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Simple Summary: Neuroblastoma is a pediatric tumor originating from the precursors of sympa-
thetic nerves. The disease is known for its high heterogeneity. Hence, developing adequate preclinical
models reflecting the complex biology of neuroblastoma is particularly challenging. This paper de-
scribes the current status of the available neuroblastoma models with their strengths and limitations,
and demonstrates the future perspectives for preclinical neuroblastoma research.

Abstract: Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These
classic models, including two- and three-dimensional cell culture techniques and animal models,
are crucial for basic and translational studies. However, each model has its own limitations and
typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent
need for the development of novel, advanced systems that can allow for efficient evaluation of the
mechanisms underlying cancer development and progression, more accurately reflect the disease
pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical
models are especially important for rare cancers, such as neuroblastoma, where the availability
of patient-derived specimens that could be used for potential therapy evaluation and screening
is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this
review, we present the current status of preclinical models for neuroblastoma research, discuss their
development and characteristics emphasizing strengths and limitations, and describe the necessity of
the development of novel, more advanced and clinically relevant approaches.
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1. Introduction

Preclinical disease models play crucial roles in all fields of biomedical research, includ-
ing drug discovery and development, the implementation of drug screening, diagnostic
tests, prophylactic and therapeutic vaccines, evaluation of disease mechanisms, and discov-
ering biochemical pathways. Despite their limitations, these models have been indispens-
able in cancer research conducted before clinical trials. However, none of the preclinical
cancer models are ideal. The extent of the clinical relevance of the existing models has been
a long-standing problem in cancer research [1–5].

Classic models, such as in vitro two-dimensional cell cultures and laboratory animals,
have been extensively used in cancer research for decades [6]. Various established cell
lines, including HeLa, are most commonly used, since they are publicly available, inex-
pensive, easy to handle, and typically provide highly replicable results. Unfortunately, the
erroneous use of cells in laboratories around the world is surprisingly frequent—the cross-
contamination rate can be as high as 25%, and numerous cell lines can be misidentified and
mislabeled [7–10], which jeopardizes the research quality. However, even if used under
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their true identity, after many years of passaging the established cancer cell lines often no
longer resemble the original cancers. They undergo changes that make them different from
the source tumor: genetically, morphologically, metabolically, and physiologically. One of
the reasons for this phenotypic drift is culture on plastic, in 2D setting, lacking the structure
and microenvironment of the tissue of origin [5,11]. Moreover, while tumor cell lines can
be grown in laboratories for a long time, the same cannot be conducted with corresponding
normal cells, derived—as a necessary control—from patients’ normal tissues [12].

Mouse models of human cancer are not without problems as well. Ideally, they should
recapitulate the events occurring in a patient and mimic the pathology, genetics, and
therapeutic response of human disease. Neither classic mouse models, such as transgenic
mice and conventional knockouts, nor more advanced ones (e.g., conditional knockouts
and mice with regulated expression of oncogenes) fulfill all the requirements for a perfect
model. The mouse organism resembles its human counterpart in many aspects, but there
are also important differences (e.g., the control of telomeres and telomerase) that affect and
limit potential research and the relevance of the obtained results to clinical practice [13–16].

Because of the limitations of classic preclinical models, new advanced models are being
developed and extensively utilized. Various in vitro techniques such as three-dimensional
cell cultures including gel embedding, scaffold culture, hanging drop culture, microfluidic
devices, 3D bioprinting [7,17–20], induced pluripotent stem cells [21,22], and patient-
derived 2D cell culture methods [23–27]. Recent years also brought significant advances
in animal models, including humanized mouse models and patient-derived xenografts
(PDXs) [28,29]. Importantly, none of these techniques fully recapitulate the process of
carcinogenesis and cancer progression. Hence, they can be optimized and combined to
complement each other, and thereby provide reliable tissue and organ models [30–34].
Currently, morphologically and genetically accurate complex in vitro models (CIVMs) are
being developed to enable studies on particular cancer types [35].

Neuroblastoma is a rare solid cancer of the sympathetic nervous system, derived
from neural crest cells. It is the most common childhood malignancy; the median age
of diagnosis is 18 months and most of the cases occur in children below 10 years of
age. Neuroblastoma is a very heterogenous disease, with a diverse clinical presentation
and molecular complexity [36–41]. Despite an advancement in therapy in recent years,
the prognosis for high-risk patients remains poor [42]. Most high-risk neuroblastomas
initially respond to the therapy, but eventually relapse; the fatality rate of the disease is
50%. These unfavorable outcomes are commonly associated with amplification of the
MYCN protooncogene (encoding N-MYC transcription factor), mutations of the anaplastic
lymphoma kinase (ALK), and segmental chromosomal alterations (e.g., loss of chromosome
arm 1p and 11q, gain of 17q) [37,43,44]. Moreover, patients with neuroblastoma may
experience various neurological symptoms, metabolic syndrome, growth and puberty
impairment, secondary neoplasms, and other syndromes, depending on the location of the
primary tumor and metastases [40,45]. Hallmarks of neuroblastoma—heterogenous and
diverse clinical manifestations, poor prognosis of advanced disease and high metastatic
frequency—require new strategies in drug discovery and administration [46,47]. Advanced
preclinical models are indispensable in that approach, as well as in attempts for a better
understanding of the mechanisms and biology of the disease [36,48]. Our contemporary
review summarizes the current status as well as recent developments in preclinical models
used in various fields of neuroblastoma research, both in vitro and in vivo. We emphasize
the importance of the clinically relevant models, especially for a rare disease such as
neuroblastoma, discuss the strengths and limitations of each model, and describe the future
advances in this field.

2. In Vitro Models of Neuroblastoma
2.1. Conventional 2D Cell Cultures

Currently, neuroblastoma research relies largely on cell lines cultured in vitro in two-
dimensional settings. Numerous established neuroblastoma cell lines of human or rodent
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origin are available commercially (Table 1) [49,50]. Despite the disadvantages, the cells
maintained using this technique are easy to use, and the method is highly productive and
inexpensive. They preserve the distinct chromosomal aberrations that are characteristic
for neuroblastoma and contribute to the disease prognosis and patient outcome [51,52].
Recent advances in CRISPR/Cas9 technology allow for further genetic modification aiming
at recapitulating such genomic changes and thereby testing their functions [53]. Moreover,
neuroblastoma cell lines recapitulate heterogeneity in differentiation stages observed in
human tumors, ranging from undifferentiated mesenchymal to committed adrenergic
cells [54,55]. For these reasons, the established cell lines are broadly used in various fields
of neuroblastoma research, including basic tumor biology and interactions with the tu-
mor microenvironment [56–58], as well as the development of novel treatment strategies,
treatment screening, and monitoring [47,59–61]. Moreover, the neuroblastoma cell lines
have been used in a wide spectrum of studies on genetic, biochemical, functional, and
structural neuroblastoma characteristics, for example on the interaction of neuroblastoma
cells with Schwann cells, the synthesis of neurotransmitters, differentiation and transdiffer-
entiation processes, chromosomal structure, the role of MYCN expression, the importance
of neuropeptide Y and hypoxia, and many others [57,62–83]. A recent CRISPR/Cas9 screen
performed in a panel of neuroblastoma cell lines has led to the identification of EZH2 as
a molecular driver of the MYCN-amplified neuroblastomas, paving the way for similar
studies in the future [84], importantly, in 2D cell lines, potential chemotherapy [85–89],
radiation [90], and immunotherapy [91–94] screening. Furthermore, they are utilized to
determine the role of genetic and chromosomal alterations in tumor growth, development,
and the possible prognosis of the disease [95–98].

Established neuroblastoma cell lines have also been used for validating the mechanistic
models used for the prediction of neuroblastoma progression based on the analysis of
molecular networks [99]. Due to their neuronal features, neuroblastoma cell lines are also
used as models in neuroscience, e.g., in studies on Alzheimer’s disease [100], Parkinson’s
disease [101], and in virology research [102,103].

Despite the rarity of the disease, the field of neuroblastoma research is equipped in
a vast number of established cell lines. This includes unique sets of cell lines developed
from the same patient before diagnosis and post-treatment, rarely available for other can-
cer types [104]. This includes SK-N-BE(1) and SK-N-BE(2), SMS-KAN and SMS-KANR,
SMS-KCN and SMS-KCNR, as well as CHLA15 and CHLA20 cell lines. Moreover, recent
years brought significant progress in the development of new neuroblastoma research tools.
Thanks to collaborative efforts led by the Children’s Oncology group, a wide range of cell
lines developed from different biological materials (tumors, bone marrow, or blood), at
different stages of the disease (at diagnosis, post-treatment, and post-mortem) is now avail-
able through the Childhood Cancer Repository [105]. This collection of well-characterized
neuroblastoma cell lines reflecting neuroblastoma progression and representing its most
aggressive, therapy-resistant, and metastatic features provides an excellent experimental
tool for designing and testing novel therapeutic strategies.

Although most commonly used in cancer research, the conventional 2D cell culture
is associated with significant disadvantages. Even though freshly obtained neuroblas-
toma tumor initiating cells retain certain tumor characteristics in cell culture [106], it has
been known for years now that in vitro cultivation causes an accumulation of numer-
ous alterations in cells [107]. The cells may undergo rapid epigenetic and transcriptional
changes [108], differentiate [109], lose the expression of certain genes [110], change the bio-
physical properties of the cell membrane [111], lose sensitivity to oxidative stress [112], and
undergo many other alterations. Conventional 2D cell lines lack polarity and their contact
with tumor environment is affected [4], they are chromosomally unstable [3], and they do
not preserve the heterogeneity and complexity of the tissue of origin. The heterogeneity of
the tumor is currently described not only as a difference between the cancer cells in mor-
phology, transcriptional profiles, and metabolism, but also includes the differences between
the tumor microenvironment, which plays an important role in tumor resistance to therapy,
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the higher level of metastasis, and aggressiveness [113–115]. With two-dimensional cell
lines, we are not able to properly reproduce these conditions in vitro [2,5,11,26,116].

In general, neuroblastoma cell lines, similar to other conventional cancer cell lines,
do not properly recapitulate the original tumor properties and do not fully reflect the
complexity and heterogeneity of the malignancy [117]. Thus, they may not be the ideal
model for preclinical studies as the results obtained with them may not be transferable to
patients. Therefore, various approaches to solve the problem with conventional 2D cell cul-
tures in preclinical studies have been attempted. These include various three-dimensional
cultures, co-cultures with additional cells, and complex models with microfluidic perfusion
systems [118,119].

Table 1. Examples of widely used neuroblastoma cell lines commercially available from American
Type Culture Collection (ATCC).

Name Origin Stage
(INSS *) Treatment MYCN

Status
ALK

Status
P53

Status
Differentiation

Status References

IMR-32 Human none amplified wt wt adrenergic [49,54,85,
120,121]

SK-N-SH Human 4 CT/RT non-
amplified mut wt adrenergic [54,85,105,

122–124]

SK-SY5Y

Human;
thrice cloned
(SK-N-SH ->

SH-SY -> SH-SY5
-> SH-SY5Y)

subline of
SK-N-SH

4 CT/RT non-
amplified mut wt adrenergic [50,54,85,

124–126]

SK-N-BE(2) Human 4 CT/RT amplified wt wt [49,85,125,
127]

BE(2)-C Human; clone of
SK-N-BE(2) 4 amplified adrenergic [54,125,128]

BE(2)-M17 Human; clone of
SK-N-BE(2) 4 [125]

Neuro-2a Mouse - [79]

SK-N-FI Human 4 CT non-
amplified wt mut adrenergic [54,77,85,

105]

SK-N-DZ Human 4 amplified wt wt [78,85,123]

B35 Rat - [66]

SK-N-AS Human 4 non-
amplified wt wt mesenchymal [50,54,77,

123,124]

N1E-115 Mouse - [65]

NBFL Human 4 [64]

CHP-212 Human amplified [49,128]

NB41A3 Mouse - [62]

* International Neuroblastoma Staging System [129]; CT: chemotherapy; RT: radiotherapy; wt: wild type; mut:
mutant.

2.2. Conditionally Reprogrammed Cells

Conditional reprogramming as the novel method of cell culture has been described in
2012 [130]. This method allows growing the epithelial cells, both cancerous and normal,
for an indefinite time in a 2D in vitro setting without the transduction with any exogenous
genes. The proliferative and adult stem-like state of the conditionally reprogrammed
cells is maintained by a co-culture with irradiated mouse fibroblasts as the feeder cells,
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and by the presence of the Rho-associated kinase (ROCK) inhibitor, Y-27632 [25]. These
cells are karyotype-stable, the induction of conditional reprogramming is rapid and re-
versible [131]. Conditional reprogramming is the epitome of personalized medicine; the
cells can be directly obtained from a patient, cultured, and used for potential therapeutic
approaches [23]. They can be also used as models for certain cancer types, including
rare diseases, e.g., neuroendocrine cervical carcinoma [24,27,132], as well as biobanked
for future basic and preclinical applications, for example genetic and chemosensitivity
testing [133–136]. Conditional reprogramming is an inexpensive, easy to use, and robust
method [25]. It can be used for growing normal cells [26,137], expanding cells generated
from PDXs [30], as well as growing animal cells [138]. It has been shown that conditionally
reprogrammed cells obtained from mammary tumors retain the genetic characteristics of
the source malignancy [139] and maintain the expression of the estrogen receptor ERα; a
well-known challenge in breast cancer research [140]. Undoubtedly, the main disadvantage
of conditional reprogramming is that being a two-dimensional setting, it does not preserve
the structural organization of a tumor.

We have shown that conditional reprogramming can be used to generate, culture,
and biobank neuroblastoma cell lines [141]. Murine neuroblastoma conditionally repro-
grammed cells collected from tumors arising in TH-MYCN mice retain the characteristic
heterogenic neuroblastoma phenotype including a mesenchymal and neuronal compo-
nent [54] (Figure 1A), and are useful as a neuroblastoma cell model in basic research [67].
These cells may also be grown in 3D cell culture settings (Figure 1B–D), thus serving as an
example of the combination of various preclinical models. We propose that conditional
reprogramming—when applied to human neuroblastoma samples—may serve as a novel
reliable model for basic and translational research, including personalized drug testing.

2.3. 3D Cell Cultures

Cancer is a complex, multidimensional disease, so it cannot be adequately represented
in a 2D cell culture setting. Classic 2D cultures lack the microenvironment of the tumor
and the complex structure of the tissue as whole. On the other hand, when animals are
used as preclinical models, their genetic and pathophysiological characteristics are different
from the human body in many ways. Moreover, animal research is associated with ethical
issues, as the number of animals used for biomedical experimentation should be reduced as
much as possible [142]. Therefore, in an attempt to create better preclinical cancer models,
three-dimensional cell cultures are becoming increasingly utilized. This includes spheroids
and organoids in various matrices, as well as more complex settings, such as microfluidic
systems or material engineering for the scaffolds [33,143,144]. In cancer research, 3D in vitro
models are particularly useful in representing certain cancer-specific hallmarks, including
the replication potential, tissue invasion, and response to growth signals [116,145,146].

Spheroids are maintained in a scaffold-free and gel-free setting: they are grown in the
hanging drop culture or on low-attachment plastic surfaces. The cells aggregate sponta-
neously, and the aggregates are composed of different subpopulations of cells, thus express-
ing the structural heterogeneity important for studies aimed for discovering anticancer
therapy or the identification of pathways involved in tumor biology and cancer biomark-
ers [18,147–149]. The 3D multicellular cultures in vitro have many advantages over tradi-
tional cells maintained in the 2D setting, as they recapitulate the cellular complexity and
heterogeneity of a tumor and the well-defined structural organization of the colony [150].
Spheroid models are also utilized in various aspects of neuroblastoma research, including
the development and monitoring of combination chemotherapy [59,151–153], stem cell
research [154], radiobiological studies [155], and the exploration of tumor growth deter-
minants and their complexity [156]. Special microgravity-assay bioreactors, promoting
spontaneous cellular interactions and aggregations and thus permitting formations of
spherical 3D cell cultures, have also been useful for propagating neuroblastoma cells [157].
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Figure 1. Conditionally reprogrammed murine neuroblastoma cells (CR-NB). Cells growing in a 2D 
cell culture, demonstrating an adrenergic cell population growing atop a mesenchymal cell popula-
tion, as shown before [141] (A). The same CR-NB cell line in Matrigel 1 day (B) and 28 days of a 3D 
culture (C). The localization of neuropeptide Y in the 3D CR-NB structure (green); DNA (blue) 
stained using Hoechst 33258 (D). 
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Figure 1. Conditionally reprogrammed murine neuroblastoma cells (CR-NB). Cells growing in a
2D cell culture, demonstrating an adrenergic cell population growing atop a mesenchymal cell
population, as shown before [141] (A). The same CR-NB cell line in Matrigel 1 day (B) and 28 days of
a 3D culture (C). The localization of neuropeptide Y in the 3D CR-NB structure (green); DNA (blue)
stained using Hoechst 33258 (D).

The local microenvironment, specifically its main component, the extracellular ma-
trix (ECM), plays a crucial role in cancer development. It controls almost every aspect of
cellular behavior, being involved in the regulation of processes such as cancer invasion,
tumor-associated inflammation, cell polarity, and cancer stem cell niches [158]. Therefore,
gel-embedded 3D cultures are thought to more accurately mimic in vivo tumor conditions,
and they are arguably considered a better in vitro tumor model than growth in suspension.
Matrigel, collagen, alginate, and other emerging gel techniques, such as engineered scaf-
folding structures [159–161], provide adequate structural support for cells, which allows
for more precise modeling interactions between tumor cells and ECM. This, in turn, results
in clinically relevant outcomes, such as testing the response to anticancer drugs [20,145].
These organoid models have been used for breast cancer cells [17], urological cancers [162],
lung cancer [163], brain tissue [164], and many others [20,145,165,166]. Their strengths
include the applicability to numerous research fields, from basic science to modelling
diseases, including development and infectious diseases, drug discovery and screening,
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as well as personalized medicine [33,167]. They are versatile, expandable, genetically
stable, and can be adapted for gene-modification techniques. However, they are costly and
time-consuming.

The 3D gel-embedded cell cultures, utilizing for example the collagen-based scaffolds
supplemented with nanohydroxyapatite or glycosaminoglycans [168] or composite hy-
drogels based on gelatin or alginate [118,169,170], are tested or used for neuroblastoma as
well [171], to study the heterogeneity of the tumor [98], immunotyping [172], and chemosen-
sitivity [173,174]. They are expected to improve the correlation between the results obtained
in vitro and the outcomes in patients.

2.4. Complex In Vitro Cultures

Recently, a novel 3D bioprinting technique that recapitulates the tumor microenvi-
ronment and the spatial distribution of the cells as well as allows for the addition of other
types of cells, has been applied to neuroblastoma cells [118,119,175]. To evaluate the role
of vascularization and angiogenesis in neuroblastomas, an advanced model mimicking
neuroblastoma vasculature was established [176–179]. These models may allow for ad-
vanced studies on neuroblastoma structure, progression, angiogenesis, and metastasis. In
the near future, they may prove to be useful, providing a precision medicine platform for
the assessment of potential therapeutic options.

2.5. Models of Neuroblastoma Initiation

The culture of neuroblastoma cells derived from human and mouse tumors serves as
a useful tool to test the disease phenotypes and response to treatment; however, it does
not recapitulate the early events leading to the disease initiation during sympathoadrenal
development. To fill this gap, researchers have utilized in vitro techniques mimicking nor-
mal sympathetic differentiation, in the presence or absence of genetic aberrations observed
in human neuroblastomas. These approaches include the differentiation of human and
mouse embryonic stem cells, as well as human induced pluripotent cells into the neural
crest, sympathoadrenal progenitors, or sympathetic nerves [180–183]. Others propose the
use of human neural progenitor cells obtained by the direct reprogramming of the somatic
cells, as well as the isolation of sympathetic neuroblasts from chick embryos or sympathoa-
drenal progenitor cells from postnatal murine adrenal glands [90,180,184]. Thus far, the
number of available models of neuroblastoma initiation is limited and the methodology
is still being developed. However, as the interest in the dysregulation of developmental
processes leading to malignant transformation is growing, the above techniques become
more commonly used in research on neuroblastomas and other neuronal tumors [182].

3. Animal Models of Neuroblastoma

Rodent cancer models, especially murine models, have been utilized in neuroblastoma
research for decades to explore the genetics and mechanisms of the disease, as well as
treatment and diagnostic options. The ability to recapitulate multiple processes involved
in cancer progression and interactions between tumor cells and their environment are
advantages of animal models. However, such experiments are typically costly, time-
consuming, and not suitable for high-throughput studies. Commonly used murine models
of neuroblastoma are classified into syngeneic, transgenic, xenograft, and humanized
animal models [117]. The strengths and limitations of the most commonly used in vivo
neuroblastoma models are summarized in Table 2.

3.1. Genetically Engineered Mouse Models

The best characterized alteration in human neuroblastoma and the most important
predictor of its poor prognosis is the amplification of a Myc-related gene, MYCN. Moreover,
MYCN directly influences the genetic and epigenetic changes observed in neuroblas-
toma [185]. Because of that, MYCN has been extensively used for modelling neuroblastoma
in mice. In 1997, Weiss and colleagues created transgenic mice that overexpress N-myc
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in neural crest lineage cells under the control of rat tyrosine hydroxylase gene (TH) pro-
moter [186]. Transgenic TH-MYCN mice demonstrate a high rate of neuroblastoma tumors
that closely resemble human disease, based on their histology, pathology, molecular biology,
and location in the paraspinal sympathetic ganglia [187,188]. The tumors also exhibit the
heterogeneity observed in human neuroblastomas, with both adrenergic and mesenchymal
populations present within the tumor tissue [141]. However, no tumors are observed in the
adrenal glands of TH-MYCN mice, which is a common location of human neuroblastoma.
Moreover, despite a high MYCN expression, which in humans correlates with metastatic dis-
ease, no overt metastases are seen in the TH-MYCN model. While disseminated tumor cells
are observed in the lungs, no metastases in typical neuroblastoma locations, i.e., bones, bone
marrow, or liver, are observed [189]. Lastly, the experiments on these mice are complicated
by a long time for tumor development and the lack of the full penetrance, with the reported
tumor frequency in hemizygous mice between 30% and 50% [186]. Nevertheless, the TH-
MYCN murine model—as well as derived modified models (e.g., TH-MYCN/Mdm2+/−,
TH-MYCN/TH-Cre/Casp8flox/flox, LSL-MYCN; Dbh-iCre, TH-MYCN/Trp53KI/KI), which
can overcome some issues associated with the original TH-MYCN mice—are extensively
utilized in various fields of neuroblastoma research. These include testing the potential
chemotherapeutics [187,190–196], the identification of biomarkers [197,198], and a study
on various aspects and mechanisms of tumorigenesis, and metastasis, as well as the devel-
opment and progression of neuroblastomas [43,195,199–205].

In addition to MYCN amplification, aggressive neuroblastoma is also associated with
activating mutations of the ALK oncogene and the overexpression of the epigenetic regu-
lator involved in development, LIN28B. While some attempts of creating a mouse model
expressing either the most common ALK mutation in neuroblastoma, ALK F1174L [206],
or overexpressing LIN28B [207] in sympathetic lineage resulted in the formation of neu-
roblastoma tumors, other studies indicated that these genetic lesions alone are not capable
of triggering a neuroblastoma. Instead, in these models, the expression of ALK mu-
tants [208,209] or LIN28B [210] resulted in increased tumorigenicity, when combined with
MYCN overexpression, as seen in TH-MYCN/ALKF1174 mice. Nevertheless, the genetic
changes detected in the above models correlate well with the genetic landscape of human
neuroblastomas, making them an adequate model to investigate the perturbations of de-
velopmental processes leading to neuroblastoma initiation and the therapy response of
these tumors [196,208,211,212]. Unfortunately, similarly to the original TH-MYCN mice,
none of these models accurately recapitulate the metastatic processes observed in neurob-
lastoma patients, as the tumors developing in the transgenic mice spread rarely and do
not show tropism to the metastatic niches most common in neuroblastoma patients. Re-
cently, a new model with c-MYC overexpression has been reported (Dbh-iCre/CAG-C-MYC
mice); however, the details on the tumor frequency and disease phenotype are not yet
available [212].

In addition to the animal models mimicking the genetic changes observed in neu-
roblastomas, other transgenic murine models rely on the overexpression of virus-derived
transforming genes [213]. They include mice overexpressing human adenovirus type 12E1A
and E1B under the regulatory control of the mouse mammary tumor virus long termi-
nal repeat [214], the early region of JC virus [215], and the hybrid of the metallothionein
promoter–enhancer and the ret oncogene [216]. However, these models are less relevant to
human disease and are not broadly used.

3.2. Syngeneic Murine Models

Syngeneic models of neuroblastoma utilize the mouse neuroblastoma cell line C1300
and its derivatives, such as Neuro-2A. These tumors possess immune and histological char-
acteristics similar to human neuroblastomas. Because of that, they have been used success-
fully for testing chemotherapeutic strategies and immune-mediated approaches [188,217].
These models are inexpensive, easy to handle, and reproducible; however, they do not
recapitulate the human cancer genetically, they demonstrate low cellular heterogeneity,
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and human immune cells are absent from them [16,218]. Consequently, they are considered
as having a low relevance to human biology [117].

3.3. Xenograft Murine Models

Mouse xenografts are the most commonly used animal models of neuroblastoma [219–221].
This approach introduces human neuroblastoma cells into immunocompromised
mice—typically athymic nude or severe combined immunodeficiency disease (SCID) mice.
While these mice are excellent recipients of xenografts, the absence or partial absence of the
immune system may restrict their use, e.g., for studies on immunotherapy [222]. The human
cells can be introduced subcutaneously or orthotopically to the adrenal gland fat pad. While
the first approach is easier to perform, it does not recapitulate the neuroblastoma tumor en-
vironment. Orthotopic injections, on the other hand, are technically challenging and require
surgery to reach the adrenal gland.

Mouse xenografts are most commonly derived from established neuroblastoma cell
lines, as they are widely available and easy to use. However, as described above, these
cell lines are characterized by their own limitations, which may impact the results of the
experiments in vivo. To overcome the issues related to the cell lines, patient-derived tissue
fragments (or cells) are used for grafting [117,223] Using intact patient-derived tumors is
preferable since it may bypass the alterations acquired by in vitro cultivation [224]. These
tumors and cells are transplanted orthotopically or heterotopically into animals [58,225,226].
Importantly, to overcome a problem of scarcely available neuroblastoma patient-derived
samples, cryopreserved implants may be used for generating xenografts [224]. The in-
tact tumor patient-derived xenografts (PDXs) accurately recapitulate the human cancer
microenvironment complexity, retain high-risk neuroblastoma features, such as high vascu-
larization, as well as the presence of tumor-associated macrophages and cancer-associated
fibroblast infiltration [227,228]. Overall, PDXs are considered to be of high relevance to
human pathology [117] and can serve as in vivo models for the screening of potential ther-
apeutic options, including immunotherapy [229] and virotherapy [230]. However, there
are numerous limitations associated with these models, such as a high cost and the time-
consuming labor involved in their maintenance, the limited availability of fresh tissues or
PDXs, the modifications of the phenotype in cells derived from PDXs upon cell culture, and
only around 50% of the engraftment success rate [109,225,231]. Nevertheless, the number of
available neuroblastoma PDXs is growing. A large collection of well-characterized patient-
derived tumors is now available through the Pediatric Preclinical Testing Consortium and
Childhood Cancer Repository [232].

3.4. Humanized Mice and Other Future Murine Neuroblastoma Models

Importantly, xenograft models rely on immunocompromised animals that lack a
functional immune system. To circumvent this issue, mice with a humanized immune
system are being investigated as potential cancer models. These models require either
an injection of human peripheral blood cells into mice, or the simultaneous injection of
stromal tissue with tumor tissue [16,28,48,233]. However, thus far, no successful attempt
with humanized mice models has been reported for neuroblastoma.

Mouse-human neural crest chimeras as neuroblastoma models were described in 2020
by Cohen et al. In this model, the human neural crest cells carrying genetic lesions observed
in neuroblastomas were injected into a mouse embryo. This experimental approach resulted
in the formation of human neuroblastomas in immunocompetent mice, accompanied by
the potent infiltration by mouse immune cells [234]. Thus, in the future this approach may
be considered a powerful model to test the immune aspects of neuroblastoma, potentially
overcoming some issues related to traditional murine xenograft models developed in
immunocompromised mice.

Other interesting attempts include personalized approaches, e.g., by generating a cou-
ple of different in vitro and in vivo models from the same patient-derived cells [235] that,
taken together, may more closely represent the complexity of human disease. In another ap-
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proach, treatment guided by patient personalized tumor grafts has been demonstrated [222].
However, the latter has not been tested for neuroblastomas.

Table 2. Preclinical in vivo models for neuroblastoma research, their major strengths, limitations, and
human relevance.

Model Strengths Limitations Human
Relevance References

Syngeneic
mouse models

intact mouse immune system

reproducible

easy to handle

low cost

do not accurately mimic biology
and genetics of human disease

no human immune cells present

low cell heterogeneity

low [16,117]

Transgenic
mouse models

mimics biology, histology
and genetics of human
disease

suitable to study
neuroblastoma initiation

no metastases in typical locations

expensive

laborious
intermediate [186,193,195,199,209]

Human
xenograft

murine models

recapitulates genetics of
human disease

easy to handle

require the use of
immunocompromised animals

do not accurately mimic
progression of human disease

no interaction with human stroma

non-heterogenous, established cell
lines used

orthotopic models require surgery
for cell injections

low [219–221]

PDX models

accurately recapitulates
human cancer heterogeneity
and complexity

retains high-risk
neuroblastoma features

require the use of
immunocompromised animals

limited availability of tissues for
transplantation

costly

laborious

orthotopic models require surgery
for cell implantation

high [223–225,228]

Zebrafish
models

low cost

easy imaging

different temperature
requirements for tumor cells and
model cells

requires specific equipment and
tools

no interaction with human stroma

low [117,236]

3.5. Other Animal Models Proposed for Neuroblastoma Research

Except nude mice, nude rats have been utilized as potential models for neuroblastomas.
However, these models did not exactly recapitulate the course of human malignancy [237].
Alternatively, some neural crest pathologies, including neuroblastoma, involving ALK
activity and LIN28B gene expression were studied in the Xenopus model [238–240]. Ze-
brafish (Danio rerio) have been recently proposed as a promising platform to study genetics,
pathogenesis, and progression processes in neuroblastoma [236,240–243]. Due to technical
advantages over the mouse models, such as lower cost, shorter time to tumor development,
and easy imaging, this model has become widely used in the neuroblastoma field. In
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addition, a recently established avian embryonic model involving grafting human neu-
roblastoma cells into chick embryos at the sympatho–adrenal crest level has been proven
to be a valuable tool in recapitulating the interactions between normal developmental
processes, the local microenvironment, and neuroblastoma progression [244,245]. The
growth, differentiation, and potential drug sensitivity of neuroblastoma tumor can be also
analyzed on the chick embryo chorioallantoic membrane [246–248]. However, even though
the chick chorioallantoic membrane model is highly reproducible and easy to handle, it
represents a low relevance to human pathophysiology [117].

3.6. Models of Neuroblastoma Metastasis

Modeling a metastatic disease has been a long-standing challenge in the field of
neuroblastoma research. As described above, the tumors developing in transgenic mice
typically do not form overt metastases. Similarly, the metastases from xenografts, including
orthotopic tumors, are scarce and rarely seen in the niches relevant to human disease.
Recapitulating osseous dissemination has proven to be particularly difficult. To overcome
this problem, systemic injections to the tail vein are widely used [249,250]. Alternatively,
intracardiac injections that facilitate bone colonization can be employed [251]. However,
both models omit the initial stages of the metastatic process, which involve local invasion,
intravasation, and escape from the primary tumor. On the other hand, direct injections of
neuroblastoma cells into the bone cavity may be useful in investigations into the interac-
tions between tumor cells and the bone environment, yet they do not recapitulate their
dissemination [58]. This gap in our ability to model metastatic processes in neuroblastoma
may be in the future filled by the use of PDXs. Recent years brought some reports of
orthotopic PDXs metastasizing to the clinically relevant niches, such as bone, bone marrow,
and liver [224]. However, as described above, the utility of these models is still hindered
by the limited availability of neuroblastoma PDXs. Interestingly, a similar metastatic pat-
tern has been shown upon orthotopic co-injection of established neuroblastoma cell lines
with human mesenchymal stem cells [252]. Lastly, zebrafish models are useful to track
neuroblastoma invasiveness; however, obtaining metastatic niche-specific information in
this model is challenging.

4. Conclusions and Future Directions

Neuroblastoma research relies on preclinical models; however, no existing model
is free of limitations. Therefore, it is of crucial importance to develop novel, advanced
models that may serve as platforms for basic and translational research, especially for new
treatment approaches. Conventional preclinical models in vitro, such as two-dimensional
cell cultures, lack adequate representation of a tumor and do not recapitulate properly its
biology, 3D architecture, topology, and many other features. Animal models, despite their
importance in translational medicine and medical research fields, including neuroblastoma,
also have serious disadvantages. They do not accurately recapitulate many aspects of hu-
man disease, such as its heterogeneity, the role of the immune system, and the complexity
of the tumor microenvironment. The results of preclinical studies quite often do not predict
the outcome in cancer patients; thus, the research on potential chemical agents does not
proceed to clinical development. The gap between 2D cell cultures and animal models can
be bridged by complex three-dimensional systems that closely recapitulate the course of
human cancer [2,116,144,156,171]. Recent developments in three-dimensional, microfluidic,
and multicellular systems used for neuroblastoma research [150] are promising, especially
for testing new therapeutic approaches [118,160,253,254], including natural product re-
search [177], immunotherapy [172,255,256], and new multimodal strategies for high-risk
neuroblastoma [149]. A heterogenous disease such as neuroblastoma may largely benefit
from comprehensive approaches involving a combination of various biological models
supplemented by mathematical simulations [146,235,257,258]. Such strategies give promise
for a better understanding of the malignancy, which may facilitate the development of
effective therapies and improve the outcome for patients. However, it is important to note
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that currently available neuroblastoma models aim mainly at recapitulating the aggressive
disease and do not reflect a full clinical spectrum of the disease. While this is justified by the
need to test novel therapies for high-grade neuroblastoma, the basic biology of low-grade
tumors and spontaneous regression, which is characteristic for these malignancies, remains
understudied.
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