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Simple Summary: Glioblastoma multiforme (GB) and neuroblastomas (NBs) are nervous system
cancers that are difficult to diagnosis and treat. Chlorotoxin (CTX), is a peptide extracted from
scorpion venom which easily binds with many cancer cells, especially in GB and NB. Through
nanotechnological methods, CTX can be conjugated to nanoparticles (NPs), and used both as for both
diagnostic and therapeutic (theranostics) applications. This review article discusses the potential use
of CTX-NP formulations for GB and NB, provides the current understanding of the mechanisms by
which CTX may cross the difficult blood-brain barrier to target tumour cells. The authors extensively
discuss the current state of research involving similar formulations and suggest areas for further
investigation, such as using CTX-NPs for hyperthermia-based treatments therapy. Furthermore, the
article discusses future trends and perspectives for novel CTX-based NP formulations to revolutionize
the diagnosis and treatment of these challenging brain tumours.

Abstract: Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor
therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay
treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance,
poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments
less satisfactory. Other treatment options have been investigated in many studies in the literature,
especially nutraceutical and naturopathic products, most of which have also been reported to be
poorly effective against these cancer types. This necessitates the development of treatment strategies
with the potential to cross the BBB and specifically target cancer cells. Compounds that target
the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic
insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays
significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion.
Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker
scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-
spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The
favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active
targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic
and therapeutic applications for addressing the many challenges associated with these cancers.
CTX-NPs may function by improving diffusion through the BBB, enabling increased localization
of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging
modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography
(SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization
of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB
and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized
NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also
provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer

Cancers 2023, 15, 3388. https://doi.org/10.3390/cancers15133388 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15133388
https://doi.org/10.3390/cancers15133388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3201-3941
https://orcid.org/0000-0002-8296-4860
https://orcid.org/0000-0003-3193-7499
https://doi.org/10.3390/cancers15133388
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15133388?type=check_update&version=1


Cancers 2023, 15, 3388 2 of 40

cells and provides suggestions for the development and application of novel CTX-based formulations
for the diagnosis and treatment of GB and NB in the future.

Keywords: blood-brain-barrier (BBB); chlorotoxin (CTX); glioblastoma (GB); matrix metalloproteinase 2
(MMP-2); nanoparticles (NPs); neuroblastoma (NB)

1. Introduction

Cancer is the leading cause of low life expectancy and death worldwide [1]. Nervous
system (NS) tumors include a broad spectrum of brain and spinal cord malignancies that
contribute to global economic burden and are often associated with short- and long-term
disabilities [2]. The treatment of malignant tumors of the NS remains a challenge due
to the BBB, with about 330,000 new central nervous system (CNS) cancer cases reported
globally [3]. High-grade glioblastoma, also known as glioblastoma multiforme (GB), is
the most aggressive and consistently debilitating primary brain tumor in adults, with
a dismal median survival time of 12–15 months and a 5-year survival rate of less than
7% [4]. Standard treatments are ineffective due to the diffuse invasion and infiltrative
overgrowth of heterogeneous glioma cells contributing to the development of irregular and
indistinct tumor margins, thereby hindering complete surgical resection [5]. The location of
deep-seated GB also makes it difficult to treat without damaging healthy brain cells, hence
radiotherapy and chemotherapeutic drugs have the treatment limitations of non-specificity
and systemic toxicity [6], in addition to the most important challenge of BBB permeability,
i.e., effective delivery into the brain. [7].

Neuroblastoma (NB) are amongst the most frequent childhood cancers of the sympa-
thetic NS and remains one of the major challenges in pediatric oncology [8]. The progression
of NB is associated with hematogenous metastasis, common relapses, and a fast decline
in survival timeline and drug resistance [9]. As for GB, conventional treatment for NB
is limited by systemic toxicity and more than half of children diagnosed with high-risk
NB do not respond to high-dose chemotherapy and often demonstrate multi-drug resis-
tance [10]. Some of the reported adverse side effects of high-dose chemotherapy include
nephrotoxicity, cardiotoxicity, and gonadotoxicity leading to infertility in later life [11,12].
Specific long-term toxic side effects include cognitive deficits, epilepsy, growth reduction,
thyroid function disorders, learning difficulties, and an increased risk of secondary cancers
in survivors of high-risk NB [13–16]. Although there have been improvements in the man-
agement of NB during the past two decades, the overall cure rate remains at approximately
50% for high-risk patients [10]. Tumor migration and invasion have been identified as the
major causes of treatment failure in patients with malignant tumors [17].

Metastasis is a multistep process that consists of cancer cell migration and invasion [18]
and most NS tumors are known to undergo metastasis similar to other cancer types [19].
Tumor metastasis comprises neovascularization as well as cell adhesion, invasion, mi-
gration, and proliferation, with the degradation of the extracellular matrix (ECM) and
the basement membrane playing an important role [20,21]. The overexpression of matrix
metalloproteinases (MMPs) in tumor cells has been implicated in tumor progression [22].
Metalloproteinases (MPs) are a family of secreted, zinc-dependent endopeptidases involved
in such processes as tissue-remodelling, wound healing, embryo implantation, tumor in-
vasion, metastasis, and angiogenesis [23–25]. MMPs are reported to contribute to the
degradation of extracellular matrix (ECM), stromal connective tissue, and the BBB tight
junctions, which are some of the driving factors of cancer invasion and metastasis, the
progression of neurodegenerative diseases, and other pathological disorders [26].

There are over 20 matrix metalloproteinase (MMP) family members, and the subset of
MMP-2s, released from neurons and neuroglia, is known to be present in the CNS [27,28].
Literature evidence suggests that the over-expression of MMP-2 is an active contributor to
the progression of malignant GB [29–31] and NB [32–34] via increased cancer-cell growth,
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migration, invasion, and angiogenesis. The degree of invasiveness of GB and NB tumors is
related to increased levels of MMP-2 expression [33,35]. In addition to the overexpression of
MMP-2 on the cell surface, the chloride ion channel 3 (ClC-3) is specifically upregulated in
human GB cells but not in normal glial cells and neurons [36,37]. ClC-3 is involved in cell
cytoskeletal rearrangements as well as cell shape and movements during cell migration [36,38].

The annexin protein family is a group of calcium-dependent phospholipid-binding
proteins that contribute to such cellular functions as angiogenesis, apoptosis, cell migration,
proliferation, invasion, and cohesion [39,40]. The surface protein annexin A2, a calcium-
binding cytoskeletal protein located at the extracellular surface of various tumor cell types,
including glioma, is involved in tumor progression through cell migration and invasion [41,42].
Annexin A2 is also implicated in enhanced multidrug resistance in NB [43].

Thus, MMP-2, chloride channels, and Annexin 2 are all involved in malignant cell
migration and invasion and provide therapeutic opportunities for targeting GB and NB
cancers. One promising molecule for achieving such targeting is the peptide, chlorotoxin
(CTX) which is a 36-amino acid peptide isolated from the venom of the deathstalker
scorpion, Leiurus quinquestriatus, known to specifically bind to gliomas and many other
tumors of neuroectodermal origin similar to NB [44]. Although the precise mechanism
of CTX targeting has yet to be fully elucidated, a number of studies have suggested the
presence of many targeting receptors for CTX on the surfaces of different cancer cells,
including chloride channels [45–47], MMP-2 [48–50], annexin A2 [51,52], estrogen receptor
alpha (ERα) [53] and neuropilin-1 receptor (NRP-1) [54,55]. In gliomas, it is reported that
MMP-2 and CIC-3 form a protein complex located within the same membrane domain
targeted by CTX and could potentially inhibit glioma cell invasion through the induction
of MMP-2/ClC-3 protein complex endocytosis [48]. Additionally, CTX has been observed
to permeate intact BBBs in both animal models and human brain tumors, with no cross-
reactivity reported in non-malignant cells in the brain and other parts of the body [44].
Thus, CTX could be considered a promising targeting molecule for the development of
novel diagnostic and therapeutic applications for GB and NB tumors.

The use of nanoparticle-based systems is attractive in biomedical research for the devel-
opment of improved cancer-targeting diagnostic and therapeutic applications. Nanoparti-
cles (NPs) improve the targeting of tumor cells by enhancing drug diffusion through the BBB
and the specific targeting of diseased tumor cells, thereby limiting systemic toxicity [56,57].
NPs that are surface-functionalized with CTX as a targeting molecule, have been widely
investigated and shown to demonstrate BBB-penetrating properties to reach GB tumors
in vivo. These molecules are also useful for imaging-guided maximal surgical resection,
drug delivery, and therapy monitoring [44,58–61]. Fluorescent-labeled CTX molecules and
CTX-NP formulations for the delivery of chemotherapeutics and small interfering RNAs
(siRNAs) have entered early clinical trials and preliminary results are promising [44,62–65].

This review summarizes part of a published thesis on this subject [66], highlights
the pathogenesis and challenges associated with GB and NB cancers, and discusses the
characteristics of CTX formulations as promising targeting peptides for these cancers. It
also explores the mechanisms of action of CTX-based NPs, their common diagnostic and
therapeutic applications for the management of GB, as well as potential application for the
treatment of NB.

2. Glioblastoma Multiforme (GB): Standard Treatments and Challenges

Glioblastoma multiforme (GB) is the most highly invasive and aggressive, intracranial
brain tumor diagnosed in adults, with a poor median survival time of 12–15 months and
a 5-year survival rate of less than 7% [4]. There are many challenges associated with the
treatment of GB, as highlighted in Figure 1, a major one being the blood-brain barrier (BBB)
which diminishes the therapeutic value of most drugs for brain tumors due to its unique
characteristics. GB is characterized by high inter-tumor and intra-tumor heterogeneity
at cellular, molecular, histological, and clinical levels, resulting in poor and unchanged
prognosis despite advancements in drug delivery strategies [67]. Standard treatment
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for GB follows the Stupp protocol which has been employed for the past two decades
and involves maximal surgical resection, followed by radiotherapy and chemotherapy
with temozolomide (TMZ) [68,69]. TMZ initiates DNA double-strand breaks, cell cycle
arrest, and eventually cell death; however, it is associated with dose-limiting hematological
toxicity [70]. Furthermore, TMZ is poorly soluble under physiological conditions and
is prone to rapid hydrolysis which restricts its antitumor efficacy [71]. Drug resistance
to TMZ is also often reported [72]. The size and anatomical location of GB tumors are
major challenges to effective treatment as GB cells tend to overgrow rapidly, become highly
invasive, and migrate deep into fragile brain regions, leading to incomplete tumor resection
and tumor relapse [73]. In addition, a subpopulation of highly tumorigenic glioma stem
cells (GSCs) with high plasticity and self-renewal properties add to tumor malignancy
through their continued proliferation, invasion, stimulation of angiogenesis, reduction of
anti-tumor immune responses and chemo-resistance [74]. Though not curative, extensive
surgical resection is required to reduce the tumor size and relieve the intracranial pressure
associated with GB symptoms and therefore presents a high risk for iatrogenic damage
to healthy brain regions, leading to further complications [75]. The main disadvantage
of radiotherapy is the non-specificity as normal cell DNA is also damaged, leading to
permanent neuronal damage and radio-resistance of tumors and its attendant relapses
following high dose radiation treatment or Radiotherapy utilizes X-rays, gamma rays
or other charged particles to induce DNA even combination therapy [76]. Although the
Stupp protocol may extend survival times, it does not cure GB, hence without treatment,
the survival time is usually 3 months [77]. In 2015, a medical device based on tumor
treating fields was introduced and applied on GB patients. However, this device did not
significantly improve the median overall survival rates [68].
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3. Neuroblastomas (NBs): Standard Treatments and Challenges

Neuroblastomas (NBs) are the most frequent extracranial solid brain tumors diagnosed
in childhood and one of the major challenges in pediatric oncology, with a 5-year survival
rate for patients presenting with high-risk NB tumors being below 40% [10]. A NB is an
embryonal tumor of the sympathetic NS that arises because of disturbances within the
migratory route of primitive neural crest cells along the sympathoadrenal lineage and
normally originates in the adrenal glands or the paravertebral ganglia [78]. Thus, most
tumors may be present in the neck, thorax, abdomen, and pelvis, as localized or metastatic
tumors, while others may be secondary to such mental disorders as Hirschsprung’s disease
or conditions such as congenital central hypoventilation syndrome and neurofibromatosis
type 1 [79–81]. NB cells may invade other tissues and metastasize to bone marrow, bones,
lymph nodes, skin, liver, lung, and brain [82,83]. Studies have shown that overexpression
of the MYCN oncogene, which is known to be involved in embryogenesis, is one of the
predominant factors implicated in NB [78]. On the other hand, the downregulation of
the tyrosine kinase receptors (Trk), CD44, and overexpression of anaplastic lymphoma
kinase (ALK) are the other molecular mechanisms that could lead to tumorigenesis or
tumor expansion [84].

The standard treatment for NB consists of a coordinated sequence of chemotherapy,
radiation therapy, surgical tumor resection, and combinations thereof, as well as myeloabla-
tive consolidation therapy with stem cell rescue and transplantation, 13-cis retinoic acid, and
immunotherapy [85,86]. Surgery for low-risk NB may be sufficient support for chemother-
apy with carboplatin, etoposide, cyclophosphamide, and doxorubicin [87]. However,
surgical interventions are invasive, and incomplete tumor resection may require further
chemotherapy, radiotherapy, and possibly stem cell transplantation [88]. For high-risk NB,
long-term treatment with cisplatin, carboplatin, etoposide, vincristine, cyclophosphamide,
and doxorubicin may be effective but causes systemic toxicity in the form of ototoxicity,
thyroid function complications, cardiotoxicity, renal toxicity, future infertility complications
and secondary malignancies [11,12,89,90]. The major long-term toxic side effects present
as hearing loss, cognitive deficits, epilepsy, learning difficulties, endocrinopathies, growth
reduction, thyroid function disorders, ovarian failure, and increased risks of secondary
cancers [14–16,91,92]. Despite available treatment options, NB remains a major challenge
in pediatric oncology and most survivors of high-risk NB often show spontaneous tumor
regression after treatment [93], with more than half of the survivors not responding to
high-dose chemotherapy and demonstrating multi-drug resistance [94]. The overall cure
rate for high-risk NB is approximately 50% during the past two decades [10], and the lack
of specificity of anticancer drugs to NB indicates that only low amounts of administered
drugs can ultimately reach the tumor, with long-lasting side effects.

4. Current Challenges Associated with Drug Delivery to the Brain

A major challenge in the development of novel drugs for the treatment of NS tumors
and other CNS diseases is the limitations posed by the BBB, which is the first line of
defense from harmful substances in the blood that enters the brain circulation [95]. The
combination of capillary endothelial cells held together by complex tight junction proteins,
surrounding pericytes, the basal membrane, and astrocytic end-feet confers a high degree
of selectivity to the BBB [96]. The BBB is approximately 200 nm thick, permitting the
passage of small molecules (atomic mass < 400–600 Da) and hydrophilic molecules (atomic
masses < 150 Da) via lipid-mediated diffusion, carrier-mediated transport systems, and
receptor-mediated transport systems, while strictly preventing the paracellular entry of
most chemotherapeutic drugs [97,98]. In addition, capillary endothelial cells in BBBs have
a high concentration of drug efflux transporter proteins such as P-glycoprotein (P-gp) and
multidrug resistance-associated proteins, resulting in reduced drug bioavailability [99].

As tumor cells invade the CNS and reach >0.2 mm3 of volume, the BBB is damaged and
new blood vessels are formed through angiogenesis, leading to the formation of the blood-
brain tumor barrier (BBTB) [7,100]. The newly formed capillaries are fenestrated, allowing
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the entry of approximately 12 nm-sized molecules through the BBTB (Sarin et al. [101]).
With cancer progression and depletion of tight junction proteins, the capillary fenestrations
become even more enlarged to allow for the passage of molecules of approximately 48 nm
size and eventually 1 µm size, at which stage the BBB integrity is considered completely
compromised [102]. The resultant leaky vasculature of most parts of the affected CNS tissue
renders some chemotherapeutic drugs ineffective but peripheral areas of these tumors may
have regions with an intact BBB resulting in the formation of favorable niches of cancer cell
invasion and treatment resistance [103]. Thus, the combination of the BBB and the BBTB
presents a unique challenge for brain tumor drug delivery.

The lack of specificity, poor drug delivery, drug resistance, and severe toxic side effects
associated with standard treatments for GB and NB, are limitations to the effective manage-
ment of these tumors. The avoidance of the systemic toxicity induced by chemotherapy
and radiation treatments is crucial especially within the pediatric age group associated
with NB patients because this can cause permanent changes to the developing body and
increased risk of secondary cancers later in life [104]. Although there are many advances in
research on GB and NB tumors in the past two decades, no effective treatments have been
developed [69,94] as the current treatment options appear to be largely unsatisfactory, and
inconsistent results have been reported for their effects on prolonging the median survival
time of patients. In addition, significant remission is reported for early-diagnosed tumors
but not for advanced disease stages [105,106].

Improvements in all treatment modalities are required for the successful management
of cancers, and for GB and other CNS tumors, improved surgical resection techniques would
result in fewer neurological side-effects and overall improvement in patient outcomes [107].
A better understanding of the exact mechanisms involved in drug delivery across dynamic
biological barriers and the specific targeting of cancerous cells for treatment will foster novel
and effective therapeutic strategies. Chlorotoxin (CTX) is one peptide that has recently
generated interest in cancer research, especially for the targeted treatment of most CNS
tumors [44,61,108], hence, the development of CTX-based nanoparticle treatments could
offer promising outcomes for CNS tumors as discussed below.

5. Chlorotoxin (CTX): A Promising Natural Targeting Peptide for Cancers

In recent years, interest in exploiting the beneficial properties of venoms through the isola-
tion of their peptides and investigating their efficacy as targeting molecules, have increased [109].
CTX is derived from the venom of the deathstalker scorpion (Leiurus quinquestriatus) and is a
36-amino acid peptide stabilized by four disulfide bonds, used as a potent targeting moiety
due to its ability to bind to cancerous tissues, with high binding specificity for gliomas and
NBs, and not to normal tissues [45,110]. CTX has emerged as a promising targeting agent for
brain tumors due to its ability to specifically bind to 74 of the 79 World Health Organization
(WHO) brain tumor classifications [110]. More than 15 normal human tissues have been shown
to demonstrate negative CTX-binding properties [45,110].

CTX is considered safe and has been observed to permeate intact BBBs in both animal
models and humans with brain tumors [111–113]. It is also a promising agent for the imaging
and treatment of gliomas as demonstrated in clinical trials [64,65]. A synthetic CTX peptide
labeled with 131I (commercial name 131I-TM-601) has already undergone early-phase clinical
trials and received Food and Drug Administration (FDA) approval for a phase III trial in patients
with newly diagnosed gliomas [114]. In addition to its high selectivity for targeting and binding
of GB tumors, CTX has been shown to bind to a broad-spectrum of cancer cells including
NB, medulloblastoma, breast cancer, ovarian cancer, prostate cancer, sarcoma, intestinal cancer,
lung cancer and pancreatic cancer [45,48–51,53,54,62,110,115,116]. For peptides to be considered
useful in therapeutics, they should normally possess the following characteristics: a small
molecular size, clear activity on ion channels, and contain at least three disulfide bonds [60].
In addition, receptors present on cancer cells for these peptides should be uniquely or
highly overexpressed in comparison to non-malignant cells, and a tumor-to-normal-cell
expression ratio of 3:1 or higher is usually preferred to achieve the desired therapeutic
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effects [117]. Based on the above information, CTX meets all the important characteristics
of a therapeutic peptide and is therefore a useful candidate in medical research considering
its bioavailability and ability to induce target selectivity, which in turn reduces the side
effects of drug resistance and systemic toxicity due to lack of specificity [44]. The selective
binding of CTX to GB tumor cells has made its application as a targeting molecule for brain
cancer therapy as well as a contrast agent for tumor optical imaging, very plausible [61].

5.1. Molecular Targets of CTX

The exact mechanisms by which CTX targeting occurs are not completely understood
but potential primary cell surface targets have been identified over the years (Figure 2).
Some studies have shown that CTX is an effective blocker of small conductance epithe-
lial chloride channels [118,119] and mainly binds to overexpressed cancer cell surface
receptors involved in the progression of tumors such as ClC-3 (chloride channel-3) in
GB cells [37,38,110,119–124] which forms a protein complex with matrix metalloprotease-
2 receptor (MMP-2) [48–50,116,125,126]; annexin A2 which is present in various cell
lines [51,52] and has since been shown to be a potential target of CTX, and more recently
estrogen receptor alpha (ERα) [53] and the Neuropilin-1 (NRP-1) [54,55] which is a vascular
endothelial growth factor receptor responsible for tumor uptake. These molecules provide
alternative methods for CTX targeting tumors in cancer diagnosis and therapy.
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scorpion (Leiurus quinquestriatus) (a) and is composed of a 36-amino acid peptide stabilized by
four disulfide bonds (b). CTX has been shown to block Cl- channels and bind to overexpressed cell sur-
face receptors found in various tumors such as: ClC-3, MMP-2, Annexin A2, NRP-1, and ERα (c), all
these receptors interact with CTX and ultimately contribute to an overall inhibition/suppression of
cellular growth and migration (d) (Image created with BioRender.com).

5.1.1. Chloride Channels

Voltage-gated chloride (Cl−) channels have been associated with the proliferation
and invasive migration of primary brain tumor cells [46,127]. Glioma cell shrinkage can
be inhibited by Cl− channel blockers leading to reduced invasion [45,46,127]. Intracel-
lular Ca2+ was identified as a main regulator of cell motility due to Ca2+-activated ion
channels [128] such as Ca2+-activated K+ channels which are known to elevate glioma
migration [129]. Among the chloride channel protein family, chloride channel-2 and 3
(ClC-2 and ClC-3) are upregulated in glioma and are involved in the rapid changes in cell

BioRender.com


Cancers 2023, 15, 3388 8 of 40

size and shape seen in dividing cells which invade extracellular brain spaces [130]. ClC-3
has been suggested to affect the invasion and migration of glioma cells by forming protein
complexes with membrane type-I matrix metalloproteinase (MMP), MMP-2, tissue inhibitor
of metalloprotein-2, and αvβ3 integrin, co-localizing with Ca2+-activated K+ channel to
lipid raft domains of invadopodia [47,131].

The tumor-binding activity of a radioisotope 125I-labeled CTX (125I -CTX) was de-
scribed by Soroceanu et al. [45] who showed its accumulation in tumor cells of GB-bearing
mice, sparing normal neurons and astrocytes. Similarly, melanoma, neuroblastomas, medul-
loblastomas, and small-cell lung carcinomas in over 200 human surgical biopsy samples
have shown CTX binding possibly because of their common neuro-ectodermal embryonic
origin with glial cells [110]. A normal human brain and other tissues have also been shown
to be consistently negative for CTX immunostaining [46].

The inhibitory effect of CTX on human GB-associated chloride channels was described
by Ullrich et al. [120] and they also discovered the existence of specific CTX-sensitive glioma
chloride currents in acute slices of human gliomas [123]. Cheng et al. [47] described the
blocking activity of CTX on a single Cl-specific peptide blocker, a glioma-specific chloride
channel (GCC) while Turner and Sontheimer [131] reported high-grade tumors expressing
GCC more than low-grade tumors, while healthy tissues or tumors of non-glial origin poorly
expressed these channels. GCC activity has also been suggested to regulate apoptosis and to be
linked to changes in cellular cytoskeleton [122] as well as glioma cell morphology, proliferation,
and migration [122,132]. In situ GCC expression using labeled CTX was found to correlate
with the tumor grade, with only 40–45% of low-grade astrocytoma (WHO grade I–II) binding
to it, versus 90% of high-grade tumors (WHO grade III) [45].

CTX was found not to inhibit volume-regulated, calcium-activated, and cyclic AMP-
activated chloride channels expressed in various human, bovine, and monkey cells using
concentrations of up to 1.2 µM [133]. However, Dalton and colleagues evaluated astrocytes
found in injured adult rat brains and showed that CTX could inhibit calcium-activated
chloride currents with an EC50 of ~50 nM [134]. It remains unclear if CTX may inhibit
calcium-activated Cl− channels; therefore, further research is required.

From the literature, it can be inferred that chloride channels may act as one of the
markers of interest for targeting cancers, because of their role in tumor migration and
growth, however, the findings reviewed above suggest the involvement of more than one
type of chloride channel as GBs present with CTX being highly sensitive to ClC-3.

5.1.2. Matrix Metalloproteinase-2 (MMP-2)

Matrix metalloproteinases (MMPs) are a family of calcium-dependent, zinc-containing
endopeptidases, which are responsible for tissue remodeling and the degradation of the
extracellular matrix (ECM), thus releasing several proteolytic and growth factors which
contribute to tumorigenesis [135,136]. Thus, MMPs have invasive properties to tumor
cells, regulate angiogenesis, trigger cell proliferation, and are upregulated in most cancer
types, making them very important biomarkers for tumor detection [25]. High levels of
MMP-2 and MMP-9 have been observed in patients with high-grade GB and high-risk NB
and are associated with tumor progression [31,32,137–140]. MMP-2 appears to be a more
promising molecular target of CTX [48], as its activation is a vital process required by GB
for the degradation of the ECM during cell invasion and migration [141].

Although some researchers have suggested that MMP-1 plays a more important role
than MMP-2 in the migration, remodeling, and invasiveness of GB [142], it has been
shown that high levels of MMP-2 play a more important role in the virulent progression
of cancer through its contribution to three vital processes: angiogenesis, metastasis, and
invasion [25,143,144]. MMP-2 is specifically upregulated in gliomas as well as in other
tumors of neuroectodermal origin such as NB, but not in the CNS [48,110]. In addition,
MMP-2 expression is related to tumor aggressiveness and grade [122,130] and is reduced
by CTX binding [48]. The reduced binding efficiency of CTX to GB cells in the presence of
an MMP-2 inhibitor was demonstrated in a study by Veiseh et al. [115]. Jacoby et al. [114]
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proposed that CTX interacts with a cell surface protein complex that consists of MMP-2,
membrane type-I MMP (MT1-MMP), a transmembrane inhibitor of metalloproteinase-2 as
well as αvβ3, an integrin suggested to play an important role in angiogenesis and neural
tumor invasion [145].

The structure of CTX is stabilized by 4 disulfide bonds and contains a β-sheet and
helical structure. A computational study that predicted the binding of CTX with MMP-2
suggested that the β-sheet of CTX interacts in a region between the collagen-binding do-
main and the catalytic domain of MMP-2, whereas the α-helix of CTX does not appear to
be involved in the interaction [146]. CTX has also been shown to inhibit MMP2 activity
through fluorescence resonance energy transfer (FRET) substrate assay and gelatin zy-
mography [147]. From the literature, it is proposed that ClC-3 and MMP-2 form a protein
complex that is targeted by the CTX-peptide, and this action is thought to inhibit glioma
cell migration and invasion through the induction of endocytosis of the MMP-2/ClC-3
protein complex [38,48,124]. Hence, CTX targeting MMP-2 has been widely investigated
and proposed as one of the main molecular mechanisms for the development of CTX-based
treatments for gliomas [48–50,53,112,114–116,125,148].

5.1.3. Annexin A2

The Annexin protein family is a group of calcium-dependent phospholipid-binding
proteins, involved in the repair of plasma membrane lesions triggered by different stim-
uli [149] as well as the control of various cellular functions including vesicle trafficking,
vesicle fusion, and membrane segregation in a Ca2+-dependent manner through the binding
of anionic phospholipids [150]. Other roles in cellular functions include angiogenesis, apop-
tosis, cell migration, proliferation, invasion, and cohesion [39,40,151]. In addition, annexins
and their binding partners (the S100 proteins) are recognized regulators of the cellular
actin cytoskeleton [152]. The surface protein annexin A2, a calcium-binding cytoskeletal
protein localized on various tumor cells, has been shown to be a receptor for CTX on the
surface of human cancer cell lines [51,52] and to be involved in cell migration, invasion,
and adhesion [39,153–155]. Annexin A2 cell surface receptors have been implicated as
molecular targets for CTX, based on studies on the effects of the commercially available CTX
(TM-601) in human umbilical vein endothelial cells and human tumor cell lines [51]. The
A2-complex comprises annexin-A2 and the protein p11, shown to be overexpressed on the
surfaces of GB and is associated with poor prognosis [42,156]. TM-601 specifically binds to
glioma cells but not normal brain tissues [157] and is found to bind to the surfaces of Panc-1
cells as well, depending on the level of annexin A2 expression [51]. A small interfering
ribonucleic acid (siRNA) knockout of annexin A2 was found to result in reduced binding
of a technetium-99m-labelled-TM601 in cell lines expressing annexin A2 [158]. A recent
study demonstrated CTX binding to Hela cells known to overexpress Annexin A2 [159].

5.1.4. Estrogen Receptor Alpha (ERα)-Mediated Signalling Pathway

Estrogen activates the estrogenic receptor (ER) signaling pathway and stimulates the
expression of different genes that are involved in cell proliferation, causing breast cancer
and related malignancies [160]. Studies have shown that ER can regulate the invasion and
metastasis of tumor cells [161–163], hence, targeting ER signaling pathways is one of the
important strategies for breast cancer treatment. A recent study by Wang et al. [53] found
that CTX significantly inhibited breast cancer cell proliferation, migration, and invasion
through binding to estrogen receptor alpha (ERα) to inhibit the expression of ERα, which
inhibits the ERα/vasodilator-stimulated phosphoprotein (VASP) signaling pathway.

5.1.5. Neuropilin-1 (NRP-1)

The most recent molecular target suggested for CTX is Neuropilin-1 (NRP-1), a vas-
cular endothelial growth factor (VEGF) [54,55,164] known to be overexpressed in many
cancers but naturally upregulated in normal lung and heart tissues [165–168]. Using nu-
clear magnetic resonance (NMR) spectroscopy and isothermal titration calorimetry (ITC),
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Sharma et al. [55] characterized the binding of CTX to the b1-domain of NRP1 (NRP1-b1)
via a non-canonical primary sequence that satisfies the receptor binding motif through its
tertiary fold. A novel peptide drug conjugate called ER-472, comprised of CTX linked to a
cryptophycin analog, was found to possess antitumor activity related to NRP1 expression
levels in xenografts, and its potency was significantly reduced following treatment with
NRP-1 blocking antibodies or following knockout in tumor cells, confirming a role for
NRP1-binding in ER-472 activity [54].

All the potential CTX molecular targets and receptors described above, appear to be
over-expressed in diverse tumors, with MMP-2, Cl- channels, and Annexin A2 being the
most widely investigated receptor targets; these are also known to be present in GB and
NB. A recent study showed that neither CTX-CONH2 nor CTX-COOH affected cytotoxicity
in a variety of Human tumor cell lines (U87MG, MCF-7, PC3, and A549) suggesting that
terminal arginine amidation may not play an important role in the cytotoxic properties
of CTX [169]. Other studies suggest that the C-terminal region plays a critical role in the
bioactivity of CTX and inhibition of cancer growth and migration [54,114,170]. The exact
mechanisms of CTX targeting action on cancer cells requires further investigation, perhaps
through more detailed analysis that specifically identifies the structural determinants of
CTX involved in binding to the respective potential receptors.

5.2. The Blood–Brain Barrier Crossing Potential of CTX

In addition to drug delivery for GB, the use of CTX as a carrier for delivering lev-
odopa has been shown to result in increased distribution of dopamine in the brains of
Parkinson’s disease mice [171]. Thus, CTX has been shown in several studies to demon-
strate considerable potential for crossing the BBB to bind specifically to malignant brain
tissue [59–61,108,172], and further diffuse deeply into the tumor environment, unlike other
targeting agents such as antibodies [61,173]. CTX conjugated to fluorescent imaging agents
and dyes such as Cy5.5 and 800CW were shown to bind to GB tumors in mice when
delivered via tail injection [115,148].

Blaze Bioscience, Inc. has developed a fluorescent imaging agent composed of CTX
covalently attached to the near-infrared fluorophore indocyanine green, commercially
known as BLZ-100 (other names include: tozuleristide or Tumor Paint®) which is known to
target tumor tissue for a complete and more precise surgical resection of brain tumors [65].
In addition, BLZ-100 demonstrated success in the preclinical resection of glioma [174], head
and neck carcinoma [175], and soft-tissue sarcoma [176]. It has passed Phase I clinical trial
and does not demonstrate any toxicity for doses up to 30 mg [64,65]. Presently, BLZ-100
is going through a joint Phase II/III trial for fluorescence-guided resection of pediatric
CNS tumors (NCT03579602) [98]. The mechanism by which CTX crosses the BBB is not
fully understood, however, Annexin A2 expression in BBB vascular endothelial cells has
been suggested [51].

6. Nanotechnology for Cancer Applications

The development of novel diagnostic and therapeutic tools for the treatment of cancer
requires innovations within the field of nanotechnology involving nanoparticles (NPs)
(1–100 nm) which possess unique chemical, physical, and biological properties that render
them attractive for biomedical applications, including in neuroscience research [177,178].
NPs that deliver therapeutic drugs along with an imaging moiety may provide multiple
functions such as targeting, tracking, imaging, and treatment and are commonly referred
to as “theranostic approaches” [179]. NPs are comprised of polymers, lipids, or metals,
among other materials, that allow for encapsulation or surface conjugation with multiple
therapeutic agents such as small molecules, peptides, or nucleic acids [57], with better
therapeutic outcomes for many antitumor compounds [180]. Based on their sizes, NPs are
naturally attracted to tumor sites with extensive abnormal angiogenesis, a phenomenon
known as the enhanced permeability and retention effect (EPR) and often explored for
passive targeting [181–183]. Passive targeting allows for the efficient localization of NPs
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within the tumor microenvironment, while active targeting facilitates the uptake of NPs
by the tumor cells [184]. One main disadvantage of passive targeting is that it cannot be
used for all tumors due to varied phenotypes [185], hence active targeting approaches
are preferred.

In normal vasculature, endothelial junctions are ~5–10 nm in width but in tumor
tissues, sizes of 100–780 nm have been reported, depending on the tumor type [186,187].
Thus, NPs of 15 > 50 nm diameter size easily cross the intact BBB [56,188] but in large
and advanced brain tumors with extensive angiogenesis, the disrupted BBB allows NPs of
size ranges of 5–200 nm to cross [56,188]. Other factors such as size, specificity for target
sites, biocompatibility, stability in blood, evasion of the reticuloendothelial system (RES),
site-specific drug release, etc. may also play a role [189]. Smaller NPs have larger surface
areas which permit increased surface loading of therapeutic agents, while also promoting
entry through tiny membrane passageways and increased drug bioavailability [190]. Thus,
low doses or concentrations of therapeutic agents can be used, and systemic toxicity
may be avoided [190]. The ideal size for maximum effect is 15–100 nm diameter as NPs
below 10 nm can be cleared by the kidneys and those >150 nm will be removed by the
RES [191,192], whereas NPs > 200 nm are usually considered undesirable for in vivo
biomedical applications [193].

Active targeting of NP drug delivery systems in cancer therapy allows the drug effects
to be specifically directed to cancer cells, facilitated by specific recognition binding sites
that are either overexpressed on the surfaces of cancer cells or expressed at lower levels
in normal cells [194]. Active targeting strategies have been accomplished by conjugating
NPs with antibodies, peptides, and aptamers; however, for monoclonal antibodies (mAbs)
that are generally used as targeting molecules for the targeted delivery of NPs, their large
size, limited tissue penetration, cellular uptake, and conjugation difficulty to NPs, present
significant challenges [195–198].

Peptides are considered more attractive targeting molecules based on their smaller
size, lower immunogenicity, lower production costs, similar binding affinities to mAbs,
and easier synthesis and modification methods [199–201]. In addition, peptides have a
higher diversity, specificity, and targeting capability compared to other small molecule
ligands [197,202,203]. Surface modification of NPs with synthetic polymers such as the FDA-
approved polyethylene glycol (PEG) and other synthetic polymers such as polyvinyl alcohol
(PVA), polyethyleneimine (PEI) or chitosan, act to enhance the solubility of hydrophobic
materials and improve the biocompatibility of NPs through decreasing nonspecific binding
and prolonging circulation durations in vivo [204,205]. These synthetic polymers also
allow for the attachment of targeting molecules onto NPs for active targeting through the
modification of terminal ends with various functional groups [204].

In recent years, biomimetic NPs have emerged as a promising drug delivery platform
that enhances drug biocompatibility and specificity at the targeted site of disease, especially
within the tumor microenvironment [206]. These NPs are inspired by nature and mimic the
structure and function of biological molecules, such as proteins, enzymes, and lipids, en-
abling them to interact with biological systems in a manner similar to natural biomolecules,
thereby facilitating diverse biomedical applications. Through modification with cell mem-
branes to mimic biological functions associated with different cell membranes within
biological systems. Researchers are focusing on constructing cell membrane-camouflaged
NPs using a variety of cells, such as red blood cell membranes (RBCs), macrophages,
and cancer cells. These cell membrane-camouflaged NPs inherit the composition of cell
membranes, including specific receptors, antigens, and proteins that facilitate targeted drug
delivery to tumors, immune evasion, and prolonged blood circulation times.

In nearly two decades, many CTX NP-based applications have proven to be novel
diagnostic and targeting treatment agents for GB considering the many beneficial character-
istics they possess, including their ability to penetrate the BBB, their high binding specificity
for gliomas and other neuroectoderm-derived cancers, their ease of being internalized into
tumor cells leading to prolonged retention time. Other reported characteristics to include
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their low toxicity or immunoreactivity profiles in human trials as well as the ease at which
their structure can be modified to conjugate a variety of imaging or therapeutic agents
without compromising the functionality of the peptide [61]. Thus, CTX-based NPs may be
considered highly promising platforms for diagnostic imaging and targeted drug delivery
for NS tumors.

7. CTX-NPs with Diagnostic Potential

Advances in nanotechnology innovation have resulted in the development of less
invasive diagnostic and therapeutic approaches with high precision and specificity. Thus,
many nano-based applications incorporate CTX to improve the visualization of GB tumors,
as summarized in Table 1. Some of the CTX-conjugated NPs with diagnostic potential for
GB have been used in magnetic resonance imaging (MRI), optical imaging, and single-
photon emission computed tomography (SPECT) [59–61]. CTX-NPs delivered to target
tumor tissues serve as MRI contrast molecules, while fluorophores or fluorescent probes
that bind to molecular targets in tumors have been detected by optical imaging [61].
These techniques allow for precision-guided surgery without affecting normal tissues,
based on the targeting function of CTX and the physicochemical characteristics of NPs.
The conjugation of CTX to a fluorescent molecular probe, Cy5.5, described as “tumor r
paint” was first used for intraoperative imaging [115] while a CTX functionalized iron
oxide multifunctional nanoprobe (IONP-PEG-CTX) which could target glioma cells, was
detectable by MRI [207] although superparamagnetic iron oxide NPs (SPIONPs) have now
replaced these nanoprobes because they better enhance MRI.

The application of CTX-functionalized SPIONPs for MRI/Optical imaging remains
an area of active research [62,111,112,207–211]. Iron oxide NPs (IONPs) are composed
of solid iron oxide cores (typically magnetite, Fe3O4, or its oxidized form maghemite,
γ-Fe2O3) usually coated with synthetic polymers such as PEG, polyvinyl alcohol (PVA),
polyethyleneimine (PEI), or chitosan to enhance the solubility of hydrophobic materials,
limit the non-specific binding (thus prolonging circulation time), and enhancing tumor-
specific targeting [212]. SPIONPs in a size range of 60–150 nm can possess different
magnetic properties and functions differently in various applications [213]. Local inter-
actions between iron and water protons accelerate the dephasing of protons to shorten
transverse T2 relaxation times and enhance MRI contrast upon T2* imaging [214].

Some studies have shown that CTX functionalization onto the surface of IONPs using
PEG or a copolymer of PEG and chitosan resulted in high targeting and the ability to
cross the BBB [112,207,208,210,215]. The addition of Cy5.5 to CTX-IONPs in genetically
engineered mice with no systemic toxicity was found to improve the targeting of glioma
cells, the inhibition of glioma cells, easy crossing of the BBB, and prolonged detection of
tumor cells by optical imaging and MRI [115,215–217]. The precise real-time detection of
small foci of cancer cells with tumor margins could be achieved by optical imaging without
affecting the BBB using CTX-NPs [208].

Fluorescence-based nano-imaging probes such as quantum dots (QDs) that provide
excitation/emission wavelengths ranging from ultraviolet (UV) to near-infrared (NIR)
light have also been used with CTX. QDs are composed of metals such as cadmium (Cd),
zinc (Zn), selenium (Se), indium (In), and tellurium (Te), and have several significant
advantages over fluorescent dyes and molecules (Jha et al [218]; Tarantini et al. [219]).
QDs exhibit broad absorption and narrow emission spectra which makes them produce
brighter emissions and have a higher signal-to-noise ratio compared with other fluorescent
dyes [220], and are resistant to photo-bleaching [221]. Cadmium-free silver-indium-sulfide
QDs conjugated to CTX [QD(Ag-In-S/ZnS)-CTX] were developed by Chen et al. [222] for
cellular imaging studies and showed specific internalization into U87 human brain cancer
cells while a stable polymer-blend dots CTX conjugate (PBdot-CTX) capable of crossing the
BBB and specifically targeting tumor tissue in the ND2:SmoA1 medulloblastoma mouse
model, was also developed [223]. The 15 nm PBdot-CTX conjugate was unaffected by
photo-bleaching and was 15 times brighter than QDs [223]. The use of QDs may offer great
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advantages in experimental drug targeting and imaging but is limited for clinical use due
to reported toxicity [224,225].

A class of NPs called up-converting NPs (UCNPs) have been reported as fluorescent
imaging agents due to their ability to absorb low-energy near-infrared light (NIR) and “up-
convert” to emit in the visible spectrum [226]. This characteristic allows tissue penetration of
excitation light and minimizes auto-fluorescence, with the added benefit of photo-stability
and prolonged fluorescing [227]. This allows UCNPs to be exploited for bio-imaging,
bio-detection, and photodynamic therapy [228]. UCNPs composed of polyethyleneimine-
coated hexagonal-phase thulium-doped sodium yttrium fluoride (NaYF(4):Yb), co-doped
with erbium and cerium (NaYF4:Yb, Er/Ce) nanorods functionalized with CTX (PEI-
NaYF(4):Yb, Er/Ce-CTX) have been shown to target C6 glioma-xenograft tumors in vivo
without toxicity [226].

Deng et al. [229] showed that CTX-conjugated lanthanide-ion doped sodium gadolin-
ium fluoride NPs (NaGdF4-Ho3+-CTX) demonstrated targeting towards glioma cells
in vitro and in vivo, using MRI and fluorescence imaging techniques. Gu et al. [230]
developed a glioma-targeted contrast agent by conjugating CTX to PEG-coated gadolinium
oxide NPs (CTX-PEG-Gd2O3 NPs). The r1 value of CTX-PEG-Gd2O3 NPs (8.41 mM−1 s−1)
was higher than that of commercially available Gd-DTPA (4.57 mM−1 s−1) and the enhance-
ment of T1 contrast with a prolonged retention period up to 24 h within the brain glioma
was observed due to CTX conjugation with low cytotoxicity. Similarly, europium-doped
gadolinium oxide nanorods (Eu-Gd2O3 NRs) with paramagnetic and fluorescent properties
were conjugated with doxorubicin (DOX) and CTX via PEGylation (CTX-PEG-Dox-Eu-
Gd2O3 NRs) and found to target glioblastoma, deliver significant amounts of DOX to tumor
sites and enhance MRI of the intracranial tumors in in vivo mouse models [231]. Dendrimer-
based NPs are highly branched spherical structures that offer multifunctional applications
in diagnosis and therapeutics [232]. Huang et al. [233] developed CTX-modified dendrimer-
based conjugates that incorporated the MRI contrast molecule gadolinium (Gd(III)) which
was composed of an L-lysine dendritic macromolecule conjugated to CTX either with Gd
chelates or distyryl-substituted boradiazaindacene (BODIPY) fluorophore, resulting in
enhanced uptake and retention time in tumor cells without toxicity. Many other CTX-
dendrimer NPs have since been developed [211,234–236]. NIR fluorescent moieties are
well suited for intraoperative CTX-based conjugates used for the identification of pre-
malignant lesions and to improve the visualization of tumor boundaries. These moieties
are poorly absorbed by water or hemoglobin and this decreases the interference from
auto-fluorescence and optimizes signal intensity. Studies have shown that NIR fluorescent
molecules modified with CTX such as Cy5.5 and IR Dye 800CW or indocyanine green
(ICG) increased specificity and targeting with no impact on the efficacy of CTX for optical
imaging [64,65,98,148,174,222,237]. A few studies have reported the use of NIR fluorescent
molecules modified with CTX as well for MRI and other forms of imaging [209,216,217].

CTX has also been used in nuclear-based imaging techniques such as positron emission
tomography (PET) and single photon emission computed tomography (SPECT) both of
which have been exploited for dual imaging and treatment. Zhao et al. [238] first developed
CTX multifunctional dendrimers labeled with radioactive 131I for SPECT imaging and
radiotherapy of gliomas, followed by 131I-labeled CTX-functionalized gold NP entrapped
in polyethylene naphthalate (poly(ethylene 2,6-naphthalate) (131I-labeled CTX- Au-PENPs)
which was used as a nanoprobe for targeted SPECT/CT imaging in in vitro and in vivo
radionuclide therapy of gliomas in a subcutaneous tumor model that also demonstrated
BBB permeability [236,239]. Other theranostic NP formulations developed, include a
polyethyleneimine (PEI), a methoxypolyethylene glycol (mPEG) CTX targeting, and a
diethylenetriaminepentaacetic acid (DTPA) for 99mTc radiolabeling DOX-loaded NPs (mPEI-
CTX-99mTc/DOX) [240]. These authors also found that the theranostic nano-complex
demonstrated enhanced BBB permeability and tumor-targeting efficiency for gliomas
using SPECT imaging and in vivo DOX drug delivery. CTX silver NPs (CTX-AgNP)
were first studied in U87 human GB cell line [241] but a novel CTX-based polymeric NP
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radiolabeled with 99mTc containing two cytotoxic agents, alisertib, and silver (Ag/Ali-
PNPs-CTX-99mmTc), was later developed as a theranostic agent [242] and its targeting
ability was tested on the U87 GB cell line and found to allow for in vivo visualization of
bio-distribution in U87 tumor-bearing mice [242].

Table 1. Summary of CTX-NPs for diagnostic applications.

Name of Nanoparticle (NP) Formulation Imaging Modality Size in nm (Hydrodynamic Size/Core Size) Ref.

mPEI-CTX-99mTc/DOX SPECT 394.77 nm [240]

CTX-PEG-Dox-Eu-Gd2O3 NRs MRI 116.3 nm [231]
131I-labeled BmK-Au-PENPs SPECT/CT 147 nm [239]
131I-labeled CTX-Au-PENPs SPECT/CT imaging 151 nm [236]

Fe3O4/PEG-FA–Cy5.5-CTX MRI <20 nm [217]
131I-I-G5.NHAc-HPAO-(PEG-BmK CT)-(mPEG) SPECT imaging ~4 nm [211]

SPIONP-PEG-CTX MRI <100 nm [243]

QD(Ag-In-S/ZnS)-CTX Optical imaging 126 nm [222]

Fe3O44/MnO–Cy5.5-CTX MRI 25 nm [216]

Ag/Ali-PNPs-CTX-99mTc Optical imaging 199 nm [242]

NaGdF4-Ho3+-CTX MRI/Optical imaging 44.2 nm [229]

CTX-PEG-Gd2O3 MRI 3.46 nm [230]

Pdot-CTX Optical imaging ~15 nm [223]

Gd-DTPA/BODIPY-dendrigraft
poly-L-lysines-PEG-CTX MRI N/A [233]

SPIONP-PEG-PEI-siRNA-CTX Optical imaging 7.5 nm [244]

IONP-PEG-Chitosan-DNA-CTX MRI 48.8 nm [62]

MFNP–CTX MRI/Optical imaging <100 nm [210]

IONP-PEG-Chitosan-Cy5.5-CTX MRI/Optical imaging 7 nm [209]

PEI-NaYF(4):Yb, Er/Ce-CTX Optical imaging Width: 55 nm; length: 25 nm [226]

NP-MTX-CTX MRI 5–8 nm [111]

IONP-PEG-CTX MRI 10–15 nm [208]

SPIONP-FITC-CTX MRI/Optical imaging 80 nm [245]

IONP-PEG-CTX MRI/Optical imaging 10 nm [207]

Abbreviations: MRI: Magnetic resonance imaging; SPECT: Single-photon emission computed tomography; CTX:
Chlorotoxin; mPEI-CTX-99mTc/DOX: methoxypolyethylene glycol (m), polyethyleneimine (PEI) 99mTc radiola-
beling NP loaded with doxorubicin (DOX); CTX-PEG-Dox-Eu-Gd2O3 NRs: Doxorubicin and CTX conjugated
to polyethylene glycol coated gadolinium oxide NPs; 131I-labeled CTX-Au-PENPs: iodine-131 (131I-labeled)
PEI-entrapped gold nanoparticles (Au PENPs) surfaced functionalized with CTX; Fe3O4/PEG-FA–Cy5.5-CTX:
IONPs functionalized with polyethylene glycol and PEGylated folic acid (FA) labeled with Cy5.5 and CTX;
131I-I-G5.NHAc-HPAO-(PEG-BmK CT)-(mPEG): Bmk-CT: Buthus martensii Karsch CTX such as peptide con-
jugated to amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NHAc-HPAO), 131I-labeled;
SPIONP-PEG-CTX: superparamagnetic iron oxide coated NPs with polyethylene glycol and CTX; QD(Ag-In-
S/ZnS)-CTX: Cadmium-free silver-indium-sulfide Zinc shell (Ag-In-S/ZnS) Quantum dots functionalized with
CTX; Ag/Ali-PNPs-CTX-99mTc: Silver and alisertib polymeric NPs with 99mTc radiolabeling and CTX surface
functionalization; Fe3O4/MnO–Cy5.5: oleic acid-capped iron oxide manganese oxide with conjugation Cy5.5
dye and CTX; NaGdF4-Ho3+-CTX: Holmium doped d-sodium gadolinium fluoride (NaGdF4-Ho3+) nanoparti-
cles conjugated with CTX; CTX-PEG-Gd2O3: CTX) to poly(ethylene glycol) (PEG) coated Gadolinium(III) oxide
(Gd2O3)nanoparticles; Pdot-CTX: Polymer-blend dots conjugated with CTX; Gd-DTPA/BODIPY-dendrigraft poly-
L-lysines-PEG-CTX: dendrigraft poly-L-lysines-PEG containing gadolinium ion diethylenetriamine pentaacetate
NPs reacted with BODIPY dye; SPIONP-PEG-PEI-siRNA-CTX: superparamagnetic iron oxide NPs coated with
polyethylene glycol and polyethyleneimine (PEI) conjugated with small/short interfering ribonucleic acid and
CTX; IONP-PEG-Chitosan-DNA-CTX: iron oxide coated with polyethylene glycol and chitosan conjugated with
deoxyribonucleic acid and CTX; MFNP–CTX: Magnetite and fluorescent silica nanoparticles functionalized with
CTX; IONP-PEG-Chitosan-Cy5.5-CTX: iron oxide coated with polyethylene glycol and chitosan conjugated with
fluorescent molecule Cy5.5-CTX; PEI-NaYF(4):Yb, Er/Ce-CTX: Polyethyleneimine-coated hexagonal-phase Ytter-
bium and Thulium Doped Sodium Yttrium Fluoride (NaYF(4):Yb), erbium and cerium co-doped nanoparticles;
NP-MTX-CTX: IONPs conjugated to methotrexate (MTX), and CTX; SPIONP-FITC-CTX: superparamagnetic iron
oxide NPs conjugated with fluorescein isothiocyanate (FITC) and CTX.
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8. Therapeutic and Targeting Applications of CTX-NPs for GB Tumors

Many studies have reported the use of CTX-conjugated NPs and CTX-attached to
fluorescent imaging agents for targeted precise surgical resection, and drug delivery of
anti-cancer drugs/applications for the treatment of GB tumors and other tumors with no
danger to normal cells [44,108]. Most of these formulations serve diagnostic, therapeutic,
or theranostic functions in both in vitro and in vivo models of glioma as well as in clinical
trials [44,61,64,65,108]. Table 2 provides a summary of CTX-based NP therapeutics used
for the treatment of GB, but some applications overlap with diagnosis through the imaging
techniques mentioned above, as seen in Figure 3. Many studies have shown that CTX-
modified polymer or lipid-based NPs such as liposomes could be used as drug and gene
delivery systems for glioma-targeted chemotherapy in brain tumors [113,246–250].
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therapeutic fields, where the two overlap NPS are considered as having theranostic applications (c).
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In gliomas, CTX inhibits the expression of MMP-2 and to achieve maximal inhibition,
a dual system that employs an anti-cancer drug entrapped in or conjugated to a nano-
carrier, together with the conjugation of CTX is used. Such a system makes use of the
acidic environment inside the tumor environment to down-regulate MMP expression
thus allowing for further treatment with chemotherapeutic agents [249]. In a study by
Fang et al. [251], biocompatible polymer-coated IONPs conjugated to CTX or arginine-
glycine-aspartic acid (RGD) were found to demonstrate that both NP-CTX and NP-RGD
were target-specific to MMP-2 and αvβ3 integrin, respectively. Yue et al. [252] developed a
transferrin receptor (TfR) monoclonal antibody (mAb) of rats (OX26) and CTX conjugated
PEGylated liposome as a dual-targeting gene delivery system for GB which was found to
significantly promote cell transfection, increase transportation of plasmid DNA across the
BBB and target the brain glioma cells in vitro and in vivo. Qin et al. [246] demonstrated
that CTX-liposomes specifically interact with MMP-2 present in brain cancer cells, which
demonstrates targeting. Xiang et al. [113] first developed CTX-modified DOX-loaded
liposomes (CTX-DoX-Lip) for glioma cells, but other studies have improved on this NP-
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based system for theranostic approaches by incorporating fluorescent molecules onto the
liposomes in addition to CTX and chemotherapeutic drugs [171,248,250,253].

Other studies have reported on the encapsulation of small interfering RNAs in CTX
liposomes [58,254] and antisense oligonucleotides [47,62] used as combination therapy for
GB. CTX-functionalized NPs have been investigated for glioma gene therapy which has
the potential to treat drug-resistant tissues, reduce unwanted toxicity to healthy cells, and
provide a platform for therapy against multiple forms of cancer [255,256]. The first small
interfering RNA (siRNA) magnetic nanovector (named NP-siRNA-CTX) with dual glioma
targeting-specificity and dual therapeutic effect, was developed in 2010 for targeted cancer
imaging and therapy [244]. These small 6–10 nm NPs demonstrated both increased small
interfering RNA (siRNA) internalization by target tumor cells and intracellular trafficking
towards enhanced knockdown of targeted gene expression. Mok et al. [257] reported
that the multifunctional nanovector core coated with three different functional molecules
[highly amine blocked PEI (PEIb), siRNA, and CTX] exhibited both significant cytotoxic and
gene silencing effects for C6 glioma cells at acidic pH conditions, but not at physiological
pH conditions. The NP-siRNA-CTX could also serve as an imaging tool for real-time
monitoring of the delivery of therapeutic payload [244].

CTX has been functionalized to other noble metallic NPs such as silver (Ag) NPs and
gold (Au) NPs and used for both detection and therapeutic applications (Tables 1 and 2).
Tamborini et al. [103] reported on AgNPs entrapped in Poly (lactic–co–glycolic acid) (PLGA)
nanoparticles (PNP) conjugated to CTX (Ag-PNP-CTX). These NPs allowed the detection
and quantification of cellular uptake by confocal microscopy, in both in vitro and in vivo
experiments, and a higher uptake of Ag-PNP-CTX was reported in in vitro studies. Using
a single whole-brain X-irradiation performed 20 h before NP injection, the expression
of the CTX targets, MMP-2 and ClC-3 was enhanced as evidenced by the BBB perme-
abilization and increased internalization of Ag-PNP-CTX at the tumor site in vivo [103].
Locatelli et al. [241] first described CTX-functionalized on noble metallic NPs and devel-
oped a simple method for the synthesis of lipophilic AgNPs entrapped in a PEG-based
polymeric NP conjugated with CTX (AgNPs-PNS-CTX). These NPs demonstrated signifi-
cant cell-specific uptake in the U87 cell line in comparison to the Balb/3T3 cell line. The
authors subsequently reported on the synthesis of multifunctional nanocomposites formed by
polymeric NPs (PNPs) containing the anti-cancer drug alisertib, as well as AgNPs-conjugated
with CTX and 99mTc-radiolabeling (Ag/Ali-PNPs-CTX-99mTc) (Tables 1 and 2), which al-
lowed significant tumor reduction as the result of synergistic effects of drug and NPs in U87
tumor-bearing mice [242]. The authors were also the first to later report on CTX and Cy5.5
functionalized gold nanorods (AuNRs-PNPs-Cltx/Cy5.5) for optoacoustic microscopy and
photothermal therapy (PTT) using laser irradiation in U87 cells which consequently led to
cell damage [258].

A recent study developed a nano drug delivery system composed of methoxypolyethy-
lene glycol loaded with AuNPs, chemotherapeutic drug DOX and functionalized with
CTX (mPEI-CTX/DOX). This product was found to have a higher IC50 value in human
glioma cells than the free DOX, possibly due to the gradual release of the DOX from the
mPEI-CTX/DOX NPs [240]. In addition to the MRI and fluorescence imaging properties
of CTX-PEG-Dox-Eu-Gd2O3 NRs (Tables 1 and 2), these NPs allowed for higher cytotox-
icity in U251 human GB cells in vitro and no significant toxicity in HUVEC cells. In the
in vivo experiments after tail-vein injection demonstrated no significant toxicity to normal
organs, NPs accumulated in the brain tumors and appeared to inhibit tumor growth and
metastasis [240]. Temozolomide (TMZ) has also been incorporated into CTX-NPs for im-
proving target-specific drug delivery. A study by Fang et al. [71] reported on TMZ bound
to chitosan-based NPs (NP-TMZ-CTX) exhibited higher stability at physiological pH, with a
half-life 7-fold longer compared with free TMZ. Thus, the NP-TMZ-CTX was able to target GB
cells and achieved 2–6-fold higher uptake and 50–90% reduction of half maximal inhibitory
concentration (IC50) at 72 h post-treatment compared with NPs with TMZ but no CTX.
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Niosomes are nano-based drug delivery vesicles composed of non-ionic surfactants
with or without cholesterol that are similar to liposomes, but could be synthesized smaller,
are more stable, and are cheaper to manufacture in comparison to liposomes [259–261].
Niosomes coated with CTX and loaded with TMZ with an entrapment efficiency of
79.09 ± 1.56% were developed by De et al. [262] and found to have enhanced solubil-
ity and permeation into the brain in in vivo models due to CTX-conjugation, with less
accumulation in other organs. TMZ drug resistance for GB is mediated by a DNA repair pro-
tein, O6-methylguanine-DNA methyltransferase (MGMT), which eliminates TMZ-induced
DNA lesions [263]. Other studies report on combination treatments with small interfering
RNA (siRNA)-based MGMT (siMGMT) inhibitors incorporated into CTX-NPs for target-
ing GB and sensitizing cells to TMZ for more effective therapeutic potential than free
TMZ [264,265]. In another study, Mu et al. [266] developed a CTX-IONP conjugated with
the drug gemcitabine (GEM) using hyaluronic acid (HA) as a cross-linker (IONP-HA-GEM-
CTX) for GB therapy. This conjugate NP effectively killed GB cells without losing potency
when compared to the free drug and showed a prolonged blood half-life and the ability to
cross the BBB in wild-type mice [266]. Similarly, the chemotherapeutic agent, methotrexate
(MTX) conjugated to CTX-NPs (NP–MTX– CTX) demonstrated increased uptake in 9 L
rat glioma and significant cytotoxicity in tumor cells with prolonged retention of NPs
observed within tumors in vivo [111]. Other studies by Agarwal et al. [249] showed that
treatment with CTX-conjugated morusin-loaded PLGA NPs (PLGA–MOR–CTX) resulted
in enhanced inhibitory effects and cell death in U87 and GI-1 glioma cells. The cytocom-
patibility observed with normal human neuronal cells (HCN-1A) together with enhanced
lethal effects in GB cells, highlighted the potential of PLGA-MOR-CTX NPs as promising
therapeutic nanocarriers for GB. In another study involving the drug sunitinib conjugated
to CTX-coupled stable nucleic acid lipid NPs (CTX-SNALPs-miR-21 NPs), NPs showed
preferential accumulation in brain tumors, promotion of efficient miR-21 silencing and
enhanced antitumor activity, through decreased tumor cell proliferation, reduced tumor
size as well as increased apoptosis activation [267].

Some earlier studies have reported on CTX-fluorescent NPs with effective target-
ing, BBB permeability, and high therapeutic effects both in vitro and in vivo [209,215,254].
Two recombinant versions of CTX named CTX-KRKRK-GFP-H6 and CTX-GFP-H6, were
developed by Díaz et al. [159] and investigated in two Human cancer cell lines previously
identified as targets for CTX, namely HeLa (overexpressing Annexin A2) and U87 (overex-
pressing MMP2). CTX-GFPH6 was found to have a significant cytotoxic effect on both cell
lines, while CTX-KRKRK-GFP-H6 was more cytotoxic, and U87 cells were more sensitive
than HeLa cells. In a recent study, a fluorescent nano-imaging agent (NIA) synthesized
with polymalic acid with CTX, indocyanine green for fluorescence, and tri-leucin peptide
for fluorescence enhancement (CTX-PMLA-LLL-ICG), was found to exhibit high specificity
for U87 glioma cells [268]. This method involved the fluorescence-guided resection of
GB using NIR light and has been shown to significantly improve the precision of tumor
removal by 98% [268].

The efficacy of the respective NP conjugate products discussed above appears to be
linked to apoptosis-mediated cell death mechanisms, possibly induced by CTX functional-
ization of the NPs. Wu et al. [269] reported on multifunctional Eu-doped Gd2O3 nanorods
(Eu-Gd2O3 NRs) surface-functionalized with PEG to serve both as a hydrophilic coating
and linkage molecule. This resulted in the covalent conjugation of the functional peptides
RGD and CTX (RGD-Eu-Gd2O3 NRs-CTX) as a targeting nanovector for the detection and
inhibition/therapy of early GB; these NPs could specifically target and adhere to U251 human
GB cells, leading to cellular apoptosis. Pandey et al. [126] reported on a sophisticated multi-
functional CTX-NP based on pH-responsive poly-l-lysine-coated Fe3O4@FePt core-shell NPs
with CTX for mitochondrial targeted therapy of GB. The multifunctional NPs were efficiently
localized inside mitochondria, induced oxidative stress by Fe, DNA strand breakage by Pt,
and demonstrated the ability to disrupt mitochondrial function and induced apoptosis [126].
The authors also reported on effective PTT using NIR with these NPs [126].
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Table 2. Summary of CTX-NPs for therapeutic applications.

Name Therapeutic Effect Theranostic
Application

Size in nm (Hydrodynamic
Size/Core Size) Ref.

NP-siMGMT-CTX The effective number of siRNAs (MGMT) delivered to tumors to sensitize both GB
cells and GB stem-like cells (GSCs) to TMZ in vivo via CTX targeting Yes 60.97 nm [264]

CTX/DOTA/LND-PANPs
Lf/CTX/TPP/DOTA/LND-PANPs

Increased localization of NPs in mitochondria both in vitro and in vivo, resulting in
apoptosis. Photothermal therapy (PTT) with NPs occurred using NIR Yes <20 nm [126]

mPEI-CTX-99mTc/DOX In vivo targeted delivery of DOX Yes 394.77 nm [239]

CTX-PEG-Dox-Eu-Gd2O3 NRs
No significant toxicity was reported in HUVEC cells, while toxicity was reported in

U251 cells owing to CTX targeting MMP-2. In vivo experiments showed the inhibition
of brain tumors with no significant toxicity to normal organs

Yes 116.3 nm [230]

CTX-KRKRK-GFP-H6 and
CTX-GFP-H6

Two recombinant CTX-fluorescent protein NPs demonstrated significant cytotoxicity
in cell lines U87 (over-expressing MMP2) and Hela (overexpressing Annexin 2) No ~12 nm [267]

CTX-PMLA-LLL-ICG

Systemic IV injection into a xenogeneic mouse model carrying human U87 GB cells
indicated tumor cell binding and internalization of NPs resulting in long-lasting tumor

fluorescence which guided the resection of GB and significantly improved the
precision of

tumor removal

Yes 11.82 nm [159]

CTX and mApoE-Dox-Lip Enhanced DOX across the BBB via CTX-liposomes No 184 nm [249]

CTX-PLGA-Morusin NPs resulted in enhanced inhibitory effects on U87 and GI-1 glioma cells No 242.9 nm [248]

CTX-TMZ noisome Enhanced TMZ delivery into the
brain in vivo with less deposition in the highly perfused organs No 220 nm [261]

M-CTX-Fc-L-Dox
Significant cytotoxicity observed with DOX loaded CTX- liposomes in U251 cells
in vitro and tumor suppression in BALB/c mice bearing tumors of transplanted

U251 cells in vivo
No 100–150 nm [247]

RGD-Eu-Gd2O3 NRs-CTX
Nanorods specifically target U251 cells, leading to cellular apoptosis. In vivo results

show NPs could effectively inhibit early tumor growth, without any damage to
normal tissues/organ

Yes ~78 nm [268]

IONP-HA-GEM-CTX NPs effectively crossed BBB and killed GB cells, had prolonged blood circulation
duration, and were excreted from the renal system Yes ~32 nm [265]
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Table 2. Cont.

Name Therapeutic Effect Theranostic
Application

Size in nm (Hydrodynamic
Size/Core Size) Ref.

Ag-PNP-CTX
In vitro experiments performed with different human GB cell lines showed higher

uptake of Ag-PNP-CTX, with respect to non-functionalized Ag-PNP NPs, and in vivo
experiments showed that Ag-NP-CTX efficiently targets the tumors

Yes 199.1 nm [103]

CTX-SNALPs-miR-21 MiRNA-21 silencing because of tumor-targeted CTX-NPs and decreased tumor cell
proliferation and enhanced apoptosis in combination with Sunitinib No <190 nm [266]

NP-TMZ-CTX CTX-NPs demonstrated targeting of GB cells and 2–6-fold higher uptake and 50–90%
reduction of IC50 at 72 h post-treatment as compared to NPs without CTX Yes <100 nm [71]

Ag/Ali-PNPs-CTX-99mTc
Significant tumor reduction was achieved in vivo as the result of the synergistic effects

of Alisertib and NPs Yes 199 nm [241]

AuNRs-PNPs-Cltx/Cy5.5 NPs showed enhanced binding affinity toward GB cells in vitro using optoacoustic
microscopy and PTT using laser irradiation of the cells led to cell damage Yes 122.5 nm [257]

CTX-Lip CTX was attached to the surface of liposomes which interacts with the MMP-2 on the
surface of U87 human glioma cell line cells and A549, demonstrating targeting No 103.4 nm [245]

CTX-IONP-siMGMT Combination treatment of mice bearing orthotopic tumors with CTX-NP-siMGMT and
TMZ led to a significant reduction of tumor growth Yes 37.3 nm [263]

CTX-SNALPs
Targeted NP-mediated miR-21 silencing in U87 and GL261 cells resulted in increased

levels of the tumor suppressors PTEN and PDCD4, caspase 3/7 activation, and
decreased tumor cell proliferation

No <180 nm [58]

AgNPs-PNS-CTX Significantly higher uptake of Ag into U87 cells compared to the non-targeted NPs.
Cytotoxic effect in glioma cell lines was also reported No 130 nm [240]

CTX-DoX-Lip Increased cytotoxicity against U87 and U251 glioma and significant tumor growth
inhibition in vivo No 128 nm [113]

NP-DNA-CTX Enhanced uptake specifically into glioma cells in vivo Yes 48.8 nm [62]

IONPs-PEG-CTX and
IONS-PEG-RDG NP-CTX and NP-RGD were target-specific to integrin MMP-2 and αvβ3 integrin Yes ~12 nm [269]

NP(ION/PEG)-CTX-Cy5.5 NPs showed tumor-specific accumulation in vivo and no toxicity effects Yes 13.5 nm [270]

NP–CTX-chitosan-Cy5.5 Optimal serum half-life, biodistribution, stability, and non-toxicity were
confirmed in mice Yes 7 nm [208]
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Table 2. Cont.

Name Therapeutic Effect Theranostic
Application

Size in nm (Hydrodynamic
Size/Core Size) Ref.

MFNP-CTX CTX-NPs demonstrated high specific cellular uptake Yes <100 nm [209]

NP-siRNA-CTX Increased small interfering RNA (siRNA) internalization by targeting glioma cells and
intracellular trafficking towards enhanced knockdown of targeted gene expression Yes 6–10 nm [243]

NP-PEIb-siRNA-CTX CTX-NPs showed long-term stability and good magnetic properties, significant
cytotoxic effects, and gene silencing effects at acidic pH conditions for C6 glioma cells Yes ~60 nm [256]

NP-AF647-CTX-DNA Results showed low cytotoxicity because of CTX targeting and excellent gene
transfection efficiency Yes 134.8 nm [253]

NP-CTX-AF680 The NPs enhanced cellular uptake via MMP-2 Yes ~11 nm [112]

NPCP-Cy5.5-CTX NPs showed cytotoxicity, sustained retention in tumors, and the ability to cross the
BBB and specifically target brain tumors in vivo Yes 33 nm [214]

NP-MTX-CTX Increased cytotoxicity of methotrexate (MTX) in GB cells and prolonged retention of
NPs was observed within tumors in vivo NPs Yes 5–8 nm [111]

Abbreviations: NP: nanoparticles; CTX: Chlorotoxin; NP-siMGMT-CTX:IONPS small interfering RNA (siRNA)-based MGMT (siMGMT) inhibitors and CTX conjugated to IONPs;
CTX/DOTA/LND-PANPs Lf/CTX/TPP/DOTA/LND-PANPs: pH responsive poly-l-lysine coated Fe3O4@FePt core shell NPs with CTX for mitochondria targeted (Mito-PANPs);
mPEI-CTX-99mTc/DOX: methoxypolyethylene glycol (m), polyethyleneimine (PEI) 99mTc radiolabelling NP loaded with doxorubicin (DOX); CTX-PEG-Dox-Eu-Gd2O3 NRs: Doxorubicin
and CTX conjugated to polyethylene glycol (PEG) coated gadolinium oxide NPs; CTX-KRKRK-GFP-H6 and CTX-GFP-H6: 2 different fluorescent protein NPs named CTX-KRKRK-
GFP-H6 and CTX-GFP-H6 conjugated to; CTX-PMLA-LLL-ICG: Polymalic acid (PMLA) conjugated with CTX, tri-leucine peptide (LLL) and indocyanine green (ICG); CTX and
mApoE-Dox-Lip: liposomes entrapped with DOX and dually functionalized with ApoE-derived peptide (mApoE) and CTX; CTX-TMZ noisome: Noisome entrapping Temozolomide
(TMZ) surface functionalized with CTX; RGD-Eu-Gd2O3-CTX coated europium dopped gadolinium oxide nanorods, functionalized with arginine-glycine-aspartic acid (RGD) and
CTX; CTX-PLGA-Morusin: CTX conjugated to poly(lactic-co-glycolic acid) (PLGA) NPs loaded with morusin; M-CTX-Fc-L-Dox: liposome loaded with DOX and modified with CTX
fused to human IgG Fc domain without hinge region in monomeric form (M-CTX-Fc); IONP-HA-GEM-CTX: Iron oxide NPs conjugated with chemotherapeutic drug gemcitabine
(GEM) and CTX using hyaluronic acid (HA) as a crosslinker; Ag-PNP-CTX: silver NPs (AgNPs) entrapped in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to
chlorotoxin (CTX); AuNRs-PNPs-Cltx/Cy5.5: Gold nanorods entrapped in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to CTX and Cy5.5; CTX-SNALPs-miR-21:
CTX-coupled stable nucleic acid lipid particles (SNALPs) for miR-21 silencing; NP-TMZ-CTX: chitosan-based NPs with TMZ, conjugated with CTX; NP:DNA-CTX: IONPS coated
with PEG and PEI, DNA was encapsulated into NP and CTX was conjugated on the surface; Ag/Ali-PNPs-CTX-99mTc: Silver and alisertib polymeric NPs with 99mTc radiolabelling
and CTX surface functionalization; AgNPs-PNS-CTX: Silver polymeric NPs with CTX surface functionalization; CTX-Lip: CTX liposomes; CTX-IONP-siMGMT: small interfering
RNA (siRNA)-based MGMT (siMGMT) inhibitors incorporated into CTX-IONPs; CTX-SNALPs: CTX-coupled stable nucleic acid lipid particles; CTX-DoX-Lip: CTX functionalized
liposomes entrapping DOX; NP-DNA-CTX: IONPS conjugated with DNA and CTX; IONPs-PEG-CTX and IONS-PEG-RDG: IONPs coated with PEG conjugated with CTX or RDG;
NP(ION/PEG)-CTX-Cy5.5: IONPs surface functionalized with CTX and Cy5.5; NP-CTX-chitosan-Cy5.5: IONPs coated with chitosan and conjugated to CTX and Cy5.5; MFNP-CTX:
Magnetite and fluorescent silica nanoparticles functionalized with CTX; NP-siRNA-CTX: IONPS coated with PEG and conjugated to siRNA and CTX; NP-PEIb-siRNA-CTX: IONPS
coated with polyethylene glycol (PEG)-grafted chitosan, and polyethyleneimine (PEI) with polyethylenimine (PEI) and conjugated to siRNA and CTX; NP-AF647-CTX-DNA: IONPS
conjugated with Alexa Fluor 647 dye (AF647) and DNA; CTX; NP-CTX-AF680: IONPS conjugated with Alexa Fluor 680 dye (AF680); NPCP-Cy5.5-CTX: PEGylated-chitosan branched
copolymer (CP) NPs conjugated with Cy5.5 and CTX.
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9. Prospective Applications of CTX-NP Formulations
9.1. Optoacoustic Imaging Using CTX-NPs

CTX-NPs could also be used in other diagnosis and treatment applications for both GB
and NB. For instance, optoacoustic imaging is one area of interest that has been investigated
preclinically and involves the use of acoustic emissions from pulsed light energy to visualize
biological structures at high optical contrast and acoustical resolution [271]. Commonly
used acoustic imaging contrast agents are microbubbles (MBs), nanobubbles (NBs), and
nanodroplets (NDs) that can be used with photo-acoustic and ultrasound imaging [272].
Stable oscillations of MBs are caused by exposure to low acoustic pressure, a process termed
stable cavitation [273]. MBs were initially developed as diagnostic ultrasound contrast
agents but have since been explored for targeted drug delivery by enhancing vascular
permeability through cavitation when bubbles occur in ultrasound fields [274]. MBs may
have difficulty in penetrating the deep tissue layers, whereas NBs hold the potential
for extensive delivery into tissues through blood vessels and NDs can pass through the
leaky microvasculature and reach the perivascular space, such as a tumor’s interstitial
space [273]. Modifications of bubble surfaces allow the targeting of diseased tissues,
reduced immunogenicity, and prolonged circulation times. Various bubble formulations are
used for ultrasound imaging [275] targeted drug delivery [276–279], gene delivery [280,281],
and hyperthermia treatment [282], however, research in this field incorporating CTX as a
targeting molecule has not been explored but has been previously suggested as a promising
diagnostic application for GB [61], and should also be considered for NB.

9.2. Diagnostic and Therapeutic Potential of Biomimetic CTX-NPs

Combining cell membrane-derived biological functions and NPs has allowed biomimetic
NPs to be developed for numerous applications in tumor imaging techniques such as CT
imaging, MRI, fluorescence imaging, and photoacoustic imaging [283]. To further improve the
accumulation of chemotherapeutic agents and anti-cancer molecules at glioma locations,
active-targeting biomimetic liposomes have gained momentum in neuroscience research.
Li et al. [284] prepared elemene (ELE) and cabazitaxel (CTX) liposomes conjugated with
transferrin (Tf) and embedded with the cell membrane proteins of RG2 glioma cells into
liposomes (active-targeting biomimetic liposomes, Tf-ELE/CTX@BLIP). These NPs pro-
duced excellent BBB permeating capacities, highly significant homologous targeting and
immune evasion in vitro, and a 5.83-fold intake rate compared with liposomes without
Tf and cell membranes of RG2 cells. Based on the observation of elevated lactate (LA) in
resected GB, Lu et al. [285] developed biomimetic therapeutic NPs that deliver agents for
LA metabolism-based synergistic therapy. These NPs were encapsulated in membranes
derived from U251 GB cells that readily penetrated the BBB and targeted GB through
homotypic recognition. After reaching the tumors, lactate oxidase in the NPs converts
LA into pyruvic acid (PA) and hydrogen peroxide (H2O2). The PA inhibits cancer cell
growth by blocking histones expression and inducing cell-cycle arrest. In parallel, the
H2O2 reacts with the delivered bis [2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate
to release energy, which is used by the co-delivered photosensitizer chlorin e6 for the
generation of cytotoxic singlet oxygen to kill glioma cells. Such a synergism ensures strong
therapeutic effects against both glioma cell-line-derived and patient-derived xenograft mod-
els. A recent study demonstrated biomimetic Dp44mT-NPs selectively-induced apoptosis
in Cu-loaded GB which resulted in potent growth inhibition [286]. Biomimetic NPs can
also be a promising phototheranostic nanoplatform for brain-tumor-specific imaging and
therapy. By embedding glioma cell membrane proteins into NPs, Jia et al. [287] successfully
synthesized biomimetic ICG-loaded liposome (BLIPO-ICG) NPs which could cross BBB
and actively reach glioma at the early stage due to their specific binding to glioma cells as a
result of their excellent homotypic targeting and immune escaping characteristics. High
accumulation in the brain tumor with a signal-to-background ratio of 8.4 was obtained
at 12 h post-injection. At this time point, the glioma and its margin were visualized by
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NIR fluorescence imaging. Under imaging guidance, the glioma tissue was completely
removed and in addition, after NIR laser irradiation (1 W/cm2, 5 min), the photothermal
effect exerted by BLIPO-ICG NPs efficiently suppressed glioma cell proliferation with a
94.2% tumor growth inhibition. A novel “cocktail therapy” strategy based on excess natural
killer cell-derived exosomes (NKEXOs) in combination with biomimetic core–shell NPs
was developed for tumor-targeted therapy in CHLA-255 cells NB cells [288]. The NPs
were self-assembled with a dendrimer core loading therapeutic miRNA and a hydrophilic
NKEXO shell. NKEXO NP cocktail showed highly efficient targeting and therapeutic
miRNA delivery to NB cells in vivo, as demonstrated by two-photon excited scanning
fluorescence imaging (TPEFI) and with an IVIS Spectrum in vivo imaging system (IVIS),
leading to dual inhibition of tumor growth. The authors proposed this NP cocktail as a
new strategy for tumor therapy. Despite the rapid development in this field, not much has
progressed to the clinical stage and there are no CTX biomimetic-based NPs to produce a
highly specific and effective drug delivery for GB and NB which can be used for clinical
purposes, therefore more research in this area is required.

9.3. Hyperthermia Treatment Using CTX-NPs

So far, the therapeutic applications of CTX have focused on conjugating the peptide to
NPs to allow for targeted delivery of drugs and therapeutic agents or the visualization of
tumors or both, with very few applications involving hyperthermia treatment (HPT) [126,258],
which is one of the oldest treatments for cancer and a promising minimally invasive thermal
therapy [289]. This is an effective treatment modality that utilizes heat energy to destroy
cancer cells that are more prone to generate heat, owing to their overall increased metabolic
rates [290]. A prospective hyperthermia treatment application of CTX-NPs for GB and NB is
to induce intracellular heat stress with the use of NPs (at a temperature range of 41–47 ◦C),
resulting in mitochondrial swelling, protein denaturation, alteration in signal transduction, cell
rupturing and induction of necrosis/apoptosis [290–292]. Some of the common drawbacks
of hyperthermia treatment include its invasiveness, incomplete tumor destruction, low
heat penetration in the tumor region (lesions > 4–5 cm in diameter), excessive heating of
surrounding healthy tissues (non-specificity), thermal under-dosage in the target region,
heat dissipation by the blood as well as the development of thermotolerance [290,293]. The
use of magnetic and metallic NPs (MNPs) to induce localized NP-mediated hyperthermia
within cancer cells, as illustrated in Figure 4, has recently gained considerable interest
in cancer nanotechnology research but this has yet to be fully exploited for the brain,
and other CNS tumors. Recent studies have reported on the promise of deep intracra-
nial thermotherapy with MNPs for brain tumors [294–296] with some entering clinical
trials [297]. In general, both whole-body and regional hyperthermia treatments result
in poor tumor specificity and constitute a strong limitation to the clinical application of
this technique [290,293].

Some of the most explored magnetic NPs for HPT based on their superior magnetic
properties include iron, cobalt, nickel, manganese, zinc, and gadolinium, as well as their
alloys and oxides—CoFe2O4, NiFe2O4, ZnFe2O4, CuFe2O4, MnFe2O4, Gd-doped Zn-Mn
and Zn-Mn-doped iron oxides [298–305]. However, the use of most of these metals and
alloys is mostly limited by potential toxicity and chemical instability [306]. Interestingly,
IONPs have excellent self-healing properties and have been licensed for use in clinical
applications by the FDA and the European Medicines Agency (EMA) [307]. Although
IONPs have been licensed for use in clinical applications by the FDA, these NPs have
been reported to exhibit toxicity in vitro and in vivo. IONPs can cause toxicity to cells by
inducing oxidative stress in cells and affecting the cell surface roughness which could also
change the shape and alter the response by the cellular cytoskeleton [308]. Ultra-small
IONPs showed high toxicity in vivo due to the distinctive capability in inducing the gener-
ation of reactive oxygen species (ROS), and ferroptosis based on Fe2+ and radicals (OH)
in multiple organs, especially in the heart [309]. The toxicity is dependent on the size and
iron element. External alternating magnetic field (AMF) is used with IONPs/SPIONPs to
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produce heat energy for the thermal ablation of cancer cells [310] in controlled environ-
ments [311]. Increasing the strength of the AMF field may result in inductive tissue heating
from eddy current losses, which is independent of the presence of IONPs/SIONs; this may
restrict the extent to which the AMF field can be increased [312,313].
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signal transduction, cell rupturing and induction of necrosis/apoptosis (e).

Noble metals are excellent conductors of thermal energy that offer a non-invasive and
effective therapeutic strategy for intracellular hyperthermia [314]. AuNPs and platinum
NPs (PtNPs) have strong local surface plasmon resonance (SPR) effects, hence, upon expo-
sure to light, can absorb sufficient photon energy to generate photothermal properties [315].
AuNPs and PtNPs have been used in both in vivo and in vitro studies to demonstrate
photothermal therapy (PTT)-induced cytotoxicity through exposure to near infra-red (NIR)
light (650–950 nm) using special lasers [316–318]. Interest in bimetallic NPs as anti-cancer
applications has increased due to their value in enhancing drug delivery strategies and
NP-mediated hyperthermia treatments [319]. A number of studies reported that bimetallic
gold-platinum NPs (AuPtNPs) of different sizes and shapes exhibit better photothermal
effects and higher radiation-enhancing properties than the respective monometallic NPs
(AuNPs and PtNPs), possibly due to the synergistic effects of the two composite metallic
atoms and new surface properties that are different in their monometallic NPs [320–327].
Graphene quantum dots (GQDs) are considered promising nanomaterials for the PTT of
cancer due to their biocompatibility, capability of crossing biological barriers, and rapid
excretion as a result of their small size [328,329]. In a recent study by Perini et al. [330],
GQDs in combination with DOX and TMZ were tested on a complex 3D spheroid model of
GB. They combined GQDs-mediated PTT and chemotherapy at subtherapeutic doses on GB
spheroids and observed a significant reduction both in spheroid growth and viability in the
time-span of two weeks, along with a considerably higher penetration depth and uptake
of the antitumor drug inside the GB model. Their findings suggested that GQDs could
increase membrane permeability through PTT conversion in a reliable tumor model [330].
Lin et al. [331], developed GQDs, which were conjugated with antibodies against GD2, a
disialoganglioside, and a surface antigen expressed on NB cells, to become anti-GD2/GQDs.
The efficiency of targeting and imaging of anti-GD2/GQDs were investigated in NB cells



Cancers 2023, 15, 3388 24 of 40

and the authors found that there was significant accumulation of the fluorescence of anti-
GD2/GQDs in NB cells both in vitro and in vivo. GQDs may potentially be used for the
targeting and imaging of GB and NBs through surface functionalization with CTX.

MXenes are a new class of two-dimensional (2D) nanomaterials made of transition
metal carbides, nitrides, and carbonitrides. Since 2011, they have been attracting attention
due to their unique combination of electrical and mechanical properties, as well as their
hydrophilicity. The potential applications of MXenes in nanomedicine are numerous,
such as sensors, antibacterial agents, targeted drug delivery, cancer photo/chemotherapy,
tissue engineering, bioimaging, and environmental applications, including sensors and
adsorbents [332]. MXene quantum dots are produced by exfoliating MXene sheets into
ultrathin nanosheets and then processing them into nanocrystals. These nanocrystals are
typically only a few nanometers in size and exhibit quantum confinement effects due to
their small size, leading to unique electronic and optical properties. Nitride-based MXene
and titanium nitride quantum dots (Ti2N QDs) was produced by Shao et al. [333]. A dose
of 80 µg mL−1 Ti2N QDs showed no cytotoxicity to U87 cells. However, supplementing
this treatment with NIR laser irradiation for 5 min led to almost all of the cells being
killed. These studies suggested a tremendous potential for the use of MXenes in cancer
treatment for GB. A recent study by Zhang et al. [334] reported on the fabrication of
2D nano-sonosensitizers/nanocatalysts (Ti3C2/CuO2@BSA) for the in situ generation of
nano-sonosensitizers by responding to the tumor microenvironment, achieving the high-
performance and synergistic sonodynamic (SDT)/chemodynamic tumor therapy. SDT
utilizes a tumor-localizing sonosensitizing agent (NP) which is activated by ultrasound
and produces greatly ROS to destroy tumor cells [335]. CuO2 NP integration on 2D Ti3C2
MXene achieved in situ H2O2 generation in an acidic tumor microenvironment for oxidizing
Ti3C2 to produce TiO2 nano-sonosensitizers, accompanied by the enhanced separation of
electrons (e−) and holes (h+) by the carbon matrix after oxidation, further augmenting the
SDT efficacy. Ultrasound irradiation during the sonodynamic process also enhanced the
Cu-initiated Fenton-like reaction to produce more ROS for synergizing the sonodynamic
tumor therapy. The experimental results confirmed and demonstrated the synergistic
therapeutic effects of chemodynamic and sonodynamic nanotherapy both in vitro and
in vivo. Currently, there are no investigations with CTX for applications with MXenes,
which is an area of research that needs to be explored.

The use of NIR PTT is limited to subcutaneous/superficial malignant tumors because
of minimal tissue penetration (~3 cm depth) by NIR light which may not be suitable for
deep-seated brain tumors [336]. Hence, other applications such as external radiofrequency
(RF) ablation are suggested as radio wave energy has been shown to penetrate more deeply
located tumors than NIR light [337–340]. At 220 MHz, RF penetration is 7 cm and increases
with a decrease in frequency, whereas RF penetration is 17 cm at 85 MHz [341,342]. Radio
waves are safe, low-frequency electromagnetic waves with low tissue-specific absorption
rates (SAR) and are therefore excellent for applications involving whole-body tissue pene-
tration [337]. The heating properties of AuNPs and PtNPs have been investigated using
RF currents and shown to offer some promise for non-invasive RF anti-cancer therapy;
however, reports on targeted bimetallic AuPtNPs for this application are limited in the
literature [343–345]. CTX-conjugated AuPtNPs and other bimetallic NPs need further in-
vestigation as potential heating agents for RF-based hyperthermia for the treatment of such
deep-seated tumors as GB, as they target only tumor cells with minimal adverse effects on
surrounding healthy cells.

Hyperthermia treatments are also known to sensitize cells to other forms of standard
therapy, including radiation and chemotherapy having potential in combination treat-
ments [293,346,347]. Another example of the use of nanoparticle-mediated hyperthermia
treatments is in thermosensitive controlled drug release [318,348,349]. This concept was
recently explored by Pandey et al. [126] using CTX-functionalized bimetallic NPs (Table 2)
for mitochondria targeting and chemo-photothermal therapy with NIR. Research into mul-
timodal CTX-NPs incorporating RF-hyperthermia for GB and NB treatment is required as
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this may yield results that could offer new hope for the effective treatment and management
of these tumors.

10. CTX-like Peptides

Another group of molecules with prospective applications for targeted cancer diagno-
sis and therapy is the “CTX-like peptides”. Since the discovery of CTX from the venom of
the Leiurus quinquestriatus scorpion, a few CTX-like peptides with similar primary features
and functions as CTX, have been isolated and identified [59,61,65,118,350,351]. CTX-like
peptides are considered ion channel blockers and MMP-2 inhibitors because they interact
with MMP-2 on cell membrane surfaces, resulting in anti-metastasis or antitumor effects
with minimal-to-no effects on normal cells [173]. Other scorpion venom peptides with simi-
lar primary structure as CTX include AaCTX, ClTx-a, -b, -c, -d, BmKCTa, BmKCL1, Lqh-8:6,
Be I5A, BeI1, AmmP2, GaTx1 and GaTx2 [59,352,353]. AaCTX isolated from Androctonus aus-
tralis scorpion, has 61% identity with CTX and was suggested to have inhibitory effects on
invasion and migration through chloride channels [354]. Sequence alignment showed that
BmKCTa (isolated from Buthus martensii Karsch venom), GaTx1, and GaTx2 (isolated from
Leiurus quinquestriatus venom) have 67%, 64%, and 38% similarity with CTX respectively,
and show some activity on chloride and other ion channels [44,59,60,355,356]. GaTx1 is a
highly specific blocker for the cystic fibrosis transmembrane conductance regulator (CFTR)
channel, a receptor belonging to the ABC family, with intrinsic Cl− channel activity [357].

ClC-2, another member of the ABC family of chloride channels like ClC-3, is also upregu-
lated on the surfaces of glioma cells, but its physiological role is not completely understood; it
has been suggested to play a similar role as ClC-3 in glioma cell invasion, and migration [124].
GaTx2 inhibits ClC-2 by slowing down its activation [358], and the resulting inhibition is voltage-
dependent. BmKCTa, the most common CTX-like peptide investigated, also demonstrated the
inhibition of glioma cell proliferation, migration, and invasion in a fashion similar to CTX with
MMP-2 as the potential target [211,235,316,351,355,359–361]. The CTX-like peptide, Bs-Tx7,
from the venom of Buthus sindicus scorpion, has a scissile peptide bond (i.e., Gly-Ile) for
MMP2 and demonstrated 66% sequence identity with CTX and 82% sequence identity
with GaTx1 [362]. In another study, Xu et al. [363] identified the CTX-derivatives CA4
and CTX-23, which showed high selective binding to malignant glioma cells and inhibited
rodent and human glioma cell growth at low concentrations, with minimal-to-no toxicity
to primary astrocytes and neurons. Furthermore, these authors also found that CA4 and
CTX could normalize tumor vessel morphology and vessel density in the peritumoral
brain areas [363]. Thus, more research is required to understand the specific mechanisms
of action of these CTX-like peptides, as well as the plausibility of their use as potential
targeting agents for the treatment of GB and NB tumors.

11. Conclusions and Future Directions

The rising incidence of GB and NB imposes major global health challenges, with a
substantial economic burden for patients, health insurance providers, and health authorities
alike. The pathophysiology of these tumors involves the elevation of many surface proteins
such as MMPs which contribute to proliferation and metastasis. Therefore, strategies that
inhibit the over-expression of MMPs may reduce cancer progression. CTX is a peptide
that holds great promise for use as a theranostic agent for NB, GB, and other solid tumors,
with many CTX-NPs applications constantly being investigated. CTX easily penetrates
the BBB, has a high binding affinity for gliomas and other cancers including NB, but not
normal tissues, and is reported to be readily retained for longer periods in cancer tissue
with little or no toxicity or immunoreactivity. There is substantial evidence to show that
the efficacy of CTX is related to its ability to cross the BBB as well as its high tumor-binding
function mediated by the molecular targets namely, chloride channels, MMP-2, annexin
A2, and recently, ERα and NRP-1. However, more research is required to fully elucidate
the mechanisms involved in the binding of CTX to tumor molecular targets as well as its
crossing of the BBB. Incorporating CTX onto NPs such as biomimetic NPs, GQDs, and
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MXenes, as well as applications for Optoacoustic imaging using CTX-NPs are all areas that
require more research. CTX-Noble bimetallic NPs have recently demonstrated superior
anti-cancer activity when compared to monometallic NPs, especially for hyperthermia-
based treatments; however, only a few studies have reported on CTX functionalized NPs
and bimetallic NPs for hyperthermia treatments, thus requiring further investigation.
Finally, only a few studies have reported on the use of CTX-NPs in NIR photothermal
therapy, and to the best of our knowledge, no radiofrequency-based hyperthermia studies
involving CTX-NPs exist in the literature, necessitating more studies on these applications,
since they may be highly advantageous for deep-seated tumors such as GB. Overall, this
review highlights the potential of CTX and CTX-NPs as safe and effective diagnostic and
therapeutic applications for GB and NB tumors.
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