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S.M.; Băciut,, M.; Dinu, C.; Stoia, S.;

Solomon, C.; Csaba, C.; Rusu, G.M.;

Lenghel, L.M. The Role of an

MRI-Based Radiomic Signature in

Predicting Malignancy of Parotid

Gland Tumors. Cancers 2023, 15, 3319.

https://doi.org/10.3390/

cancers15133319

Academic Editors: Stephan Lang and

Moritz Meyer

Received: 24 April 2023

Revised: 11 June 2023

Accepted: 21 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

The Role of an MRI-Based Radiomic Signature in Predicting
Malignancy of Parotid Gland Tumors
Delia Doris Muntean 1, Sorin Marian Dudea 1, Mihaela Băciut, 2, Cristian Dinu 2, Sebastian Stoia 2,
Carolina Solomon 1,*, Csutak Csaba 1, Georgeta Mihaela Rusu 1 and Lavinia Manuela Lenghel 1

1 Department of Radiology, Faculty of Medicine, “Iuliu Hat,ieganu” University of Medicine and Pharmacy,
400012 Cluj-Napoca, Romania; muntean.delia.doris@elearn.umfcluj.ro (D.D.M.); sdudea@umfcluj.ro (S.M.D.);
csutakcsaba@elearn.umfcluj.ro (C.C.); mihageorgeta@elearn.umfcluj.ro (G.M.R.);
pop.lavinia@umfcluj.ro (L.M.L.)

2 Department of Maxillofacial Surgery and Implantology, Faculty of Dentistry, “Iuliu Hat,ieganu” University of
Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; mbaciut@umfcluj.ro (M.B.);
cristian.dinu@umfcluj.ro (C.D.); sebastian.stoia@umfcluj.ro (S.S.)

* Correspondence: cbotar@umfcluj.ro

Simple Summary: Differentiating between benign and malignant parotid gland tumors is of
paramount importance as it impacts therapeutical management. MRI represents the best imaging
technique in diagnosing and characterizing parotid gland tumors, offering a high soft tissue
contrast resolution. However, there are still overlapping radiological features between tumoral
types; thus, accurate malignancy detection remains a challenge. Recently, radiomics has gained
recognition as a promising new non-invasive approach in oncological imaging, especially related
to tumor classification, and has the potential to become an additional diagnostic tool that might
offer support in the clinical decision-making scenario.

Abstract: The aim of this study was to assess the ability of MRI radiomic features to differentiate
between benign parotid gland tumors (BPGT) and malignant parotid gland tumors (MPGT). This
retrospective study included 93 patients who underwent MRI examinations of the head and neck
region (78 patients presenting unique PGT, while 15 patients presented double PGT). A total of
108 PGT with histological confirmation were eligible for the radiomic analysis and were assigned to
a training group (n = 83; 58 BPGT; 25 MPGT) and a testing group (n = 25; 16 BPGT; 9 MPGT). The
radiomic features were extracted from 3D segmentations of the PGT on the T2-weighted and fat-
saturated, contrast-enhanced T1-weighted images. Following feature reduction techniques, including
LASSO regression analysis, a radiomic signature (RS) was built with five radiomic features. The RS
presented a good diagnostic performance in differentiating between PGT, achieving an area under
the curve (AUC) of 0.852 (p < 0.001) in the training set and 0.786 (p = 0.017) in the testing set. In
both datasets, the RS proved to have lower values in the BPGT group as compared to MPGT group
(p < 0.001 and p = 0.023, respectively). The multivariate analysis revealed that RS was independently
associated with PGT malignancy, together with the ill-defined margin pattern (p = 0.031, p = 0.001,
respectively). The complex model, using clinical data, MRI features and the RS, presented a higher
diagnostic performance (AUC of 0.976) in comparison to the RS alone. MRI-based radiomic features
could be considered potential additional imaging biomarkers able to discriminate between benign
and malignant parotid gland tumors.

Keywords: radiomics; textural analysis; parotid gland tumors; differential diagnosis; MRI

1. Introduction

Parotid gland tumors (PGT) are rare, accounting for approximately 3% of all tumors
in the cervical region and 80–85% of salivary gland tumors [1]. Approximately 80% of PGT
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are benign, the most common being pleomorphic adenomas and Warthin’s tumors, while
the remaining 20% of PGT are malignant [2,3].

The gold standard treatment for PGT is surgery, and the protocol is determined by the
histopathological type of tumor: for benign lesions, local excision or partial parotidectomy
may be sufficient, whereas for malignant lesions total parotidectomy and neck dissection is
recommended [4].

For assessing PGT, the imaging method of choice is magnetic resonance imaging
(MRI), which offers valuable information regarding morphology, disease extension, and
deep surrounding structures imaging [1,5]. The main advantages of MRI over other
imaging methods include the absence of ionizing radiation and an improved tissue contrast
resolution which is particularly important in detecting tumoral local spread including
perineural disease [6].

Multiparametric MRI allows morphological and signal pattern analysis of PGT using
standard sequences (T1-WI, T2-WI, STIR). Moreover, MRI also allows for a functional
assessment of PGT by using diffusion-weighted imaging with the corresponding ADC
maps, and dynamic contrast-enhanced imaging, respectively [1,3]. Several algorithms
have been proposed to determine the histopathological type of parotid tumors, but there is
still no general validation of them as there are several overlapping MRI features between
lesions [7]. An accurate differential diagnosis is mandatory to implement a clinically and
surgically appropriate strategy for PGT patients.

In oncological imaging, radiomics has recently emerged as a promising novel non-
invasive tool, particularly useful in areas such as tumor classification, prognosis prediction,
or therapeutical response assessment [8,9]. Radiomic analysis refers to the extraction
of numerous quantitative imaging features from specific regions of interest in medical
images. The most discriminative radiomic features can further be combined into radiomic
signatures, which can be used to differentiate between various tumors [10,11].

Although MRI-derived radiomic signatures have shown potential in distinguishing
between different types of salivary gland tumors [12,13], a consistent generally validated
signature has not yet been established in the literature.

The purpose of this study is to assess whether textural analysis biomarkers are able to
predict malignancy in PGT using standard MRI sequences and to evaluate the diagnostic
performance of the resulting predictive radiomic model. A second aim is to assess the ra-
diomic analysis added benefit to clinical–radiological models in the differentiation between
benign parotid gland tumors (BPGT) and malignant parotid gland tumors (MPGT).

2. Materials and Methods

This study adhered to the Declaration of Helsinki guidelines and was granted approval
by the Ethical Committee of the “Iuliu Hat, ieganu” University of Medicine and Pharmacy
Cluj-Napoca (registration number: 43; date: 11 February 2022). Owing to the retrospective
nature of the research, informed consent was waived for all participants.

2.1. Study Population

A retrospective analysis was performed in the electronic clinical and radiological
database for patients who underwent an MRI evaluation of the head and neck region
during January 2018 and January 2023 to assess parotid gland lesions.

The following inclusion criteria were used: (1) patients with PG-related symptoms
or masses; (2) histological confirmation of the PGT from biopsy or surgical specimen;
(3) available MRI examinations with corresponding technical parameters mentioned in the
“Image Acquisition” Section 2.2.

The exclusion criteria were as follows: (1) tumors with a maximum diameter <5 mm;
and (2) the existence of imaging artifacts making the images unsatisfactory for radiomic
analysis. The exclusion criterion for a maximum tumor diameter of 5 mm was set to reduce
the potential impact of partial volume effects that could alter the genuine tissue-specific
image texture [14].
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A final cohort of 93 consecutive patients was formed, following the application of
the inclusion and exclusion criteria. A total of 78 patients presented unique PGT, while
15 patients presented double PGT (8 patients with double Warthin tumors, 4 patients with
double malignant tumors, and 3 patients with double pleomorphic adenoma).

This study included a final number of 108 PGT which were eligible for radiomic
analysis. Using the “one-third” criteria proposed in radiomic studies [15], the samples were
randomly divided into a training group (83 PGT; 58 benign, 25 malignant) and a testing
group (25 PGT; 16 benign, 9 malignant).

2.2. Image Acquisition

The MRI examinations were performed in a single center, using a 1.5 Tesla MRI scanner
(SIGNA™ Explorer, General Electric, Milwaukee, WI, USA) using a dedicated, 16-channel,
high-resolution head coil. The acquisition protocol was constructed an of axial fast spin-eco
(FSE) T1-WI; an axial FSE T2-WI using the PROPELLER (Periodically Rotated Overlapping
ParallEL Lines with Enhanced Reconstruction) technique; a coronal STIR PROPELLER; an
axial diffusion-weighted imaging (DWI) using echo-planar imaging sequences at multiple
b-values with the corresponding ADC maps; an axial perfusion-weighted imaging; and
an axial FSE fat-saturated contrast-enhanced T1-WI using intravenous contrast medium
0.1 mL/kg Gadobudrol, (Gadovist; Bayer HealthCare, Berlin, Germany).

For the textural analysis, the following sequences were used: axial FSE T2-WI PRO-
PELLER (T2-WI) and axial fat-saturated contrast-enhanced T1-WI (fsCE-T1-WI). The corre-
sponding MRI specifications are presented in Table 1.

Table 1. MRI sequences specifications.

MRI Parameter T2-WI fsCE-T1-WI

TE (ms) * 75 [62–92] 12 [8.9–15.6]
TR (ms) * 5450 [3540–8290] 680 [610–750]
Matrix (mm) 384 × 384 300 × 300
Flip angle 160 160
Slice thickness (mm) 3 3
Slice gap (mm) 3 3

* median (interquartile range).

2.3. Preprocessing, Segmentation, and Feature Extraction

Each examination was reviewed on a dedicated workstation (General Electric, Ad-
vantage workstation, 4.7 edition) by one radiologist specialized in head and neck imaging
with more than 15 years-experience in MRI, who reviewed the images for possible arti-
facts and protocol errors. All examinations underwent anonymization, and the selected
sequences were retrieved in DICOM format and imported into an open-source texture
analysis software, Slicer version 4.11 (available online at: http://www.slicer.org/ accessed
on 1 February 2023).

Within the 3D Slicer program, before segmentation and feature extraction, all MR
images went through several preprocessing stages. Firstly, all images were normalized by
division through standard deviation and the gray values were discretized using a fixed-
bin width of 25. To maintain consistency in scaling and orientation while extracting 3D
features, all images were resampled with a voxel size of 1 × 1 × 1 mm3 using a B-Spline
interpolator. Isotropic resampling was preferred over anisotropic resampling as it is more
suitable for computing 3D textural features [16]. The widely used “µ ± 3σ” algorithm
was also utilized for image intensity normalization and for diminishing the fluctuation
impact of the acquired scanning parameters of the MRI examination [17]. Therefore, image
intensity outliers (which differed > 3 sigma from the mean) were identified and removed.

After the preprocessing steps, one radiology resident (DDM), blinded to the histopatho-
logical results, manually outlined each parotid lesion on sequential images; therefore, a 3D
segmentation was performed, excluding vessels or areas with necrosis.

http://www.slicer.org/
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The contouring procedure aimed to cover the tumor’s maximum area without
exceeding the lesion’s margin. Figure 1 shows an example of benign and malignant
PGT 3D segmentation.
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Figure 1. (A) 3D segmentation of a benign parotid tumor (confirmed as pleomorphic adenoma).
(B) 3D segmentation of a malignant parotid tumor (confirmed as adenoid cystic carcinoma).

For the radiomic features extraction, the open source PyRadiomics package (version
3.0.1) was used. From each MRI sequence, 1037 quantitative radiomic features were
extracted from the 3D segmentation of the PGT, using both original and filtered images.

The preprocessing filters were Laplacian of Gaussian (LoG), using fine and coarse
patterns (sigma 3.0 and 5.0 mm) and wavelet filters.

The extracted radiomic features belonged to the following groups: first-order, gray-
level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM), gray-level dependence matrix (GLDM), neighboring gray-tone
difference matrix (NGTDM), and shape.

2.4. Feature Selection and Statistical Analysis

The first step in the feature selection process was to assess feature stability between
two segmentations. Therefore, 50 randomly selected PGT were resegmented by the same
radiologist (DDM), two months after the initial segmentation. The intraobserver agreement
was assessed by calculating the intraclass correlation coefficient (ICC). Features with an
ICC ≤ 0.75 were excluded from further analysis.

All radiomic features underwent Z-score normalization.
To control data overfitting in this radiomic study, the following feature selection steps

were conducted.
Firstly, to identify the statistically significant radiomic features able to differentiate between

BPGT and MPGT, a univariate test was applied (Mann–Whitney U), using the Benjamini–
Hochberg correction as an adjustment for multiple testing (corrected p-values < 0.05).

Secondly, to eliminate redundant features, the Spearman correlation was performed
between any two features. When highly correlated features were encountered (Spear-
man’s coefficient >0.9/<−0.9), only the feature with the lowest p-value in univariate
analysis was retained.
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The last step of feature reduction represented the multivariate logistic regression
analysis using the least absolute shrinkage and selection operator (LASSO) with a ten -fold
cross-validation.

Finally, five radiomic features were selected and combined into a Radiomic Signature,
which was computed by taking a linear combination of the chosen features and weighting
them based on their respective LASSO coefficients.

This three-step reduction technique was also performed in previous radiomic studies
with favorable classification outcomes [18,19].

The diagnostic performance of the radiomic signature in both training and testing
datasets was assessed by the Receiver operating characteristic (ROC) curve analysis.

The comparison between different areas under the ROC curve was performed using
the DeLong test.

To analyze quantitative clinical and biological features, the independent-sample T or
the Mann–Whitney U tests were employed, while for the assessment of categorical features,
the exact Fisher test was utilized.

To identify independently associated features able to predict the malignancy of PGT, a
binary logistic regression was performed using the enter method. The statistical significance
value was set for p < 0.05.

The statistical analysis was conducted using the following software: SPSS Statistics
for Windows, version 18.0 (SPSS Inc., Chicago, IL, USA), MedCalc version 14.8.1 (MedCalc
Software, Mariakerke, Belgium), and R software version 3.6.3 (with the “glmnet” package).

An overview of the radiomic workflow used in this study is offered in Figure 2.
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Figure 2. Radiomics workflow diagram. ROI = region of interest; PROPELLER = periodically rotated
overlapping parallel lines with enhanced reconstruction; fsCE = fat-saturated contrast-enhanced;
PGT = parotid gland tumors; BPGT = benign parotid gland tumor; MPGT = malignant parotid
gland tumor; ICC = Intraclass Correlation Coefficient; BHC = Benjamini–Hochberg Correction;
LASSO = Least Absolute Shrinkage and Selection Operator; ROC = Receiver-Operating Characteristic.

3. Results

In this radiomic study, a total of 108 PGT were analyzed, which were divided into
a training set (83 PGT: 58 benign, 25 malignant) and a testing set (25 PGT: 16 benign,
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9 malignant). Tumor characteristics are summarized in Table 2 and the histopathological
distribution is presented in Table 3.

Table 2. Clinical and radiological characteristics of the benign and malignant PGT in the training and
testing sets.

Feature

Training Set (n = 83)
p

Testing Set (n = 25)
pBenign PGT

(n = 58)
Malignant PGT

(n = 25)
Benign PGT

(n = 16)
Malignant
PGT (n = 9)

Age (years) 49.6 ± 14.7 58.1 ± 13.4 0.014 54.2 ± 12.12 63.22 ± 14.87 0.115

Sex Male 25 (43.1) 10 (40) 0.794 8 (50) 4 (44.4) 0.793

Female 33 (56.9) 15 (60) 8 (50) 5 (55.6)

Maximum size
(mm) 26 [19, 32] 35 [25.7, 48.2] 0.011 19.5 [13, 24.5] 31 [21.5, 39] 0.046

Location Superficial 35 (60.3) 10 (40) 0.14 13 (81.2) 8 (88.9) 0.513

Deep 6 (10.3) 2 (8) 1 (6.3) 1 (11.1)

Both 17 (29.3) 13 (52) 2 (12.5) 0 (0)

Side Left 30 (51.7) 13 (52) 0.8 8 (50) 2 (22.2) 0.182

Right 28 (48.3) 12 (48) 8 (50) 7 (77.8)

Margin Smooth 56 (96.6) 7 (28) <0.001 14 (87.5) 2 (22.2) 0.001

Ill-defined 2 (3.4) 18 (72) 2 (12.5) 7 (77.8)

Cystic/necrotic
areas Present 36 (62.1) 16 (64) 0.755 12 (75) 5 (55.6) 0.327

Absent 22 (37.9) 9 (36) 4 (24) 4 (44.4)

T1-WI
hyperintense
spots

Present 14 (24.1) 2 (8) 0.089 8 (50) 7 (77.8) 0.228

Absent 44 (75.9) 23 (92) 8 (50) 2 (22.2)

T2-WI signal
(vs. parotid) Hypointense 16 (29.6) 17 (68) <0.001 6 (37.5) 6 (66.7) 0.169

Hyperintense 42 (72.4) 8 (32) 10 (62.5) 3 (33.3)

T1-WI signal
(vs. muscle) Hypointense 49 (84.5) 24 (96) 0.141 14 (87.5) 9 (100) 0.278

Hyperintense 9 (15.5) 1 (4) 2 (12.5) 0 (0)

CE pattern Homogenous 19 (32.7) 5 (20) 0.752 3 (18.7) 4 (44.4) 0.244

Heterogenous 39 (67.2) 20 (80) 13 (81.3) 5 (55.6)

T2-WI SI
Ratio * 3.96 [2.46, 6.09] 2.85 [2.36, 3.66] 0.039 3.82 [2.51, 5.36] 2.56 [2.13, 2.88] 0.047

T1-WI SI
Ratio * 1.14 [1, 1.27] 1.17 [1.08, 1.30] 0.605 1.23 [1.08, 1.39] 1.26 [1.10, 1.74] 0.428

fsCE-T1-WI SI
Ratio * 1.61 [1.40, 2.18] 1.50 [1.40, 1.91] 0.461 1.33 [1.16, 1.95] 1.15 [1.11, 1.39] 0.212

ADC
(10−3 mm2/s) 1.205 0.855 0.001 1.176 0.875 0.019

[0.910, 1.800] [0.728, 1.185] [0.865, 1.459] [0.670, 0.908]

CE = contrast enhancement; SI = signal intensity; fs = fat-saturated; ADC = apparent diffusion coefficient;
PGT = parotid gland tumor; p = statistical significance level. The results are presented as mean ± standard
deviation, median and [interquartile range], or percentage (%). * Parotid gland tumor signal intensity/Masseter
muscle signal intensity.
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Table 3. Histopathology of parotid gland tumors.

Training Set Testing Set

Benign (n = 58) Malignant (n = 25) Benign (n = 16) Malignant (n = 9)

Tumor histology Pleomorphic adenoma 28 Mucoepidermoid cc 3 Pleomorphic adenoma 6 Acinic cell cc 2
Warthin tumor 24 Salivary duct cc 3 Warthin tumor 8 Salivary duct cc 2

Basal cell adenoma 3 Adenoid cystic cc 3 Basal cell adenoma 1 Metastatic cc 2
Parotid gland cyst 2 Acinic cell cc 2 Oncocytoma 1 Lymphoma 3

Reactive lymph node 1 Lymphoma 7
Metastatic cc 3
Basal cell cc 2

Squamous cell cc 1
Undifferentiated

sarcoma 1

In the training group, the patient’s age, maximum tumor size, tumor margin, T2-WI
signal intensity compared to the parotid gland parenchyma, T2-WI signal intensity ratio
(PGT signal intensity, divided by the masseter muscle signal intensity), and ADC value
were significantly different between benign and malignant PGT.

MPGT appeared in older patients and presented greater dimensions than BPGT,
predominant ill-defined margins, and hypointense signal on T2-WI. Furthermore, the T2-
WI signal intensity ratio and the ADC values were lower for the MPGT in comparison to
BPGT (2.85 vs. 3.96, p = 0.039; 0.855 vs. 1.205, p = 0.001, respectively).

Besides the age and the T2-WI intensity of PGT, all the parameters that proved to be
statistically significant between the two study groups in the training set were also confirmed
in the testing group.

3.1. Feature Selection and Radiomic Signature Construction in the Training Set

From each 3D segmentation of the PGT included in the training set, a total of 1037 ra-
diomic features were extracted from T2-WI and another 1037 radiomic features from the fsCE-
T1-WI, respectively. The intrareader agreement was tested and features with an ICC < 0.75
were excluded from further statistical analysis. Therefore, the features were reduced to
859 T2-WI features and 834 fsCE-T1-WI features.

To develop the radiomic signature, firstly, a univariate analysis was performed, and
67 T2-WI features and 50 fsCE-T1-WI features were found to be statistically significant
between the two studied groups (with an adjusted p-value < 0.05 after Benjamini–Hochberg
correction). Secondly, after performing Spearman’s correlation analysis, 28 non-redundant
features were retained for further analysis (Supplementary File: Table S1, Figure S1). The
final parameter reduction technique was the ten-fold cross-validated LASSO (least absolute
shrinkage and selection operator) regression which revealed five final radiomic features
(Figure 3). By linearly combining these five radiomic features using their corresponding
LASSO coefficients (Table 4), the following radiomic signature formula was generated:

Radiomic Signature = ∑5
x=0Cx ∗ Rx + I, (1)

where Cx is the coefficient of the xth radiomic feature, Rx the xth radiomic feature, and I
the intercept.

3.2. The Performance of the Radiomic Signature in the Training Set

There was a significant difference in the radiomic signature value between BPGT and
MPGT, −1.11 [−1.31, −0.71] versus −0.34 [−0.70, −0.15], p < 0.001.

In the training set, the radiomic signature predicted malignancy of PGT with an area
under the curve (AUC) of 0.852, resulting in a sensitivity of 72% and a specificity of 87.7%
for the cut-off value of >−0.614 (Figure 4).
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Table 4. Radiomic feature selection results after LASSO regression.

MRI Sequence Radiomic Feature Radiomic Group Associated Filter Coefficient

fsCE-T1-WI SizeZoneNonUniformityNormalized Texture (glszm) original −0.865
fsCE-T1-WI Skewness First order LoG filter (5 mm) 0.09

T2-WI RootMeanSquared First order wavelet-HLL 0.136
T2-WI Imc2 Texture (glcm) wavelet-LLH −0.167
T2-WI Correlation Texture (glcm) wavelet-LHL −0.296

Intercept −0.865

fsCE = fat-saturated with contrast enhancement; glszm = gray-level size zone matrix; glcm = gray-level co-
occurrence matrix; LoG = Laplacian of Gaussian.
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The individual diagnostic performance of the five radiomic features was also assessed
(Table 5). The AUC values varied between 0.668 and 0.747 and were lower than the one
reached by the radiomic signature.
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A clinical–radiological model was developed using a multivariate regression (Table 6)
which included statistically significant features between BPGT and MPGT in the training
group (age, maximum tumor size, margin, T2-WI signal intensity, T2-WI ratio, and ADC
value). By adding the radiomic signature to the clinical–radiological model, a complex
model was developed (Table 7). In the complex model, the radiomic signature and the
ill-defined margin pattern were independently associated with malignancy of the PGT.

Table 5. Individual diagnostic performance of the final selected radiomic features.

Radiomic Feature AUC
(95% CI) Cut-Off Se

(95% CI)
Sp

(95% CI)
+LR

(95% CI)
−LR

(95% CI) p

SizeZoneNonUniformityNormalized 0.668 ≤−0.509
60 73.68 2.28 0.54

0.01(0.555–0.768) (38.7–78.9) (60.3–84.5) (1.33–3.91) (0.33–0.90)

Skewness
0.695

>0.135
80 63.16 2.17 0.32

0.001(0.584–0.792) (59.3–93.2) (49.3–75.6) (1.47–3.21) (0.14–0.71)

RootMeanSquared 0.678
>0.329

48 82.46 2.74 0.63
0.006(0.566–0.777) (27.8–68.7) (70.1–91.3) (1.37–5.48) (0.42–0.94)

Imc2
0.74 ≤−0.361

72 70.18 2.41 0.4
<0.001(0.631–0.830) (50.6–87.9) (56.6–81.6) (1.51–3.85) (0.21–0.77)

Correlation
0.747 ≤−0.211

76 70.18 2.55 0.34
<0.001(0.639–0.836) (54.9–90.6) (56.6–81.6) (1.62–4.02) (0.17–0.70)

The 95% confidence interval (CI) values are shown in parentheses. AUC = area under curve; Se = sensitivity;
Sp = specificity; +LR = positive likelihood ratio; −LR = negative likelihood ratio; p = statistical significance level.

Table 6. Multivariate logistic regression analysis for the PGT malignancy prediction—clinical–
radiological model.

Variable Coefficient Std. Error p Odds Ratio

Patient’s age 0.083 0.047 0.076 1.087
Maximum diameter −0.016 0.047 0.736 0.984
Margin = “ill-defined” 5.649 1.488 <0.001 28.923
T2-WI = “hypointense” 2.520 1.491 0.091 12.435
T2-WI Ratio 0.030 0.387 0.937 1.030
ADC −0.527 1.285 0.681 0.590
Constant −7.558 4.341 0.081

Std. Error = standard error; p = statistical significance level.

Table 7. Multivariate logistic regression analysis for the PGT malignancy prediction—complex model.

Variable Coefficient Std. Error p Odds Ratio

Patient’s age 0.087 0.046 0.059 1.09
Maximum diameter −0.029 0.052 0.582 0.97
Margin = “ill-defined” 7.277 2.332 0.001 29.21
T2-WI = “hypointense” 1.501 1.544 0.330 4.48
T2-WI Ratio −0.146 0.468 0.753 0.86
ADC −1.159 1.822 0.524 0.31
Radiomic Signature 5.307 2.467 0.031 22.43
Constant −2.410 4.318 0.576

Std. Error = standard error; p = statistical significance level.

Adding the radiomic signature to the first model slightly improved its performance for the
differentiation between BPGT and MPGT: AUC = 0.943 (95% CI, 0.869 to 0.982) vs. AUC = 0.976
(95% CI, 0.916 to 0.997), p = 0.064, standard error = 0.02 (Figure 5).

A statistically significant difference between the AUC obtained by the radiomic sig-
nature and the one reached by the complex model was found: the difference between
areas = 0.123; standard error = 0.04; 95% confidence interval, 0.0306 to 0.212, p = 0.008
(Figure 6).
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3.3. The Validation of the Radiomic Signature in the Testing Group

The radiomic signature of BPGT was significantly lower than MPGT (−0.859 vs. −0.527,
p < 0.05) in the testing set as well (Table 8).

Table 8. Radiomic signature values of benign and malignant parotid gland tumors in the training
and testing datasets.

Radiomic Signature Median Q1 Q3 p

Training set
Benign −1.11 −1.31 −0.71 <0.001

Malignant −0.34 −0.7 −0.15
Testing set

Benign −0.859 −1.435 −0.785 0.023
Malignant −0.527 −0.787 −0.36

Q1 = first quartile; Q3 = third quartile; p = statistical significance level.
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The overall diagnostic performance of the radiomic signature in differentiating be-
tween BPGT and MPGT was attested in the testing group, reaching an AUC of 0.786, when
the optimal cut-off value was chosen according to the Jouden index analysis (Figure 7 and
Table 9).
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Table 9. Diagnostic performance of the radiomic signature in the training and testing datasets.

Radiomic
Signature

AUC
(95% CI) Cut-Off Se

(95% CI)
Sp

(95% CI)
+LR

(95% CI)
−LR

(95% CI) p

Training set 0.852
>−0.614

72 87.72 5.86 0.32
<0.00010.756–0.921 50.6–87.9 76.3–94.9 2.81–12.23 0.17–0.60

Testing set 0.786
>−0.774

77.78 85.71 5.44 0.26
0.0170.566–0.927 40.0–97.2 57.2–98.2 1.44–20.58 0.075–0.90

The 95% confidence interval (CI) values are shown in parentheses. AUC = area under curve; Se = sensitivity;
Sp = specificity; +LR = positive likelihood ratio; −LR = negative likelihood ratio; p = statistical significance level.

For the previous cut-off value of >−0.614 (established in the training group), in the
validation group, there 66.7% sensitivity and 81.3% specificity were recorded.

4. Discussion

The current study assessed the performance of MRI-based radiomic features to dis-
criminate between benign and malignant PGT using a 3D segmentation approach on T2-WI
and fsCE-T1-WI sequences.

Radiomics represents a non-invasive postprocessing imaging technique that implies
extracting numerous quantitative features from digital images, thereby converting them
into mineable high-dimensional data which could predict changes at a cellular, metabolic,
or genetic level [11,20]. Recently, there has been an increasing interest in the radiomics
of salivary gland imaging, mainly addressing the following three topics: differentiating
between different PGT types, predicting xerostomia after radiation therapy in the head-neck
region, or assessing PG parenchymal changes in diffuse inflammatory diseases, such as
primary Sjogren’s Syndrome [21].

The constructed radiomic signature in this study includes first-order radiomic features
derived from the histogram, and second-order radiomic features from the gray-level co-
occurrence matrix (GLCM) and gray-level size zone matrix (GLSZM). First-order features
provide information about the voxels’ intensity distribution inside a region or volume of
interest, regardless of any spatial relationships between each other, while second-order
features are computed from various matrices to describe the spatial arrangement and inter-
action between voxels [22]. GLCM assesses the spatial relationships between individual
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voxels with different gray-level values, while GLSZM considers the size and frequency of
connected regions of voxels with the same intensity value within a given region/volume of
interest in a medical image [23,24].

The feature extraction process was performed from both unfiltered and filtered images.
As a pre-processing step, to all images, we applied Laplacian of Gaussian filters, which
highlight regions of rapid change (for instance, edge detection) and wavelet filters, which
separate information with high and low spatial frequency [25]. The majority of the radiomic
features included in the final radiomic signature were extracted from images with wavelet
filters, which proved to be especially useful in imaging denoising [26].

Regarding the PGT segmentation, a volume of interest was delineated in the three-
dimensional (3D) approach, as we considered it would provide representative information
more reliable for entire tumor characterization and heterogeneity assessment in comparison
to a 2D segmentation.

The chosen MRI sequences for segmentation were T2-WI acquired with the PRO-
PELLER technique and fsCE-T1-WI. By using PROPELLER, the image quality increases,
and any potential motion artifacts are diminished [27]. Contrast-enhanced imaging is
often used in radiomic studies as it provides information regarding tumor vascularity and
heterogeneity that would not be discernible without the use of contrast material [15].

The results obtained in this study demonstrate that the proposed MRI-based radiomic
signature, obtained from the combination of five radiomic features extracted from two
standard sequences, achieved a promising performance in differentiating benign from
malignant PGT. The AUC of the radiomic signature in the training group was 0.852, higher
than the AUC of each radiomic feature individually, which ranged between 0.668–0.747.
In the testing dataset, the radiomic signature maintained a good diagnostic performance,
with an AUC of 0.786.

There are several studies performed so far that assessed the ability of MRI radiomic
features to differentiate MPGT from BPGT using either features extracted from one sequence
alone or multiple sequences combined. The reported diagnostic performances of the
obtained radiomic models are variable.

The best radiomic model proposed by Zheng et al. was built using a combination of
T1-WI-logarithm and fsT2-WI-exponential features and reached an average AUC of 0.846
for differentiating benign from malignant SGT. This study, however, included not only
PGT, as in our study, but also tumors of the submandibular and sublingual glands [28].
By combining radiomic features extracted from manual segmentations of PGT on T1- and
T2-WI, Vernuccio et al. obtained a radiomic model that presented an AUC of 0.927, with
high specificity (93.4%), albeit at a cost of low sensitivity (57.2%) in the diagnosis of PGT
malignancy [29].

Another study used Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) classifiers to discriminate between BPGT and MPGT on T2-WI, ADC map, and
DCE-MRI, and the reported AUC for each sequence was 93.3%, 100%, 99.2% for LDA, and
100%, 100%, 100% for SMV, respectively. When the classifiers were trained using features
from all three sequences combined, the AUC reached 100% for both LDA and SMV [30].

Using only the conventional T2-WI, SVM classifier training was performed using five
non-redundant discriminative features between BPGT and MPGT, and all feature subsets
were tested as well. The radiomic signature resulting after combining the gray-level mean,
skewness, and autocorrelation values performed the best in classifying PGT, yielding a
high specificity (88.5%), but low sensitivity and accuracy (29.4%, 0.594, respectively) [31].

One study proposed a mixed model that combined four parameters: the 25th percentile
extracted from the ADC map, the 10th percentile extracted from T2-WI, and the type of
contrast enhancement and margins. The model’s accuracy in differentiating BPGT from
MPGT was 80.4% in the training cohort and 89.2% in the validation cohort [32].

A multisequence combined radiomic model presented a higher differentiation per-
formance (BPGT vs MPGT, AUC = 0.863) than the single- or double-sequence radiomic
models (AUC between 0.792–0.855), while the radiomic nomogram reached the highest
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AUC of 0.907 [33]. Liu et al. also proved that adding 2D and/or 3D radiomic features
extracted from T1- and T2-WI to clinical and radiological data improved the diagnostic
performance in differentiating BPGT from MPGT (0.85 AUC for the complex model versus
0.72 AUC for the clinical reference model) [34].

Similarly, to provide a more holistic model, we have also performed a multivariate
analysis using clinical data, MRI features, and the radiomic signature. This integrated
approach improved the diagnostic performance in differentiating BPGT from MPGT, in
comparison to the radiomic signature alone.

Radiomic imaging is under constant development and recent studies aim to propose
new and improved classification algorithms and radiomic signatures. However, there is still
a need to prove how radiomic features can systematically outperform other competitors,
ideally across multiple datasets.

Using multiparametric MRI in assessing PGT has already demonstrated promising
results, currently representing the first-line imaging method in assessing this pathology. Ac-
cording to Zeng et al., using conventional MRI and DWI combined reached 91% diagnostic
accuracy in differentiating between MPGT and BPGT (82% sensitivity and 94% specificity),
while adding DCE MRI to the assessment boosted the accuracy to 96% [35]. This was
confirmed in another study which showed that assessing the tumor shape and capsule
presence on conventional MRI sequences in conjunction with functional MRI features (such
as ADC and TIC patterns) demonstrated great performance: 91.2% accuracy in diagnosing
parotid gland lesions, i.e., higher than the individual diagnostic performance of each MRI
sequence [36].

Our proposed radiomic signature reached a sensitivity of 72% and a specificity of
87.7% in differentiating between BPGT and MPGT and the AUC was 0.852. When clinical–
radiological data were added and a complex model was built, the AUC increased to 0.976.
This supports the idea that radiomics present great diagnostic potential when used in
addition to other imaging features and not just as an individual diagnostic tool [21].

However, the current study presents several limitations. Firstly, there was a relatively
low number of observations, particularly in the MPGT group. This is due mainly to a
generally higher incidence of benign PGT (approximately 80%) [3]. Secondly, although we
were able to split the acquired observations into a training and testing dataset, the obtained
radiomic signature lacks external validation on a new data set from a different institution,
which would have increased the signature’s generalizability. The logistic regressions were
only performed on the training dataset and were not assessed in the testing dataset due
to the low number of cases assigned in the latter, which would not have allowed a fair
regression analysis with statistical significance.

MR images are known to be subject to increased variations in signal intensity between
examinations, which is a main problem in radiomics that requires special consideration [37,38].
As this study was monocentric, all patients were examined in the radiology department
using a standardized MRI head-neck protocol. However, there were still some variations
in the acquisition parameters (TE, TR) and consequently, before PGT segmentation and
feature extraction, all MR images underwent several pre-processing techniques to obtain a
homogenous set of images.

Another important aspect is related to the ability of many texture analysis programs
to extract a high number of radiomic features, which often exceeds the number of samples
and therefore increases the risk of overfitting [11,39]. To counteract this aspect, we have
performed several feature reduction techniques to exclude redundant features. We have
also performed corrections for multiple testing, and p-values were adjusted using a false
discovery rate method such as the Benjamini–Hochberg correction [40].

Some authors report an interobserver variability regarding the segmentation of the
PG, which might impact the value of the extracted radiomic feature [41]. Unfortunately,
this confounder effect was not assessed in the current study, and only the intraobserver
variability was tested.
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Finally, the current study only assessed radiomic features extracted from two conven-
tional anatomical MRI sequences and did not assess other sequences such as diffusion or
perfusion-weighted imaging.

5. Conclusions

The current study proved that radiomic features extracted from MR images and the
proposed radiomic signature are able to discriminate between benign and malignant parotid
gland tumors. An integrated approach using clinical, radiological, and radiomic features
achieved a better diagnostic performance than the radiomic signature alone, suggesting the
current adjuvant role of radiomics as a diagnostic tool. Nevertheless, the validation of the
proposed radiomic model in larger, multicentric studies, is warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15133319/s1, Table S1: List of the selected radiomic
features able to discriminate between benign and malignant PGT, that were included in the LASSO
regression analysis. Figure S1: Correlogram of the final selected radiomic features (n = 28) using the
Spearman’s correlation.
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