with RHVS
and 5CV method.

3. Results

In this section, the results of the conducted investigation are presented. First, the results
of the original balanced dataset are shown. Then, two different systems are developed,
where one consists of the best set of SEs, while the other combines SEs and the decision
tree classifier. Finally, the performance of both systems applied to the original imbalanced
dataset is presented. Due to the large number of best sets of SEs and their size, all of the
best SEs are available on GitHub. The web address and additional information on how to
use these SEs are given in Appendix B.

3.1. The Best Set of SEs Obtained on Dataset Balanced with BorderlineSMOTE

As seen from Table 4, after the application of BorderlineSMOTE, only datasets with
class 0, class 1, class 4, and class 5 are successfully balanced. So, these balanced datasets are
used in GPSC with RHVS to obtain a set of SEs that can accurately classify the specific class.
In Table 7, the combination of GPSC hyperparameters is shown, with which the highest
evaluation metric values are achieved as well as the length and average length of each SE
in the 5CV process.
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From the hyperparameter values shown in Table 7, it can be seen that the population
size (SizePop) is closer to the upper boundary (2000) for classes 1, 4, and 5. The largest range
in the initial tree depth size (DepthInit) is used in the case of the class 5 (normal) dataset,
so the largest initial population diversity is achieved in this case. Regarding the genetic
operations probability values, the best SEs are obtained when the value of the subtree
mutation probability is equal to 0.92 or higher. This makes subtree mutation a dominating
genetic operation when compared to the remaining three. The predefined stopping criteria
value is reached in the majority of cases (for classes 0, 1, and 5), so the GPSC training
is prematurely terminated with high classification accuracy. In the case of class 4, the
GenNum is the dominating stopping criterion. The value of the parsimony coefficient for
all cases is in the range (3.98–6.18 ×10−5); however, the parsimony pressure method has a
different influence on these cases. For example, the parsimony coefficient (4.08× 10−5) in
the case of class 5 has a large influence since it generates the smallest SEs (average SE size
26.8). However, in the case of class 4, the parsimony coefficient (3.98× 10−5) has a lower
influence, generating larger SEs (average length 135.2). The largest range of constants is in
the case of class 4 (−3011.14 and 9994.33). The four simple SEs obtained for class 5 (normal)
in the 5CV process are written as

y1 = min(X3, X4,−max(X63, X80) + X0 + X13 + X18 + X82) (8)

y2 =

(
(X104 + 596.7)min(X3, |X13|min(X53 − X1, 3

√
X4),

3
√

min(X3, X0 + X47 + X75))

) 1
3

(9)

y3 = min(X0, X13, X4, X3 −max(X1, X44)) (10)

y4 = min(X0, X13, X3, X4) (11)

In Equations (8)–(11), the Xi represents the input dataset variable, where i can be in
the 0 to 143 range. The SEs performance in terms of mean and standard deviation (σ)
evaluation metric values is shown in Figure 4.

Table 7. The list of GPSC hyperparameters used to obtain SEs with the SE length and average length
for each class on datasets balanced with BorderlineSMOTE.

Dataset Class GPSC Hyperparameters SEs Length Average Length

0
1305, 286, 320, (6, 12),
0.027, 0.92, 0.0034, 0.047, 0.000849,
0.992, (−8472.53, 6538.77), 5.84× 10−5

57/106/109/61/59 78.4

1
1773, 255,115,(5, 15),
0.028, 0.95, 0.013, 0.001, 0.000761,
0.99, (−6536.37, 3.62), 6.18× 10−5

51/66/91/100/304 122.4

4
1467, 208, 206, (7, 14),
0.028, 0.95, 0.0067, 0.013, 0.00067,
0.998, (−3011.14, 9994.33), 3.98× 10−5

86/214/140/92/144 135.2

5
1636, 208, 235, (6, 14),
0.013, 0.95, 0.027, 0.0014, 0.00047,
0.99, (−2166.54, 2091.41), 4.08× 10−5

74/17/25/11/7 26.8

As seen in Figure 4, classes 0 (HER) and 1 (basal) have significantly high classification
performance (ACC > 0.95). However, when these two are compared, class 1 (basal) has
larger σ values. The two extremes in this investigation are class 4 (luminal B) and class
5 (normal). The problem with class 4 (luminal B) is low classification performance with
the highest σ values when compared to other classes in Figure 4. In the case of class 4,
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over-fitting occurs due to a large difference between the classification performance on the
training and testing datasets. In the case of class 5 (normal), the best set of SEs has the
highest classification performance with the smallest σ values.

Figure 4. The mean and σ evaluation metric values for best SEs sets obtained on each dataset class.
The σ values are shown as error bars.

3.2. The Best Set of SEs Obtained on Dataset Balanced with SMOTE

With the application of SMOTE on each dataset variation listed in Table 4, all of them
are successfully balanced. After the application of GPSC with RHVS, the best set of SEs for
each class is obtained. In Table 8, the optimal combination of hyperparameter values, set of
SEs, and average length is shown.

Table 8. The optimal combination of GPSC hyperparameter values used to obtain the best SEs, their
length, and average length for each dataset class balanced with SMOTE.

Dataset Class GPSC Hyperparameters SEs Length Average Length

0
1689, 242, 229, (7, 9),
0.021, 0.95, 0.024, 0.0018, 0.000128,
0.9999, (−3476.2, 4881.51), 7.1× 10−5

322/99/103/70/28 124.4

1
1333, 238, 492, (5, 18),
0.015, 0.9, 0.058, 0.02, 0.000257,
0.99, (−3806.57, 9422.75), 6.96× 10−5

68/42/82/34/82 61.6

2
1981, 242, 322, (4, 16),
0.034, 0.9, 0.0036, 0.06, 0.000926,
0.99, (−6987.74, 606.08), 6.33× 10−5

82/18/21/22/86 45.8

3
1927, 284, 196, (7, 14),
0.18, 0.52, 0.026, 0.25, 0.0009,
0.99, (−9471.025, 7889.12) 9.65× 10−5

77/128/42/57/33 67.4

4
1587, 285, 170, (7, 10),
0.044, 0.032, 0.095, 0.82, 0.000912,
0.99, (−3146.31, 7425.75), 8.62× 10−5

391/944/191/155/81 352.4

5
1818, 292, 179, (7, 18),
0.045, 0.93, 0.0084, 0.012, 0.000295,
0.99, (−8427.52, 7910.95), 5.0× 10−5

27/18/51/18/17 26.2
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In Table 8, the SizePop value is near the upper boundary (2000) in the case of classes 2,
3, and 5. The maximum number of generations (GenNum) is the termination criterion in the
case of classes 0 and 4, while in other cases, StopCrit (minimum value of fitness function)
is the dominating termination criterion, i.e., the GenNum value is never reached. The
SizeTour value is largest in the case of class 1 (492), i.e., near the upper boundary defined in
Table 5. The largest DepthInit range is used in the case of class 1 (5, 18) while the smallest
is in the case of class 0 (7, 9). The most dominating genetic operation in this investigation
is also subtree mutation. Only in the case of class 4 (luminal B) is the point mutation
(0.82) the dominating genetic operation. The parsimony coefficient (ParsCoef) value range
(5.0–9.65 ×10−5) is very low to enable the growth of SEs during GPSC execution. However,
in the case of class 4, the bloat phenomenon does occur since the GPSC generates a set of
large SEs. The bloat also occurs for the first SE in the case of class 0. The problem with
these two classes is that the GPSC execution is terminated after a maximum number of
generations is reached and due to small parsimony pressure, the population members grow
in size without any significant benefit to the fitness function.

The performance of the obtained sets of SEs in terms of the mean and standard
deviation (σ) values of the evaluation metrics is shown in Figure 5.

Figure 5. The mean and σ evaluation metric values of best sets of SEs obtained for each dataset class
on dataset balanced with SMOTE method. The σ values are shown as error bars.

As seen in Figure 5, class 2 (cell line) and class 5 (normal) have the highest mean classi-
fication performance values with the smallest σ values. As in previous investigation, using
BorderlineSMOTE balanced datasets, class 4 (luminal B) has the lowest mean classification
performance values (>0.9) with extremely high σ values (range 0.8–1.0). The rest (classes
0, 1, and 3) have classification performance values higher than 0.95 and relatively small σ
values. However, class 0 has slightly larger σ values.

3.3. The Best Set of SEs Obtained on Dataset Balanced with SVMSMOTE

The application of SVMSMOTE does not balance all the class samples, only classes 0,
1, 4, and 5. The combination of GPSC hyperparameters with which the best set of SEs is
obtained for each class is listed in Table 9.

The SizePop values shown in Table 9 are closer to the lower boundary value (1000).
The same is valid for tournament selection size with the exception of class 1, where the
tournament size is closer to the upper boundary. Regarding the termination criteria in the
case of classes 0 and 5, the termination criteria are the predefined value of CritStop, i.e.,
the GPSC execution stops before the algorithm reaches a maximum number of generations.
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However, in the case of classes 1 and 4, GenNum is the main termination criterion. The
largest diversity in the initial population is achieved in class 0 due to the largest InitDepth
size (7,18). The subtree mutation again is the dominating genetic operation for all four
classes (>0.92). The range of ParsCoeff is much larger when compared to previous investi-
gations shown in Tables 7 and 8. The parsimony pressure method has a larger influence on
classes 1 and 4 since larger SEs are obtained. In the case of classes 1 and 4, the dominating
GPSC termination criterion is GenNum, which provides enough time to grow SEs from
generation to generation. However, for classes 0 and 5, a parsimony pressure method has a
smaller influence since smaller sets of SEs are obtained. For these two classes, early GPSC
termination occurs since the fitness function value of one population member drops below
the CritStop value.

Table 9. The optimal combination of GPSC hyperparameters used to obtain best SEs with their
length and average length for each dataset class balanced with SVMSMOTE.

Dataset Class GPSC Hyperparameters SEs Length Average Length

0
1487, 226, 140, (7, 18),
0.015, 0.95, 0.011, 0.017, 0.000373,
0.99, (−7056.42, 2732.52), 9.46× 10−5

47/41/58/98/82 65.2

1
1384, 213, 429, (5, 16),
0.013, 0.96, 0.017, 0.003, 0.000193,
0.99, (−7609.64, 4173.5), 9.83× 10−5

249/66/103/302/185 181

4
1393, 201, 113, (4, 8),
0.017, 0.97, 0.0019, 0.0027, 0.000675,
0.99, (−2655.73, 7489.67), 7.48× 10−5

138/52/68/294/147 138.8

5
1263, 211, 103, (6, 9),
0.011, 0.92, 0.06, 0.0034, 0.00028,
0.99, (−5354.17, 5345.63), 1.409× 10−5

96/10/11/91/77 57

The performance of obtained sets of SEs is shown in Figure 6.

Figure 6. The mean and σ evaluation metric values of best sets of SEs obtained for each dataset class
on the dataset balanced with SVMSMOTE method. The σ values are shown as error bars.

As seen in Figure 6, the highest evaluation metric values with the lowest σ values is
achieved in the case of class 5 (normal). The lowest mean evaluation metric values and
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largest σ values are achieved in the case of class 4 (luminal B). The set of SEs for classes
0 and 1 achieves evaluation metric values higher than 0.95; however, the σ values are
noticeable, especially for class 0.

3.4. Final Evaluation on the Original Dataset

As shown in the previous subsections, the set of SEs obtained on different oversam-
pling datasets is presented as well as the optimal combination of hyperparameters and
performance in terms of evaluation metric values. All of these SEs will be combined and
tested on the original dataset. The original dataset is the dataset obtained after the applica-
tion of the PCA method and one-hot encoder on the dataset so the number of samples per
class is not equal.

The idea is to improve the classification accuracy by combining the best SEs obtained
on a dataset balanced with different techniques into an ensemble. Here, two different
approaches are considered:

• First approach—using sets of the best SEs to create an ensemble.
• Second approach—combine the outputs of the best SEs with the original dataset and

use the dataset to train the decision tree classifier.

In the case of the first approach, the procedure of generating output and calculating
evaluation metric values can be divided into the following steps:

• For each SE in the ensemble provides input variable values to calculate the output.
Use this output in the Sigmoid function (Equation (2)) to determine the binary value
(0 or 1).

• Combines the output of all SEs for a class into one output. If there are 40 SEs for one
class, i.e., 30 output values of at least half of the generated output values must be the
same value so that the final output is correctly classified.

• After the combination of all ensemble SE outputs into one output array, apply ACC,
AUC, precision, recall, and F1-score to compute the evaluation metric performance.

The results of the SEs ensemble are graphically represented in Figure 7.

Figure 7. The evaluation metric values obtained on a set of SEs on the original dataset.
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As seen in Figure 7, using an ensemble of SEs for each class has improved classification
accuracy. Using this procedure, the classification performance for all classes improves. This
is especially valid for class 4, which in each previous case has the problem of lowest mean
evaluation metric values with highest σ values. However, the final results show perfect
performance in terms of evaluation metric values. The lowest performance is obtained
for a set of SEs obtained for class 3 (luminal A), for which the accuracy is 0.99. The mean
evaluation metric values are shown in Table 10.

Table 10. Final evaluation metric mean values obtained based on values shown in Figure 7.

Evaluation Metric Value

ACC 0.992
AUC 0.995

Precision 0.966
Recall 1.0

F1-Score 0.9825

The performance of the SEs ensemble for each class in form of Confusion matrix plots
is shown in Figure 8. As seen from Figure 8, the perfect classification of original dataset
samples is achieved for classes 2, 4, and 5. In the case of class 0 (HER), only one sample
is incorrectly classified as HER. In the case of class 1 (basal), two samples are incorrectly
classified as basal (label 1). In the case of class 3 (luminal A), only 4 are incorrectly classified
as luminal A.

In the second approach, the original imbalanced dataset (the dataset obtained after
the application of PCA method and one-hot encoder) is used on each of the best SEs to
generate the output vector. Since for each class, a total of 15 best SEs are obtained and
each SE will produce 1 output vector, in total, there are 15 output vectors (for all dataset
samples). To obtain one output vector for each class, if at least 8 SEs have the same class
prediction, the output vector will have that class label. After 1 output vector is obtained
for 15 output vectors, this output vector is added as the additional input variable in the
dataset (144 PCA + 1 output vector with values 0 or 1). To train DTC for the classification of
each class, the modified dataset is divided into a 70:30 ratio, and the performance is shown
for the entire dataset. In Figure 9, the DTC performance in terms of the evaluation metric
values is shown.

As seen from Figure 9, the highest classification performance is achieved with DTC
for class 0 (HER), 2 (basal), and 5 (normal). For these three classes, the classification
performance is equal to 1.0. Class 1 (basal) has slightly lower classification accuracy
followed by class 3 (luminal A) and class 4 (luminal B). So class 4 (luminal B) has the lowest
classification accuracy equal to 0.975. When these results are compared to those shown in
Figure 7, it can be seen that using DTC improves classification accuracies for classes 0, 1,
and 3. However, the classification accuracy for class 4 is slightly lowered. The mean values
of the evaluation metric values across all classes are shown in Table 11.

When Table 11 is compared to Table 10, the implementation of DTC in combination
with SEs shows incremental improvement. The mean values of ACC, precision, and
F1-score are improved, while AUC and recall are lowered.

The confusion matrix plots in Figure 10 shows perfect classification for classes 0, 2, 4,
and 5. In the case of class 1, one sample is incorrectly classified as a “no basal” class shown
in Figure 10b. Also, in the case of class 3, there is only one sample incorrectly classified as
“no luminal A” as seen in Figure 10d. When these results are compared to the results shown
in Figure 8, the results obtained with DTC are slightly better.
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(a) (b)

(c)
(d)

(e) (f)
Figure 8. Confusion matrix plots for each class. (a) Confusion matrix of SEs ensemble for class
0 (HER). (b) Confusion matrix of SEs ensemble for class 1 (basal). (c) Confusion matrix of SEs
ensemble for class 2 (cell line). (d) Confusion matrix of SEs ensemble for class 3 (luminal A).
(e) Confusion matrix of SEs ensemble for class 4 (luminal B). (f) Confusion matrix of SEs ensemble
for class 5 (normal).
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Figure 9. The DTC performance on the original imbalanced dataset in terms of evaluation
metric values.

Table 11. Final evaluation metric mean values obtained with DTC.

Evaluation Metric Value

ACC 0.994
AUC 0.993

Precision 0.984
Recall 0.99

F1-Score 0.987

(a) (b)
Figure 10. Cont.
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(c)
(d)

(e) (f)
Figure 10. Confusion matrix plots for each class. (a) Confusion matrix of DTC for class 0 (HER).
(b) Confusion matrix of DTC for class 1 (basal). (c) Confusion matrix of DTC for class 2 (cell line).
(d) Confusion matrix of DTC for class 3 (luminal A). (e) Confusion matrix of DTC for class 4 (luminal
B). (f) Confusion matrix of DTC for class 5 (normal).

4. Discussion

The initial problem with the used dataset is a large number of input variables (54,676)
and one column representing the breast cancer type. A large number of input variables
and the small number of samples can have a negative influence on the performance
of any machine learning (ML) model, i.e., it can lead to models with low accuracy or
overfitting. The idea of this paper is to perform the dimensionality reduction technique
with maintaining the most information of the original dataset (input variables). Before the
implementation of the dimensionality reduction method, all the input variables are scaled
using the standard scaling method. For the dimensionality reduction technique, the PCA is
chosen, and the number of required PCA components is chosen based on criteria that the
cumulative explained variance of the input dataset variables would be equal to 99%. Using
these criteria, a total of 144 PC components is used in the research.

The output variables contain a total of six classes (six breast cancer types). Generally,
this can be solved using one-versus-rest or one-versus-one classification. However, the
ordinal encoder and one-hot encoder are applied to split the original output column with
six classes into six different output columns, where each class corresponds to one column.
This way, the problem is manually split into six different variations of the original datasets.
So, each dataset consists of 144 PC components and 1 target variable, where the target
variable is one of the original classes labeled as 1, while the rest (other original class value)
are labeled as 0.

These new datasets are highly imbalanced, so the application of oversampling methods
is used. The undersampling methods cannot be applied due to an already extremely small
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number of samples. Initially, ADSAYN, BorderlineSMOTE, SMOTE, KMeansSMOTE, and
SVMSMote were considered. But some of these oversampling methods (ADASYN and
KmeansSMOTE) have to be omitted due to the inability to reach an equal number of
samples for each class. The BorderlineSMOTE and SVMSMOTE methods do not reach
an equal number of samples in the case of the dataset with class 2 (cell line) and class
3 (luminal A). The reason for not reaching a balanced dataset for classes 2 and 3 is the
inability to construct the borderline between minority and majority class samples. So
for these two balancing methods datasets, the target variable is class 0 (HER), 1 (basal),
4 (luminal B), and 5 (normal). In the case of SMOTE, all classes are successfully balanced.

Each balanced dataset is used in GPCS with RHVS and initially divided in a 70:30
ratio, where 70% is used to train the GPSC with the 5CV process, while the remaining is
used for final testing. The 5CV process generates a set of SEs, and if all evaluation metric
values on the training dataset are higher than 0.99, the execution moves on to testing the
SEs on the test datasets. However, due to the high preset evaluation metric value, the
testing is skipped, so the SEs are later evaluated on the test dataset to calculate the mean
and σ evaluation metric values.

Regarding the optimal combination of hyperparameters, the investigation finds that
the most influential genetic operation is subtree mutation (SubMute). As seen in Tables 7–9,
its value is in the range 0.9–0.97. The high value of the SubMute hyperparameter in
combination with the large SizePop value and SizeTour results in lowering the fitness
function value, which contributes to early GPSC termination, i.e., before reaching the
pre-defined GenNum value. The parsimony pressure method controlled by the PasCoef
value has the most influence on those GPSC executions, which are not terminated early, i.e.,
terminated after the maximum number of generations is reached. This can be noticed for
class 4, where the execution is terminated after the GenNum predefined value is reached.
The problem is that the size of SEs for that class grows and grows due to low-value ParsCoef
and lower correlation between the input and output variables.

In the case of datasets oversampled with the BorderlineSMOTE only dataset, class
5 (normal) achieves the highest classification performance (>0.98), while classes 0 and 1
generate high classification performance (≥0.95) but with higher σ values. The lowest
classification performance is achieved in the case of class 4 (luminal B), i.e., low evaluation
metric values (≥0.85) with the highest σ values.

In the case of datasets oversampled with the SMOTE method, the highest classification
performance is achieved with SEs of classes 2 (cell line) and 5 (normal) with classification
accuracy almost equal to 1 and lowest σ values. The SEs obtained for class 0 (HER), 1
(basal), and 3 (luminal A) achieve slightly lower classification performance. The datasets
that are successfully balanced with SVMSMOTE achieve SEs with the highest classification
accuracy for class 5 (normal) followed by class 0 (HER), and 1 (class 1). Figure 6 class
4 achieves the lowest mean values and σ values. The problem with class 4 is the low
correlation with the target variable, while the other is a small number of samples, which is
why the oversampling is chosen but the size is changed.

Combining the best SEs obtained on oversampled datasets and testing these ensembles
on the original unbalanced datasets does achieve greater classification performance. From
Figure 7, it can be noticed that perfect ACC is achieved for classes 2 (cell line), 4 (luminal B),
and 5 (normal). Slightly lower classification performance is achieved for class 0 (HER),
1 (basal), and 3 (luminal B). The average classification performance is excellent, and the
confusion matrices are shown in Table 10 and Figure 7. The output is slightly improved
using the dataset to train and evaluate the DTC performance with default hyperparameters.

Finally, the comparison of the results achieved in this paper with the results from
other authors is as follows.

As seen from Table 12, our approach overcomes the problem of the large number of
input variables, and the small number of samples. By performing such a modification,
a large number of equations are created that could classify specific target variables with
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high classification accuracy. However, to improve it, simple DTC is utilized. The final
comparison shows that GPSC alone and GPSC + DTC outperform any previous research.

Table 12. Comparison of previous research results with results achieved in this paper.

Reference Reduction Methods AI Methods Results

[4] ACOC5 DT, SVM, KNN, RF ACC: 0.954

[5] IGAG FLNN ACC: 0.856

[6] MRMD, PCA RFC ACC: 0.913

[7] CFS-PSO Naive-Bayes ACC: 0.927

[8] CMIM-AGA ELM, SVM, KNN ACC: 0.903

[9] MIMAGA ELM ACC: 0.952

[10] MCSO RR, OSRR, SVMRBF,
SVM Poly, and KRR ACC: 0.966

[11] SUF-HSA IBL ACC: 0.833

[12]

hybrid Feature Selection sequential
framework consisting of minimum
Redundancy-Maximum Relevance,
two-tailed unpaired t-test,
and meta-heuristics

SVM, KNN, ANN,
NB, DT, XGBoost ACC: 0.976

This paper
PCA + oversampling methods
(BorderlineSMOTE, SMOTE,
and SVMSMOTE)

GPSC
GPSC + DTC

ACC: 0.992
ACC: 0.994

5. Conclusions

In this paper, the initial breast cancer dataset with a large number of input variables
and a small number of samples was tackled using the dimensionality reduction method
(PCA) and oversampled using different oversampling methods. The idea was to investigate
if these preprocessing methods could provide an initial starting point for GPSC training
to develop a robust set of SEs that could be used to accurately classify breast cancer
type. The GPSC was combined with the RHVS method to find the optimal combination
of GPSC hyperparameters, with which SEs with high classification accuracy could be
obtained. Each GPSC training was performed using the 5CV method and evaluated on
the remaining “unseen” dataset part. Based on the extensive investigation performed, the
conclusions are as follows:

• The dimensionality reduction method (PCA) can greatly reduce the number of input
dataset variables.

• The oversampling methods have a great influence on the performance of the GPSC
since high accuracy of the obtained SEs was achieved.

• The proposed methodology of training using the 5CV method generated a large set of
SEs, and in combination with the decision tree, the classifier contributed to the robust
system, which could be used for the accurate classification of the breast cancer type.

• The application of the developed RHVS method proved to be crucial in finding
the optimal hyperparameter combination on each oversampled dataset and obtain-
ing SEs obtained with this combination of GPSC hyperparameters achieved high
classification accuracy.

The method proposed (dimensionality reduction + dataset oversampling +
GPSC + RHVS + 5CV) in this research has some advantages and disadvantages. The
advantages of the proposed method are as follows:
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• The method is great for solving datasets with a large number of input variables and a
small number of samples.

• The benefit of utilizing the GPSC method is that after each training round, a SE is
obtained that is easier to understand and process, i.e., requires low computational re-
sources.

• The benefit of utilizing different oversampling methods is to obtain multiple sets of
symbolic expressions, which could potentially solve overfitting that can occur due to
the small number of dataset samples.

However, the proposed method has some disadvantages:

• Although the number of input dataset variables is reduced, the large number of dataset
oversampling variations can prolong the time required to train GPSC on each dataset.

• The RHVS method found the optimal combination of GPSC hyperparameters on each
oversampled dataset variation, which means each time a new dataset variation was
utilized, a RHVS method was used to find the combination of hyperparameters for
that dataset variation.

• Generally, a long time was required to find the optimal combination of GPSC hyper-
parameters using the RHVS method.

The future work regarding this dataset would be to somehow initially increase the
number of dataset samples to see if the artificially created datasets could generate SEs with
high classification accuracy.
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Appendix A. Modification of Mathematical Functions

In subsection GPSC with RHVS, it was stated that some mathematical functions, such
as square root, natural logarithm, logarithm with bases 2 and 10, and division, had to be
modified to avoid imaginary/infinite/NaN values during GPSC execution. The square
root function is defined as

ySQRT(x) =
√
|x|, (A1)

so regardless of whether x is positive or negative before the application of the square root
function, the absolute value is obtained. The natural logarithm and logarithms with bases
2 and 10 are calculated using the following expression:

yLOGi(X) =

{
logi(|x|) if|x| > 0.001
0 |x| < 0.001

(A2)

in previous equations, i refers to bases of natural logarithms and logarithms with bases 2
and 10. Finally, the division function is modified in the following way:

https://github.com/nandelic2022/BreastCancerResearch.git
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ydiv(x1, x2) =

{
x1
x2

if|x2| > 0.001

1 if|x2| < 0.001
(A3)

Appendix B. SEs Obtained in This Research

Each successfully balanced dataset with the oversampling methods is used in GPSC
with RHVS and trained using 5CV. As stated, the 5CV process generates 1 SE for one split, so
after the 5CV process, 5 SEs are generated. After all training/testing is complete, the best
sets of SEs are selected. In the case of BorderlineSMOTE, 4 classes are successfully balanced
(classes 0, 1, 4, and 5), which generate a total of 20 SEs (5 SEs for 1 class). In the case of
SMOTE, a total of 30 SEs are generated (6 classes × 5 SEs for each class). In the case of
SVMSMOTE, a total of 4 classes are successfully balanced, which generate in GPSC a total of
20 SEs. So after the investigation is conducted, a total of 70 SEs are developed. All SEs are
available at: https://github.com/nandelic2022/BreastCancerResearch.git (accessed on 15
June 2023).

The procedure for using these expressions in Python programming language is
as follows:

1. Use the initial dataset, perform standard scaling and the PCA dimensionality reduc-
tion method to obtain 144 input variables. Transform the target variable from string
to integer form using ordinal encoder and then one-hot encoder to binarize each class
integer, creating one array for each class (one-versus-rest approach).

2. Use the dataset to calculate the output for each SE and use that output as the input
value in the sigmoid function (Equation (2)) to determine the output class (0 or 1).
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