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Simple Summary: Angiogenesis is the main mechanism for the formation of new blood vessels
in tumors. Recent studies also described alternative non-angiogenic ways that play an important
role in tumoral resistance to anti-angiogenic therapies. Lymphoma cells can induce the formation
of new blood vessels via both angiogenic and non-angiogenic mechanisms. Despite the numerous
discoveries regarding lymphomas’ pathogenesis, less is known about these processes and their role in
tumoral initiation and progression. This review discusses the current knowledge on vessel formation
in lymphomas, highlighting the potential implications for prognosis and treatment.

Abstract: The formation of new blood vessels is a critical process for tumor growth and may be
achieved through different mechanisms. Angiogenesis represents the first described and most studied
mode of vessel formation, but tumors may also use alternative ways to secure blood supply and
eventually acquire resistance to anti-angiogenic treatments. These non-angiogenic mechanisms
have been described more recently, including intussusceptive microvascular growth (IMG), vascular
co-option, and vasculogenic mimicry. Like solid tumors, angiogenic and non-angiogenic pathways
in lymphomas play a fundamental role in tumor growth and progression. In view of the relevant
prognostic and therapeutic implications, a comprehensive understanding of these mechanisms is
of paramount importance for improving the efficacy of treatment in patients with lymphoma. In
this review, we summarize the current knowledge on angiogenic and non-angiogenic mechanisms
involved in the formation of new blood vessels in Hodgkin’s and non-Hodgkin’s lymphomas.

Keywords: angiogenesis; intussusceptive microvascular growth; lymphomas; vasculogenic mimicry;
vascular cooption

1. Tumor Angiogenesis

Vasculogenesis, or the creation of capillaries from endothelial cells differentiating in
situ from mesodermal cells, causes the first blood vessels to arise throughout embryonic
life. In this manner, the primitive vascular plexus and the primitive heart are created [1].

The creation of capillaries from pre-existing vessels, such as capillaries and post-
capillary venules, is referred to as angiogenesis [2]. This process is based on endothelial
sprouting microvascular growth. The first step in angiogenesis is the local breakdown of
the basement membrane enclosing the capillaries. Next, the underlying endothelial cells
invade the surrounding stroma in the path of the angiogenic stimulation. A network of
new blood vessels is formed because of endothelial cell migration, which is accompanied
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by the proliferation of endothelial cells and their arrangement into three-dimensional
structures. Physiological angiogenesis only happens during certain distinct processes in
adults, including the female reproductive cycle, tissue repair, and wound healing [3].

Judah Folkman first suggested the idea that angiogenesis, which is closely related to
tumor growth, is correlated with microvascular density, or the number of microvessels that
can be counted in a sample tumor area using antibodies that are specific for endothelial
cell markers (e.g., CD31, CD34) [4]. CD31 is more expressed in mature endothelial cells,
whereas CD34 is expressed in immature blood vessels. In the meantime, as concerns
endothelial basement membrane, LH39 is a monoclonal antibody recognizing an epitope
located at the lamina lucida of mature small veins and capillaries but not in newly formed
vessels [5].

Intra-tumoral microvessel density and prognosis have been found to be positively cor-
related in solid tumors, according to the greater part of the research literature [4]. Numerous
studies have found associations between intratumoral microvascular density, expression
of angiogenic growth factors, tumor growth, and the occurrence of metastases [6]. These
findings indicate that intratumoral microvascular density provides crucial information on
the extent and role of tumor vasculature.

An avascular phase precedes a vascular phase in the process of tumor growth. Most
tumors develop and persist in situ, devoid of angiogenesis, for a considerable amount of
time before starting the angiogenic process [2]. The histopathological image characterized
by a small colony of neoplastic cells that reaches a stable state before becoming invasive
represents the avascular phase. In this situation, metabolites and catabolites are distributed
through the surrounding tissue by simple diffusion. While cells in the deeper part of the
tumor degenerate, those on the tumor’s periphery continue to grow. The production and
release of angiogenic factors or a decrease in the level of endogenous angiogenic inhibitors
have both been linked to the activation of the angiogenic switch [2]. Another important as-
pect of tumor growth is represented by tumor dormancy, occurring during tumor initiation
(“local tumor dormancy”), metastatic dissemination (“metastatic dormancy”), and escape
from anti-cancer therapies (“therapy-induced dormancy”). Tumor dormancy can also be
distinguished in the arrest of cancer cell proliferation within the tumor mass caused by
apoptosis due to poor vascularization (“angiogenic dormancy”) or by the immune response
(“immune dormancy”) [7].

2. Alternative Ways of Tumor Vascularization

In the last thirty years, alternative modes of vascularization of tumor growth have
been described. These techniques include intussusceptive microvascular growth (IMG),
vascular co-option, and vasculogenic mimicry (Figures 1 and 2) [8–10].
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Figure 1. As indication of vascular co-option is the preservation of alveolar architecture in the outer
regions of lung metastases. The tumor mass is highlighted in this high-power confocal image of
the HT1080 lung metastasis that has been labeled with podoplanin (green fluorescence), CD31 (red
fluorescence), and TOTO-3 (blue fluorescence). Note the intact alveolar walls with normal layering
(pneumocyte-capillary-pneumocyte) (arrows). Scale bar = 10 µm. (Reprinted with permission from
Ref. [9]).
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Figure 2. Alternative modes of tumor vascularization, compared with classic angiogenic mode
(inset in the right corner of the figure). In tumor angiogenesis, through the local breakdown of
the basement membrane of a pre-existing blood vessel, the underlying endothelial cells invade the
surrounding stroma in response to an angiogenic cytokine. In intussusceptive microvascular growth,
the expansion of the vascular network is achieved by inserting tissue columns into the vascular lumen
of pre-existing vessels, allowing the formation of a new vessel by the splitting of the pre-existing
one. In vascular co-option, invading cancer cells utilize pre-existing host vessels. In vasculogenic
mimicry, cancer cells may be directly involved in the formation of blood vessels, intermingled with
endothelial cells.

In IMG, the expansion of the vascular network is achieved by inserting tissue columns
into the vascular lumen of pre-existing vessels [8]. IMG occurs in various tumors, including
colon and breast carcinomas, melanoma, and gliomas [11–14]. IMG has several advantages
over sprouting angiogenesis, including faster blood vessel formation, metabolic cost savings
due to the lack of extensive endothelial cell proliferation, basement membrane degradation,
and surrounding tissue invasion during sprouting angiogenesis, and less leaky capillaries
as a result.

The second pathway involves cancer cells invading and occupying normal tissues to
utilize pre-existing vessels, which is referred to as vascular or vessel co-option [15]. The
field of vessel co-option was introduced by Pezzella and coworkers in 1997 [16]. They
demonstrated that tumor growth in non-small cell lung carcinomas occurs without an-
giogenesis and that, in this context, cancer cells survive by using pre-existing vessels as
a source of oxygen and metabolites. An example of vascular co-option is represented
in Figure 1, which shows, in the outer parts of lung metastases, the conservation of the
alveolar architecture. SCID mice were injected with HT1080 tumor cells to produce exper-
imental metastases. Tumor cells penetrate the alveolar air space after extravasation and
the formation of tiny interstitial colonies. Type I alveolar epithelial cells were identified
by immunostaining with anti-podoplanin antibodies (green fluorescence), blood vessels
were identified by immunostaining with anti-CD31 antibodies to mark endothelial cells
(red fluorescence), and nuclear staining was obtained by immunostaining with TOTO-3
(blue fluorescence).

In 1999, Holash et al. reported that tumor cells co-opt pre-existing vessels and grow
around them as cuffs [17]. These authors evaluated the possibility that vascular endothelial
growth factor (VEGF) and angiopoietins (Angs) interact during tumor angiogenesis in a rat
glioma experimental model. They demonstrated that early after tumor cells implantation,
tumor vascularization was attributable to the co-option of existing blood vessels by tumor



Cancers 2023, 15, 3262 4 of 10

cells. By 4 weeks after tumor cells implantation, blood vessels within the core of the tumors
regressed because of the destabilizing action of Ang-2 on the vessel wall. The coopted
vasculature triggers an apoptotic cascade, likely by autocrine production of Ang-2, which
exterminates most of the dependent tumor and causes widespread tumor death. This is the
outcome of a host defensive mechanism that has been engaged. When the ratio of VEGF
to Ang-2 is high, the new tumor vessels continue to grow; when it is low, the new tumor
vessels contract. The interaction of VEGF and Ang-2 at the edge of the expanding tumor
mass results in angiogenesis.

In human melanoma cells, in 1999, Maniotis and colleagues initially identified the
third alternative route of tumor vascularization, which they named vasculogenic mimicry
to underline the development of new blood vessels independently of angiogenesis [9].
“Vasculogenic” was chosen to denote the pathway’s de novo formation, and “mimicry”
was chosen since the paths employed by tumor cells to convey fluid to tissues were
obviously not blood vessels. Laminin 5 and matrix metalloproteinases-1, -2, and -9 (MMP-1,
MMP-2, MMP-9) were significantly more expressed in highly aggressive human cutaneous
melanoma cell lines when compared to less aggressive cell lines, according to a microarray
gene chip analysis. Vasculogenic mimicry describes the highly aggressive cancers’ capacity
to produce blood arteries made of tumor cells rather than endothelial cells. Accordingly,
the development of blood vessels in tumors may be directly influenced by cancer cells [18].

Another theory is that tumor cells take the place of the endothelial cell lining, creating
what is known as mosaic vasculature, in which both endothelium and tumor cells help to
construct vascular tubes [13]. This study used endogenous green fluorescent protein (GFP)
to label tumor cells and CD105 to identify endothelial cells. It showed that 15% of the colon
carcinoma xenografts’ perfused vasculature were made up of mosaic vessels.

3. Angiogenesis and Microvascular Density in Hodgkin’s Lymphomas

Lymphomas constitute a large group of lymphoproliferative disorders. Hodgkin
Lymphomas (HL), a type of lymphoma, are characterized by the presence of Hodgkin–
Reed–Stenberg (HRS) cells, which can be either mono- or multi-nucleated. HL can be further
classified into classical HL (cHL) and nodular lymphocyte-predominant HL (NLPHL). cHL,
which is the more common subtype (making up about 95% of HL cases), includes mixed
cellularity, nodular sclerosis, and lymphocyte-rich subtypes. In contrast, NLPHL is a
rare subtype, accounting for only 5% of HL cases, and is characterized by lymphocyte-
predominant (LP) cells [19].

Inflammatory cells like T and B cells, tumor-associated macrophages (TAMs), mast
cells, plasma cells, eosinophils, myeloid-derived suppressor cells, and NK cells are present
in the HL tumor microenvironment and secrete cytokines and chemokines that control
tumor angiogenesis, progression, and metastasis.

The key mediator of tumor angiogenesis is the VEGF. In HL, both HRS cells and
TAMs secrete VEGF [20,21]. However, the lack of connection between VEGF expression
and microvascular density suggests that other pro- and anti-angiogenic molecules, such as
fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), MMP-2, MMP-9, and
hypoxia inducible factor 1 alpha (HIF-1), may also play a role in regulating angiogenesis in
HL [17]. At least two different angiogenic processes appear to be involved in the promotion
of lymphoma development and progression: paracrine effects of the proangiogenic tumor
microenvironment and autocrine stimulation of tumor cells via production of VEGF and
VEGFR by lymphoma cells. When compared to data from other solid tumors, there is
little information available regarding the role of the HGF/c-MET signaling pathway in
lymphomas. In B cell lymphoma cell lines and patient samples, however, there was no
evidence of MET gene amplification.

Furthermore, it is unclear whether aggressive lymphomas are linked to high microves-
sel density. According to a group of scientists, microvascular density is greater in aggressive
than indolent lymphomas as well as lymphomas compared to reactive nodes. However,
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it has been discovered that the microvascular density in reactive nodes is more or on par
with that seen in lymphomas, particularly large cell lymphomas.

Korkolopoulou et al. demonstrated that in HL microvascular density is reduced with
stage progression according to Ann Arbor stages I-IV [22]. Further research investigated the
expression of HIF-1α in HL and found that it was present in HRS cells but did not correlate
with increased microvascular density [23]. Another study focused on FGF cytokines and
their receptors in HRS cells but did not find a direct correlation between their expression
and the formation of new blood vessels [24]. In patients with HL, pre-treatment levels
of VEGF and HGF were elevated but significantly reduced after therapy, and both pre-
and post-treatment VEGF levels were found to be predictive of survival [25]. Furthermore,
elevated serum VEGF levels in pre-treatment HL patients were reduced in cases of pro-
longed complete remission, but still remained higher compared to healthy individuals [26].
Dimtsas et al. evaluated the expression pattern of VEGF-A and VEGF receptor-1 and -2
(VEGFR-1 and VEGFR-2) in cHL and NLPHL and found that they were expressed in the
HRS and lymphocytic and histiocytic cells [27].

4. Angiogenesis and Microvascular Density in Non-Hodgkin’s Lymphomas

B-cell lymphomas, including diffuse large B-cell lymphomas (DLBCLs), follicular
lymphomas (FLs), extranodal marginal zone lymphomas, chronic lymphocytic leukemia
(CLL), and mantle cell lymphomas (MCLs), represent 88% of all non-Hodgkin’s lymphomas
(NHLs), while T and natural killer (NK) cell lymphomas 12%. T-cell lymphomas are more
aggressive than B-cell lymphomas [24].

In Burkitt’s lymphoma and peripheral T-cell lymphoma (PTCL), microvascular density
tends to be higher, while it tends to have intermediate values in DLBCL, and is lower
FL [25]. In DLBCL, an increased vascular density (determined by the vascular maturation
index, calculated as the ratio of LH39/CD34+ to all CD34+ vessels) has been demonstrated
compared to that in FL [28]. Ultrastructurally, the stroma of B cell-NHLs contains immature
vessels. These capillaries are made up of two endothelial cells that are parallel to one another
and have thicker cytoplasm, creating a lumen that resembles a slit [25]. The distinguishing
feature of follicular intermediate- and low-grade B-cell NHLs is the continuous basement
membrane enclosing differentiated fenestrated capillaries. The blood vessels lumen in
low-grade B-cell NHLs can develop in two different ways: either by curving the endothelial
cell body or, more frequently, by the fusion of intracellular vacuoles in undifferentiated
endothelial cells. High-grade B-cell NHLs, on the other hand, frequently have a distinct
pattern of blood vessel growth that is defined by the creation of a slit-like lumen through
neo-angiogenesis [27]. There is no known relationship between the microvascular density
and the histologic subtype of NHLs [28].

Other studies on NHLs and DLBCL have found a correlation [29,30] or no correlation
between microvascular density and VEGF expression [31–33]. Gratzinger et al. reported
that the average microvascular densities significantly correlates with the intensity of VEGF
staining [29]. Studies have shown that in both cutaneous T-cell and B-cell lymphomas,
the microvascular density is higher compared to skin with a benign cutaneous lymphoid
infiltrate [34–36]. Studies have shown that in both cutaneous T-cell and B-cell lymphomas,
the microvascular density is higher compared to the skin with a benign cutaneous lymphoid
infiltrate [37,38]. According to research, aggressive T cell lymphomas exhibit high levels
of expression of VEGF-A compared to indolent B cell lymphomas [39]. This suggests
that VEGF-A may play a role in the progression and aggressiveness of certain types of
lymphoma. It is worth noting that while a minority of indolent follicular lymphomas
(FLs) do show variable expressions of VEGF-A, it is not a consistent feature across all
indolent B cell lymphomas [31,40]. VEGFRs expression levels are correlated with the level
of VEGF expression in DLBCL [29]. CLL also expresses VEGFRs [41]. VEGF prevents
apoptosis and increases the phosphorylation of VEGFRs. Immunocytochemical methods
demonstrated the expression of VEGFRs, suggesting that VEGF transduction pathway is
active in CLL [41].
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HIF-1 and -2 and VEGF have a lower expression in indolent compared to aggressive
lymphomas [41]. Indolent lymphomas transforming into aggressive lymphoma, express
VEGF-A [42]. Angiogenesis is also correlated with mast cell density in B-NHL, according
to the capacity of mast cells to release angiogenic factors [43].

5. Vasculogenic Mimicry and IMG in Lymphomas

Crivellato et al. demonstrated that in B-cell NHLs at the ultrastructural level, tu-
mor cells are closely intermingled with endothelial cells and that this relationship can
be recognized in the early stages of vessel formation, as an expression of vasculogenic
mimicry [43]. Lymphoid tumor cells are indeed closely intermingled with vacuolated
endothelial cells, and this relationship can be recognized in the early stages of vessel forma-
tion when immature endothelial cells have not yet formed a vascular lumen. Moreover, the
tumor cells appeared to be completely enveloped by the cytoplasmic expansions of one or
more endothelial cells, while vascular spaces were occasionally lined by lymphoid tumor
cells. Moreover, Crivellato et al. showed that both low- and high-grade B-NHLs develop
transluminal bridges in larger vessels, causing the parent vessel to split into two or more
sections, suggesting that an intussusceptive modality of vascular growth also takes place in
B-NHLs. This vascular pattern was more frequent in the center than on the margins of the
lymphomas [43].

Using immunocytochemistry and confocal laser imaging, more proof of vasculogenic
mimicry has been found in primary diffuse central nerve system lymphomas (PCNSL).
Studies have demonstrated that a variety of cells, including CD20+ tumor cells, factor CD31+

endothelial cells, aquaporin-4 (AQP4)+ tumor cells, CD31+ endothelial cells, and CD20+

and AQP4+ tumor cells, engage in vessel formation [44]. PCNS B-cell lymphoma tumor
cells show positivity with an anti-CD20 antibody. Blood–brain barrier stability and activity
are associated with AQP4 expression, and this expression shifts in neurological conditions
that disrupt the BBB. Peritumoral edema is linked with AQP4 expression, and AQP4 is
significantly increased and redistributed over the borders of tumor cells in glioblastoma.

In 2003, Passalidou et al. showed that microvascular density was significantly greater
in the paracortex than in the follicles in reactive lymph nodes and in FL. Interestingly, both
reactive and neoplastic follicles did not significantly differ in microvascular density. In
addition, the paracortex of reactive nodes showed higher microvascular density compared
to FL and DLFL paracortex, demonstrating that tumor-induced angiogenesis is less effective
than normal angiogenesis in responsive nodes [26]. Taken together, these findings suggest
that vasculogenic mimicry and alternative modes of vascularization may play a significant
role in the progression and survival of lymphomas and may contribute to the development
of new therapeutic strategies targeting tumor angiogenesis.

6. Prognostic and Therapeutic Implications of Angiogenesis in Lymphomas and
Alternative Mode of Vascular Growth as a Mechanism of Resistance to
Anti-Angiogenic Therapies

Due to the variability of illnesses, various classifications, and research techniques, the
prognostic and predictive significance of microvascular density and angiogenic variables in
lymphomas is still debatable (immunohistochemistry, serum levels of angiogenic markers,
mRNA extraction). Estimating microvascular density and VEGF are important for the
development of NHL. Numerous investigations have investigated the connection between
microvascular density, VEGF expression, and NHL prognosis; however, these studies
have produced contradictory findings. Chemo resistant DLBCL and those with chemo
sensitive lymphomas have different patterns of microvascular densities [41]. Progression-
free (PFS) and overall survival (OS) are higher in FL patients treated with chemotherapy
in conjunction with anti-angiogenic interferon-alpha2b, when the microvascular density
is high before the treatment [40]. However, there was no association between elevated
microvascular density and VEGF expression in individuals with DBLC after anthracycline
treatment [45]. High serum VEGF levels before treatment have been proven to be prognostic
indicators for survival in NHL [46]. However, it has been found that the pre-treatment



Cancers 2023, 15, 3262 7 of 10

serum level of VEGF is negatively correlated with both OS rate and disease-free survival in
T and B cell lymphomas [47]. High serum VEGF levels have also been linked to unfavorable
outcomes in DLBCL patients [48].

Furthermore, FGFR-1 expression correlates with lower frequencies of full remission in
NHL patients, whereas FGF-2 expression is related with poor OS and PFS [49]. Moreover,
Additionally, blood FGF-2 levels did not change following chemotherapy, nor was a connec-
tion established between microvascular density and the histological grade or prognosis [49].
High levels of FGF-2 before therapy have been found to independently predict survival,
irrespective of other risk factors [46]. Soluble levels of VEGF, FGF-2, and PDGF-β declined
after radiotherapy in NHL patients [50]. Blocking the VEGF-VEGFR pathway with neutral-
izing antibodies or tyrosine kinase inhibitors reduced p-STAT-3 levels and induce apoptosis
in CLL [51]. High expression of both VEGF and VEGFR-1 in DBLC patients has been linked
to increased OS and PFS following anthracycline therapy [45]. However, higher tissue
expression of VEGF has been associated with unfavorable outcomes [52]. When compared
to reactive lymph nodes, VEGF-A has been discovered to be overexpressed in tumor and
endothelial cells in angioimmunoblastic T-cell lymphoma, and this overexpression is linked
to a short survival time [53]. Increased VEGF expression is linked to aggressive DLBCL
and subgroups of DLBCL with poor prognosis, as well as the transition from indolent B
cell lymphoma [54]. VEGF expression in PCNSLs correlates with microvascular density
and is linked to longer survival and changes to the blood–brain barrier [55].

An adaptive response to the conventional use of antitumor and antiangiogenic drugs
to reestablish the normal characteristics of the vasculature, improving drug delivery and
treatment efficacy, is represented by a transition from angiogenesis to IMG [56]. Sprouting
angiogenesis is common in untreated tumors, but IMG is common following short-term
therapy, restoring a vasculature with a modest rate of endothelial proliferation. A major
path of acquired resistance to anti-angiogenic therapy is non-angiogenic growth. Using
the existing vasculature and increasing the fraction of co-opted vessels, tumor cells may
be able to resist anti-VEGF treatments [57]. One way of acquiring resistance to anti-VEGF
treatments is vascular co-option [58–60].

7. Conclusions and Future Directions

The last literature evidence has clearly demonstrated that even if angiogenesis is a
hallmark of cancer progression, an alternative mode of vascularization of tumor growth
occurs, including IMG, vascular co-option, and vasculogenic mimicry, and in this context,
tumors may have areas in which classic tumor angiogenesis occurs and other ones in which
alternative vascularization takes place.

The advances in cancer biology due to the discovery of non-angiogenic growth have,
therefore, the potential to lead to further steps toward more effective cancer treatments. In
this context, a potential new therapeutic strategy when an angiogenic tumor treated with
anti-angiogenic molecule “escape” by becoming non-angiogenic and not responding to
anti-angiogenic treatment might be to combine anti-angiogenic chemicals with the blocking
of vascular co-option.
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