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Simple Summary: Pancreatic cancer is a highly aggressive disease associated with poor clinical
outcomes. It is the seventh leading cause of cancer-related death worldwide. Due to the lack of
obvious signs and symptoms until advanced disease, establishing an early diagnosis is often difficult.
EUS is the imaging modality of choice to establish a diagnosis of pancreatic cancer. However,
over the years, EUS has evolved to have therapeutic applications in the management of pancreatic
cancer. EUS-guided fine needle injection of anti-tumoral agents, EUS-guided radiotherapy, and
EUS-guided ablation techniques have become vital tools for endoscopic oncologists, especially in the
management of locally advanced pancreatic cancer. These EUS-guided techniques offer high efficacy
and demonstrate an excellent safety profile. However, they have not yet become routine practice due
to the lack of long-term efficacy outcomes. Hence, additional studies are needed to investigate the
long-term clinical outcomes and establish standardized procedural protocols for these techniques.

Abstract: Pancreatic cancer is a highly lethal disease with an aggressive clinical course. Patients with
pancreatic cancer are usually asymptomatic until significant progression of their disease. Additionally,
there are no effective screening guidelines for pancreatic cancer in the general population. This leads
to a delay in diagnosis and treatment, resulting in poor clinical outcomes and low survival rates.
Endoscopic Ultrasound (EUS) is an indispensable tool for the diagnosis and staging of pancreatic
cancer. In the modern era, with exponential advancements in technology and device innovation, EUS
is also being increasingly used in a variety of therapeutic interventions. In the context of pancreatic
cancer where therapies are limited due to the advanced stage of the disease at diagnosis, EUS-guided
interventions offer new and innovative options. Moreover, due to their minimally invasive nature
and ability to provide real-time images for tumor localization and therapy, they are associated with
fewer complication rates compared to conventional open and laparoscopic approaches. In this article,
we detail the most current and important therapeutic applications of EUS for pancreatic cancer,
namely EUS-guided Fine Needle Injections, EUS-guided Radiotherapy, and EUS-guided Ablations.

Cancers 2023, 15, 3235. https://doi.org/10.3390/cancers15123235 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15123235
https://doi.org/10.3390/cancers15123235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8544-9039
https://orcid.org/0000-0002-2661-6693
https://orcid.org/0009-0002-2512-116X
https://orcid.org/0000-0002-4921-8794
https://doi.org/10.3390/cancers15123235
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15123235?type=check_update&version=2


Cancers 2023, 15, 3235 2 of 17

Furthermore, we also discuss the feasibility and safety profile of each intervention in patients with
pancreatic cancer to provide gastrointestinal medical oncologists, radiation and surgical oncologists,
and therapeutic endoscopists with valuable information to facilitate patient discussions and aid in
the complex decision-making process.

Keywords: endoscopic ultrasound; pancreatic cancer; treatment; radiotherapy; ablation

1. Introduction

Pancreatic cancer has been identified as the 12th most common cancer and the seventh
leading cause of cancer-related mortality worldwide [1]. Pancreatic ductal adenocarcinoma
(PDAC) is the most common subtype of pancreatic cancer, while other slow-growing
pancreatic cancers include neuroendocrine tumors and pancreatic exocrine cancers [2]. The
median age at diagnosis of pancreatic cancer is 70 years, but it is rarely seen in individuals
below the age of 55 years [3]. Risk factors implicated in the development of pancreatic
cancer include family history, genetic syndromes, smoking, chronic pancreatitis, increasing
age, male sex, obesity, diabetes mellites, a diet high in fats and meats, African American
race, and occupational exposures, among others [2,4]. Despite significant advancements in
our knowledge and understanding of pancreatic cancer, it continues to be a lethal disease
with a highly aggressive clinical course [5].

Most patients with early-stage pancreatic cancer lack obvious clinical signs and symp-
toms [6]. However, symptoms become apparent as the disease advances and starts to
invade local tissues or metastasizes to distant organs [4]. Typical presenting symptoms
of pancreatic cancer include abdominal or mid-back pain, obstructive jaundice, loss of
appetite, maldigestion, unintentional weight loss, and cachexia [7]. Occasionally, complete
pancreatic duct obstruction may also lead to recurrent bouts of acute pancreatitis [4,7].
With more advanced disease, patients may develop gastric outlet obstruction and venous
thromboembolism (4). Traditional cross-sectional imaging techniques such as computer
tomography (CT) and magnetic resonance imaging (MRI) may not be able to detect small or
pre-malignant pancreatic lesions [8]. Therefore, an early diagnosis is often difficult to estab-
lish. Hence, these patients frequently present with advanced-stage disease or widespread
metastasis leading to poor clinical outcomes and high mortality rates [6,9,10].

Endoscopic Ultrasound (EUS) is the imaging modality of choice for pancreatic can-
cer [11]. It is preferred over conventional CT and MRI due to a higher diagnostic yield
and negative predictive value [12]. EUS may also be able to detect small pancreatic le-
sions which are often missed in cross-sectional imagining. Once the lesion is identified,
an EUS-guided fine-needle biopsy (FNB) can be performed to confirm the diagnosis [13].
EUS-FNB has a specificity and sensitivity greater than 90% in the detection of pancreatic
cancers [14,15]. Furthermore, a recent combination of EUS with artificial intelligence (AI)
assisted models may also help in the early detection of pancreatic cancers and differentiate
it from chronic and autoimmune pancreatitis with a high degree of accuracy [6,16–18].
However, despite its many advantages, EUS is not always available due to the technical
complexity and the operator-dependent nature of the procedure, a steep learning curve for
therapeutic endoscopists, and hospital limitations such as the need for specific equipment,
specialized training of ancillary staff, and hospital costs [6,19].

The treatment of pancreatic cancer is highly dependent and guided by the stage at
diagnosis [20]. In the early localized stage of the disease, surgical resection with adjuvant
chemotherapy is the standard of care [21,22]. Recently there has been a shift towards
a neoadjuvant approach with the hopes of reducing the risk of recurrence. In patients
with “locally advanced” (>180-degree superior mesenteric artery or celiac artery involve-
ment prohibiting resection) and late metastasized disease, the focus shifts to palliative
chemotherapy, radiation therapy, and symptomatic management [23,24]. With the evo-
lution of therapeutic endoscopy, EUS has become an integral part of pancreatic cancer
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management. Although the role of EUS in the diagnosis and staging of pancreatic cancer is
well known, its utilization for the treatment of pancreatic cancer is infrequently discussed
outside the realm of therapeutic endoscopy [24,25]. Hence, in this narrative review, we pro-
vide a detailed overview of the areas of utilization of EUS in the management of pancreatic
cancer.

2. Discussion

Minimally invasive therapeutic endoscopic procedures have revolutionized the diag-
nosis and management of pancreatic cancers [6,26]. Compared to conventional surgical
interventions, their minimally invasive nature, lower risk of complications, and significant
improvement in the patient’s quality of life make them the preferred intervention in a select
subgroup of patients [27]. The major applications of EUS in the management of pancreatic
cancer are discussed below.

2.1. EUS-Guided Fine Needle Injections of Anti-Tumor Agents

Although pancreatic cancers have a highly aggressive clinical course, exponentially
increasing knowledge about tumor characteristics and microenvironments has led to sig-
nificant advancements in medical therapy. However, an immune-suppressive microenvi-
ronment, the pathological hallmark of pancreatic cancer, hinders the efficacy of traditional
chemotherapeutic agents and radiotherapy. This promotes tumor growth and eventually
distant metastasis. Additionally, chemotherapy and radiation are associated with numerous
systemic side effects and potential complications, thereby limiting utilization in all pan-
creatic cancer patients. As many patients may have locally advanced disease, EUS-guided
fine needle injection (EUS-FNI) serves as a vital tool in the management of these complex
patients. Using EUS-FNI, therapeutic endoscopists can easily gain direct focal access to the
tumor within the pancreas or surrounding tissue, thereby minimizing systemic side effects
and complications that are associated with anti-tumor agents.

2.1.1. Cytoimplant

In current literature, numerous studies have investigated the combination of EUS-
FNI with different anti-tumor therapeutic agents. In 2000, the Phase I clinical trial by
Chang et al. evaluated the efficacy and safety of cytoimplant (allogenic mixed lymphocyte
culture) delivered via EUS-FNI in eight patients with advanced unresectable PDAC [28].
The cytoimplant induces the release of cytokines which activate various effector immune
mechanisms leading to PDAC regression [29]. After therapy, the authors noted a partial
response in two patients and a minor response in one patient with a median survival time
of 13.2 months (28). There were no procedure-related complications [28]. However, in
the last decade, there have been no other active clinical trials for cytoimplants despite
somewhat promising results [29].

2.1.2. Dendritic Cell-Based Immunotherapy

The combination of Dendritic Cell (DC)-based immunotherapy and EUS-FNI has also
yielded positive results. DCs, one of the most potent antigen-presenting cells, works by
activating T-cells and Natural Killer (NK) cells to directly destroy the pancreatic cancer
tumor cells [30]. In a pilot study by Irisawa et al., EUS-FNI was performed to directly inject
immature DCs intratumorally in seven patients with advanced PDAC who had previously
failed chemotherapy with gemcitabine [31]. The authors noted that the intratumor injection
via EUS-FNI was highly safe and effective with no clinical toxicity or intraprocedural
complications [31]. Additionally, despite the fact that these patients had previously failed
gemcitabine therapy, there was some clinical response with a median survival time of
9.9 months [31]. A later study by Hirooka et al. in 2009 utilized a combination of intravenous
gemcitabine, EUS-FNI of OK432-pulsed DCs intratumorally, and subsequent intravenous
lymphokine-activated killer cell infusions at 2-week intervals in five patients with locally
advanced pancreatic cancer unamenable to surgical resection [32]. No treatment-related
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and intraprocedural adverse events were observed by the authors [32]. Of the five patients,
three had an effective response to treatment with one partial remission and two with stable
disease for more than 6 months [32]. Based on this background, Hirooka et al. conducted
another Phase I trial from 2007–2015 to study the efficacy and safety of combined EUS-
guided intratumoral injection of zoledronate-pulsed DCs (Zol-DCs), gemcitabine and αβT
cells in 15 patients with locally advanced PDAC [33]. The authors reported that all patients
completed the treatment, of which, seven had stable disease and most showed a long-
term clinical response with a median overall survival time of 15 months [33]. There were
no procedure-related adverse events [33]. In recent years, a novel approach of EUS-FNI
delivered DC-based immunotherapy (neoadjuvant therapy) prior to surgical intervention
for pancreatic cancer has also been studied [34]. Preoperatively, Endo et al. enrolled
nine patients in the trial group that received EUS-FNI of OK432-pulsed immature DCs,
while 15 patients in the control group did not [34]. Overall, the authors reported no
severe systemic toxicities and intraprocedural complications of EUS-FNI [34]. Furthermore,
two patients who received immature DCs, one of whom had stage IV pancreatic cancer
with distant nodal metastasis, survived more than 5 years without additional adjuvant
therapy [34]. Ultimately, based on the results, the authors concluded that preoperative
EUS-FNI was feasible and safe as neoadjuvant therapy prior to surgical intervention in
patients with pancreatic cancer [34].

2.1.3. Oncolytic Viruses

The utilization of intratumor EUS-FNI-delivered oncolytic viruses (adenovirus, her-
pesvirus, and reovirus) has gained traction in recent years for pancreatic cancers [35].
Oncolytic viruses penetrate the tumor microenvironment and enter the tumor cells [35,36].
Thorough multifactorial mechanisms such as rapid uninhibited viral replication, produc-
tion of pro-cytotoxic proteins, and activation of anti-tumor immunity, oncolytic viruses
cause cell lysis and tumor destruction [36,37]. A Phase I/II clinical trial was conducted to
assess the efficacy and safety of ONYX-015 (E1B-55kD gene-deleted replication-selective
adenovirus) delivered intratumorally in eight sessions via EUS-FNI in 21 patients with
unresectable PDAC [38]. Intravenous gemcitabine was also administered in combination
with ONYX-015 during the last four sessions in these patients [38]. The authors observed
that two patients each had partial regression and minor response to treatment, while six had
stable disease [38]. The median survival time was 7.5 months [38]. Due to treatment toxic-
ity or progression of pancreatic cancer, 11 patients had to discontinue the treatment [38].
Sepsis was noted in two patients before prophylactic antibiotics could be administered [38].
From a procedural standpoint, two patients developed duodenal perforation; however,
when the EUS approach was changed from transduodenal to transgastric, no perforations
occurred [38]. The authors concluded that transgastric ONYX-015 injection intratumorally
via EUS with or without gemcitabine was relatively safe and feasible for the management of
patients with unresectable PDAC [38]. Another Phase I clinical trial investigated the safety
and effectiveness of EUS-FNI delivered HF10, a mutated oncolytic virus derived from
herpes simplex virus-1, in combination with erlotinib and gemcitabine for 12 patients with
locally advanced unresectable PDAC [39]. Of the nine patients who completed treatment,
three were partial responders, four developed stable disease, and two had progressive
disease [39]. The overall median survival time was noted to be 15.5 months [39]. Although
one patient developed perforative peritonitis following duodenal stenosis, this was unre-
lated to the utilization of EUS-FNI [39]. Most recently in 2020, a Phase I clinical trial by
Lee et al. assessed the utilization of intratumoral EUS-FNI of a combination therapy of
Ad5-DS (adenovirus-mediated double-suicide gene therapy), oral 5-fluorocytosine, valgan-
ciclovir, and standard dose of intravenous gemcitabine in 11 patients with locally advanced
PDAC [40]. As the study progressed, only nine patients were able to complete the treatment
and two withdrew consent [40]. At 12 weeks, eight patients had stable disease and one
had a partial response, but two patients experienced disease progression at 6.5 months [40].
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The median progression-free survival was 11.4 months [40]. No procedure-related adverse
events or complications were reported by the authors [40].

Tumor necrosis factor-α (TNF-α) has been identified as a potential prognostic and
therapeutic target in PDAC [41]. Hence, TNFeradeTM Biologic, a replication-deficit ade-
novirus vector carrying the human TNF gene, was developed for intratumoral delivery
under EUS guidance [42]. The vector consists of a radiation-inducible early growth factor-1
(EGR-1) gene promoter that plays a key role in the expression and secretion of TNF-α [43].
TNF-α has a synergistic effect with chemotherapy and radiotherapy resulting in tumor
lysis [42,44]. A Phase I/II non-randomized multi-centered study investigated the feasibility
and safety of TNFeradeTM in conjunction with systemic 5-Florouracil chemotherapy and
radiation therapy in 50 patients with locally advanced pancreatic cancer [45]. TNFeradeTM

was injected intratumorally by EUS-FNI in 27 patients, and a percutaneous approach under
CT or ultrasound (US) guidance was used in 23 patients [45]. The authors noted a complete
response in one patient, while three had a partial response, four had a minor response, and
12 patients had stable disease, with a median overall survival rate of 297 days [45]. Fur-
thermore, seven patients eventually had surgical resection due to tumor downstaging after
treatment, of whom six had negative surgical margins [45]. Although gastrointestinal (GI)
toxicities included GI bleeding, pancreatitis, and cholangitis, there were no intraprocedural
complications due to EUS-FNI [45]. Building on this study, Herman et al. conducted a Phase
III randomized multi-centered study that enrolled 304 patients with locally advanced PDAC
to compare the standard of care (SOC) plus intratumoral TNFeradeTM therapy with SOC
alone [46]. SOC consisted of radiotherapy with concurrent intravenous 5-Fluorouracil fol-
lowed by gemcitabine or gemcitabine plus erlotinib maintenance therapy [46]. TNFeradeTM

was injected intratumorally via EUS-FNI or CT/US-guided transabdominal percutaneous
approach [46]. The authors did not find a statistical difference in the median survival and
median progression-free survival between the two groups [46]. No intraprocedural or post-
procedural adverse events were reported [46]. However, a multivariate regression analysis
demonstrated that EUS-FNI of TNFeradeTM was a risk factor for lower progression-free
survival compared to CT/ultrasound-guided transabdominal percutaneous approach [46].
Ultimately, the study showed that TNFeradeTM therapy is safe for PDAC but may not have
any effect on overall survival rates [46]. Therefore, additional prospective multi-center
studies are needed to further validate the efficacy of TNFeradeTM for PDAC.

2.1.4. DNA Plasmids

The H-19 gene, mapped at the short arm of chromosome 11, is expressed in numerous
cancers, especially PDAC [47]. It regulates oncogenes, tumor suppressor genes, and
angiogenesis factors such as tumor necrosis factor-α, thereby playing an important role
in tumor proliferation, migration and distant metastasis [48,49]. DNA plasmids targeting
the overexpression of the genes under the control of H19 regulatory sequences have been
studied in the context of PDAC [47,50]. In 2012, a Phase 1/2a clinical trial that enrolled
nine patients with unresectable, locally advanced PDAC, aimed to study the efficacy and
safety of EUS and Computer Tomography (CT)-guided intratumoral injection of BC-819,
a DNA plasmid targeting the diphtheria-toxin gene on H-19 [50]. In this study, three
patients received CT-guided injections and six patients received EUS-FNI of BC-819 [50].
Of the nine patients that received treatment, three had a partial response and two were
downstaged and subsequently underwent surgical resection [50]. The authors reported no
adverse events from the procedure and concluded that BC-819 can be safely administered
intratumorally via EUS-FNI or CT-guided injection [50].

2.1.5. Chemotherapeutic Agents

Chemotherapeutic agents form a vital component of standard therapeutic regimens for
both early and late-stage pancreatic cancers [51]. However, they have not been thoroughly
investigated in the realm of EUS-guided intratumoral injections. In a porcine animal study,
Matthes et al. investigated the use of EUS-FNI for the delivery of OncGel (Macromed Inc.)
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to the porcine pancreas [52]. OncGel consists of Paclitaxel bound to a thermosensitive
gel carrier [52]. After EUS-FNI, OncGel provided sustained localized concentrations of
Paclitaxel in the porcine pancreas [52]. All animals tolerated the procedure well without
any intraprocedural complications [52]. Hence, the authors concluded that EUS-FNI of
OncGel may be a potential therapeutic option for unresectable PDAC in humans [52].

In 2017, a single-center retrospective study aimed to investigate the safety and fea-
sibility of intratumoral EUS-FNI of Gemcitabine in patients with locally advanced and
metastatic pancreatic cancer prior to the administration of conventional therapy [53]. A
total of 36 patients with pancreatic cancer (3 stage II, 20 Stage III, and 13 stage IV) were
enrolled in the study, all of whom received EUS-FNI of a median volume of 2.5 mL Gemc-
itabine in the concentration of 38 mg/mL [53]. The median overall survival time was noted
to be 10.4 months, and four patients (20%) were downstaged and underwent R0 surgical
resection [53]. No intraprocedural adverse events were reported by the authors reflecting
an excellent safety profile of EUS-FNI [53].

Additional novel agents are currently being created and tested in clinical trials. A
prime example of a very progressive novel agent is NanoPac® (clincaltrails.gov NCT030776
85/https://clinicaltrials.gov/ct2/show/NCT03077685; Accessed on 10 May 2023) [54].
NanoPac® is submicron particle Paclitaxel (SPP) which when injected intratumorally leads
to high therapeutic levels of Paclitaxel at the tumor site [55]. It causes tumor apoptosis
and necroptosis and also stimulates the innate and adaptive immune response for its
anti-neoplastic effect [55]. In an open-label, dose-escalating, Phase IIa clinical trial, patients
with locally advanced PDAC have been enrolled from four centers in sequential cohorts
of NanoPac® at a volume up to 20% of tumor volume (maximum injection volume of
5 mL/patient) [54]. Each cohort has three patients, starting at the lowest concentration and
sequentially titrating up [54]. The patients are followed for 1 year after NanoPac® adminis-
tration to evaluate overall survival, progression-free survival, tumor makers, response to
therapy, and safety of NanoPac® [54]. Results from a single center look promising [56]. Of
the 13 patients with locally advanced PDAC or unresectable tumors, six were downstaged
after NanoPac® therapy and were eligible for surgical resection [56]. Furthermore, five of
these six patients eventually underwent surgery, and four (80%) had R0 resection with two
having no viable residual tumor (Figure 1) [56].
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Overall, EUS-FNI of anti-tumor agents have highly variable clinical outcomes and may
not improve overall survival rates. However, most studies have reported the procedure
to be safe with minimal complications. Nonetheless, additional prospective, multi-center
studies, with prior described and other novel agents, are needed to further investigate
the efficacy of EUS-FNI of anti-tumor agents in patients with PDAC and to also develop
standardized procedural techniques for therapeutic application of the procedure in the
near future.

https://clinicaltrials.gov/ct2/show/NCT03077685
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2.2. EUS-Assisted Radiotherapy

Compared to other solid tumors, pancreatic cancer is known to have higher rates
of local recurrence and margin-positive resections [57]. Due to this high risk of recur-
rence, multimodal therapy consisting of a combination of surgical resection, chemotherapy,
and radiotherapy (RT), is usually considered optimal treatment, particularly for patients
with locally advanced disease [58]. External beam radiation therapy (EBRT), the most
common method of radiation delivery, was the mainstay RT for PDAC in the past [59].
However, movements due to respiration, peristalsis, and random movements within the
GI tract significantly limited the delivery of ablative doses of RT to the tumor site [58]. To
overcome this challenge and ensure optimal delivery of RT to the tumor site, newer thera-
peutic interventions such as EUS-guided brachytherapy and stereotactic body radiotherapy
(SBRt) after EUS-guided placement of a fiducial marker have emerged as viable treatment
options [60,61].

2.2.1. Brachytherapy

Brachytherapy involves the precise placement of radioactive seeds, microparticles or
liquids which emit radiation directly into or next to the tumor site [62]. It allows for the
direct local delivery of high doses of radiation to the tumor while minimizing damage to
adjacent normal tissue [63]. Although numerous CT/US-guided techniques are available
for brachytherapy, EUS-guided brachytherapy is the preferred method due to several
advantages [64]. With EUS, therapeutic endoscopists are able to visualize real-time images
for accurate positioning of the radioactive seeds [65]. Additionally, the puncture distance is
shorter while using EUS compared to CT/US-guided techniques, and there is milder injury
due to its minimally invasive nature [65].

In 2006, a pilot study enrolled 15 patients with unresectable PDAC (eight with stage
III disease and seven with stage IV disease) to study the clinical response, safety and
complications of EUS-guided interstitial brachytherapy without chemotherapy or external
RT [66]. After a median follow-up of 10.6 months, 20%, 27% and 33% patients had minimal,
partial, and stable disease, respectively [66]. Pain reduction was seen in 30% of the patients;
however, it only lasted for a limited period of time [66]. Local GI complications included
pancreatitis in three patients and pseudocyst formation in two patients, but there were
no procedural complications [66]. Another prospective pilot study aimed to evaluate the
efficacy and safety of EUS-guided interstitial brachytherapy with radioactive Iodine-125
seeds along with gemcitabine-based 5-fluorouracil chemotherapy in 22 patients with biopsy
confirmed advanced pancreatic cancer [67]. The median follow-up and survival time were
9.3 months and 9 months, respectively [67]. Partial remission was noted in 13.6% of the
cases, while 45.5% had stable disease [64]. There were no procedural complications [67].
However, PDAC ultimately progressed in 91% of the cases, all of whom died during the
2-year follow-up period [67]. The authors concluded that there was no survival benefit
despite EUS-guided brachytherapy being a safe and viable treatment option for patients
with advanced pancreatic cancer [67].

To further explore EUS-guided brachytherapy for locally advanced unresectable pan-
creatic cancer, an open-label, single-arm pilot study using phosphorus-32 (P-32) microparti-
cles in combination with gemcitabine and nab-paclitaxel was devised in 2019. It is based
on two previous phase II clinical trials which demonstrated an acceptable safety profile
and tolerability of P-32 in combination with gemcitabine for locally advanced pancreatic
cancer [68,69]. Although the study is currently ongoing, preliminary results from nine
patients at three US sites demonstrated that the EUS-guided placement of P-32 was highly
successful and technically feasible [68]. Furthermore, there were no procedure-related
adverse events [68].

2.2.2. Stereotactic Body Radiotherapy

SBRt is a relatively new innovative technique of precisely delivering high-dose external
beam RT to extracranial tumor targets in a small number of sessions (fractions) [70]. It has
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been well-established in the treatment of numerous solid tumors such as non-small cell
lung cancer, hepatic cancer, prostate cancer, and oligometastatic disease [71]. In recent years,
SBRt has also garnered immense interest in the management of PDAC due to its excellent
tolerability and shorter completion times (1-5 fractions), thereby taking less time away from
conventional chemotherapy [72]. Furthermore, numerous studies have found SRBt to be
comparable to EBRT in terms of survival outcomes and local tumor control [73–75].

Placement of a fiducial marker before SRBt helps with tumor localization and target
tracking which helps to increase the overall accuracy of SRBt [76]. Traditionally, fiducial
markers have been placed either intraoperatively or percutaneously under CT/US guidance.
However, due to the availability and ease of placement, EUS-guided fiducial marker
placement has gained popularity in recent years [61,77]. In 2006, a single-center prospective
study that enrolled 13 patients with mediastinal and intra-abdominal tumors reported
successful EUS-guided fiducial marker placement in seven (100%) patients with PDAC
without any procedural complications [78]. Later in 2010, five studies investigated the safety
and feasibility of EUS-guided fiducial marker placement in patients with PDAC [79–83]. A
total of 133 patients with PDAC were included in these studies [79–83]. Of these patients,
121 (91%) had successful EUS-guided fiducial marker placement without complications,
while 12 (9%) patients had a technical failure of the procedure [79–83]. Another single-
center prospective study by Choi et al. which enrolled 32 patients, of which 29 had PDAC
reported successful EUS-guided fiducial marker placement in all 29 (100%) patients [84].
However, one (3.4%) patient with PDAC developed mild pancreatitis requiring a prolonged
hospitalization for 2 days after the procedure [84]. Dávila Fajardo et al. enrolled 23 patients
with resectable, borderline resectable, or locally advanced PDAC for EUS-guided fiducial
marker placement [85]. In total, 63 fiducial markers were placed [85]. The authors noted
the technical difficulty in 11.3% (8 of 71 attempts) of fiducial marker placements and only
one (4.3%) patient had a periprocedural adverse event in the form of minor bleeding [85].
Six days after the procedure, one (4.3%) patient presented to the hospital with cholangitis
due to obstruction of the percutaneous transhepatic cholangiography (PTC) drain [85]. In
2016, Dhadham et al. conducted a large single-center retrospective study to evaluate the
technical feasibility and safety of EUS-guided fiducial marker placement in 514 patients
with numerous GI malignancies [86]. There were 188 patients with PDAC and a total of
510 EUS-guided fiducial markers were placed in these patients [86]. Technical success
was achieved in 187 (99.5%) patients [86]. Post-procedural minor bleeding that resolved
spontaneously was the only adverse event noted in seven (3.7%) patients with PDAC [86].
The authors concluded that EUS-guided fiducial marker placement should be adopted
more broadly due to its feasibility and excellent safety profile [86]. The most recent single-
center retrospective study by Tabernero et al. investigated the use of EUS-guided fiducial
marker placement in 47 patients with biopsy-proven advanced PDAC [87]. The technical
success rate of the procedure was noted to be 100% [87]. However, two (4.2%) patients
developed adverse events including mild pancreatitis and duodenal abscess [87]. These
findings aligned with previous studies that have demonstrated EUS-guided fiducial marker
placement to be a highly safe and feasible procedure in the hands of experienced therapeutic
endoscopists who are well-trained in EUS.

With recent technological advances in GI oncology, smaller and highly flexible fiducial
markers have been introduced to circumvent the technical issues associated with traditional
fiducial markers. Khashab et al. compared EUS-guided placement of the traditional
fiducials (5-mm length, 0.8-mm diameter) with the newer VisicoilTM fiducials (10-mm
length, 0.35-mm diameter) in 39 patients with locally advanced pancreatic cancer [88]. The
authors noted better visibility for traditional fiducials compared to VisicoilTM fiducials
without statistically significant differences in migration rates or technical difficulty [88].
Furthermore, no intra- or postprocedural complications were noted [88]. Hence, the
authors advocated for the use of traditional fiducials over VisicoilTM fiducials whenever
possible [88]. Nonetheless, this study was important as it paves the way for potential
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improvements in the designs of fiducial markers to increase technical success rates and
limit complications (Figure 2).

10 
Cancers 2023, 15, x FOR PEER REVIEW 10 of 19 

 

 
Figure 2. Metal stent in the bile duct with endoscopic ultrasound-guided VisicoilTM fiducials (white 
arrow) placement in a patient with pancreatic head cancer for stereotactic body radiotherapy. 

2.3. EUS-Guided Ablation  
2.3.1. Radiofrequency Ablation 

Radiofrequency ablation (RFA) is a minimally invasive therapeutic intervention used 
to ablate neoplastic tissue by thermal coagulative necrosis [89]. It utilizes high-frequency 
alternating currents to generate temperatures ranging from 60-100 degrees Celsius which 
damages neoplastic cells and the tumor microenvironment [90]. Additionally, RFA also 
generates an intense immune response consisting of inflammatory B and T cells that are 
specific to the ablated tissue [91,92]. This further helps with tumor lysis. Although RFA is 
possible via open, laparoscopic, or percutaneous approach, EUS-guided RFA (EUS-RFA) 
is more advantageous as it is minimally invasive, has high efficacy, offers excellent tumor 
visualization and localization, provides real-time imaging guidance, and demonstrates an 
excellent safety profile (Figure 3) [61,93,94]. 

Figure 2. Metal stent in the bile duct with endoscopic ultrasound-guided VisicoilTM fiducials (white
arrow) placement in a patient with pancreatic head cancer for stereotactic body radiotherapy.

2.3. EUS-Guided Ablation
2.3.1. Radiofrequency Ablation

Radiofrequency ablation (RFA) is a minimally invasive therapeutic intervention used
to ablate neoplastic tissue by thermal coagulative necrosis [89]. It utilizes high-frequency
alternating currents to generate temperatures ranging from 60–100 degrees Celsius which
damages neoplastic cells and the tumor microenvironment [90]. Additionally, RFA also
generates an intense immune response consisting of inflammatory B and T cells that are
specific to the ablated tissue [91,92]. This further helps with tumor lysis. Although RFA is
possible via open, laparoscopic, or percutaneous approach, EUS-guided RFA (EUS-RFA)
is more advantageous as it is minimally invasive, has high efficacy, offers excellent tumor
visualization and localization, provides real-time imaging guidance, and demonstrates an
excellent safety profile (Figure 3) [61,93,94].

Animal studies using porcine models established EUS-RFA to be a highly safe and
technically feasible procedure, thereby encouraging its use in humans [95–97]. In 2016, a
single-center prospective study by Song et al. investigated the technical feasibility and
safety of EUS-RFA in six patients with unresectable PDAC [98]. The procedure had a
100% technical success rate; however, two patients experienced mild abdominal pain
after the procedure [98]. There were no other major adverse events such as GI bleeding,
pancreatitis, duodenal injury, portal vein and/or splenic vein thrombosis, or procedure-
related mortality [98]. Another single-center retrospective study assessed the feasibility,
safety, and technical success of EUS-RFA in nine patients, of whom eight had locally
advanced PDAC and one had pancreatic head metastasis from renal cell carcinoma [99].
After excluding one patient from the analysis due to the presence of a large necrotic area
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within the pancreatic tumor, the authors noted that EUS-RFA was feasible in 100% of the
patients [99]. Three patients developed mild post-procedural abdominal pain which was
managed conservatively [99]. Furthermore, there were no early or late major adverse events
after the procedure, reflecting its excellent safety profile [99]. Most recently in 2018, Thosani
et al. conducted a multi-center retrospective study from four centers in the US consisting
of 21 patients that underwent EUS-RFA [100]. The most common lesion was PDAC seen
in 10 (47.6%) patients [100]. The technical success rate of the procedure was noted to be
100% and only one patient had post-procedural complications of worsening abdominal
pain [100]. The authors concluded that EUS-RFA is safe and technically feasible in the
management of PDAC [100].
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2.3.2. Hybrid Cryothermal Ablation

A novel hybrid cryotherm probe (CTP) that combines RFA and cryogenic cooling un-
der EUS guidance has also been tested for pancreatic cancer. Arcidiacono et al. investigated
the utilization, feasibility, and safety of EUS-guided CTP (EUS-CPT) in 22 patients with
locally advanced pancreatic cancer after neoadjuvant therapy [101]. The authors reported
that EUS-CPT could be applied successfully in only 16 (72.8%) patients [101]. It was not
possible in six (27.2%) patients due to the stiffness of the GI wall and the tumor [101].
No intraprocedural complications were noted, but three patients reported postprocedural
abdominal pain with hyperamylasemia responsive to analgesics [101]. One patient devel-
oped post-procedural minor GI bleeding in the duodenal lumen, which was treated with
endoscopic clip placement [101]. Late complications were related to tumor progression
rather than the procedure [101]. Due to the small sample size of this study, firm conclusions
could not be drawn, and the authors advocated for the need for additional studies to
validate the findings [101].

2.3.3. Microwave Ablation

Microwave ablation (MWA) technology is a new energy-based thermal ablation tech-
nique [102,103]. Microwaves are essentially electromagnetic waves with frequencies rang-
ing from 900–2450 MHz [104]. When these waves interact with tumor tissue, they agitate
water molecules and induce frictional heating of the tissue leading to cellular death via
coagulative necrosis [102,104]. Compared to other ablative techniques, particularly RFA,
MWA has several advantages such as the ability to reach higher intratumor temperatures,
larger tumor ablation volumes, deeper penetration into tissues, faster ablation times, excel-
lent maneuverability and optimal heating of tumors in close proximity of blood vessels, and
less procedural pain [102,105]. Furthermore, EUS guidance for MWA provides therapeutic
endoscopists with high-quality real-time imaging for precise therapy [106].
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Although studies have investigated the use of MWA for pancreatic neuroendocrine
tumors, its feasibility and safety in PDAC is still an area of active research. In animal
studies using porcine models, EUS-guided MWA (EUS-MWA) was found to be safe and
effective for pancreatic cancers without severe procedural complications [107]. Prospective
and retrospective single-center studies have demonstrated MWA via percutaneous and
open approaches to be feasible and safe for patients with locally advanced PDAC [108,109].
However, in the current literature, there are no large studies that have investigated the
utilization, feasibility, and safety of EUS-MWA for PDAC. Nonetheless, EUS-MWA seems
to be a promising prospect for the management of PDAC in the future.

2.3.4. Photodynamic Therapy

Photodynamic therapy (PDT) is an innovative method of selective tissue necrosis
using light, most frequently from lasers, after intravenous (IV) administration of a photo-
sensitizing agent [110]. Due to their unique characteristics, there is a greater accumulation
of photosensitizers in the neoplastic tissue compared to normal tissue [36]. The neoplastic
tissue is then exposed to a specific wavelength of light under EUS-guidance which activates
the drug to interact with oxygen, thereby generating singlet oxygen that causes localized
tissue necrosis [111]. As a photochemical reaction is used in the process instead of a ther-
mal one, the mechanical integrity of the surrounding normal tissue is maintained [112].
Furthermore, PDT uses non-ionizing radiation which mitigates the risk of radiation toxicity
seen during conventional RFA [113].

Animal studies using porcine models have demonstrated that PDT can be performed
successfully without severe complications [114,115]. In 2015, Choi et al. examined the
safety and feasibility of EUS-guided PDT (EUS-PDT) for local tumor control in patients
with locally advanced pancreaticobiliary malignancies [116]. Of the four patients enrolled
in the study, only one (25%) had pancreatic cancer situated at the tail of the pancreas [116].
EUS-PDT was administered successfully in all patients [116]. The disease remained stable
in all patients during a median follow-up of 5 months and there were no procedure-
related complications [116]. Based on this background, an open-label, Phase I, single
center, prospective study enrolled 12 patients with biopsy-proven treatment-naïve locally
advanced pancreatic cancer to assess the safety and feasibility of EUS-PDT [117]. These
patients received IV Porfimer Sodium (Concordia Laboratories Inc, St Michael, Barbados)
followed by EUS-PTD 2 days later [117]. A CT scan was performed 18 days after EUS-PTD
to assess pancreatic necrosis, and patients received IV Nab-paclitaxel and Gemcitabine
7 days after CT for 3–4 weeks [117]. The authors noted that there was an increase in the
percentage of tumor necrosis in six (50%) patients after EUS-PTD compared to baseline
imaging [117]. The median progression-free and overall survival were 2.6 months and
11.5 months, respectively [117]. Surgical resection was attempted in two patients, of whom
one had a complete response [117]. Although there were eight serious events during
the study, none were related to EUS-PTD [117]. Most recently in 2021, a pilot study by
Hanada et al. enrolled eight patients with nonresectable locally advanced pancreatic
cancer to assess the feasibility of EUS-guided verteporfin PDT [118]. Two days after
EUS-PTD using verteporfin, five (62.5%) patients demonstrated a zone of necrosis on CT
imaging, while three (37.5%) did not [118]. There were no intraprocedural or postprocedural
adverse events, and no changes in patient-reported outcomes [118]. The authors concluded
that EUS-guided verteporfin PDT is feasible for locally advanced pancreatic cancer, but
patient enrollment and data collection are still ongoing for a Phase II clinical trial [118,119].
However, based on results available from current studies, EUS-FDT seems to be a safe and
feasible salvage treatment option for patients with locally advanced pancreatic cancers who
are poor surgical candidates and/or had progression of the disease despite conventional
chemoradiotherapy. Table 1 summarizes EUS-guided ablation techniques for pancreatic
cancer.
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Table 1. Endoscopic Ultrasound-guided ablation for pancreatic cancer.

Study Year Study
Characteristics

Total Number of
Patients

Technical
Success (%)

Intraprocedural
Complications

Postprocedural
Complications

Radiofrequency Ablation

Song et al. [98] 2016 Single Center
Prospective

6 (unresectable
PDAC) 100% None 2 (mild abdominal

pain)

Crinò et al. [99] 2018 Single Center
Retrospective

9 (8 locally
advanced PDAC,
1 pancreatic head

metastasis)

100% None 3 (mild abdominal
pain)

Thosani et al. [100] 2018 Multi-center
Retrospective 21 (10 PDAC) 100% None 1 (abdominal pain)

Hybrid Cryothermal Ablation

Arcidiacono et al.
[101] 2012 Multi-center

Prospective
22 (locally

advanced PDAC) 72.8% None

4 (3 abdominal pain
with

hyperamylasemia,
1 minor GI
bleeding)

Photodynamic Therapy

Choi et al. [116] 2015 Single Center
Prospective

4 (1 pancreatic
cancer) 100% None None

DeWitt et al. [117] 2018
Open-label Phase I

Single Center
Prospective

12 (locally
advanced PDAC) 100% None None

Hanada et al.
[118] 2021 Pilot Study 8 (locally advanced

PDAC) 100% None None

PDAC: Pancreatic Ductal Adenocarcinoma. GI: Gastrointestinal.

3. Conclusions

Pancreatic cancer has an aggressive clinical course. Due to the lack of obvious clinical
signs and symptoms, an early diagnosis is often difficult to establish. Hence, patients
usually present with advanced disease at the time of diagnosis. EUS is the gold standard
imaging modality of choice for pancreatic cancer due to its superiority over traditional
cross-sectional imaging. Additionally, EUS-FNB can help establish a diagnosis of pancreatic
cancer with a >90% specificity and sensitivity. In recent years, EUS has evolved from a
purely diagnostic procedure to an important therapeutic intervention for the management
of pancreatic cancers. EUS-FNI of anti-tumor agents, EUS-guided RT, and EUS-guided
ablations have gained immense popularity due to their availability, feasibility, and excellent
safety profile. Additionally, there is an interest in seeing the effects of these local therapies to
propagate the body’s innate immune system and increase the response to immunotherapies
or novel systemic agents. However, they have not yet become routine practice due to the
lack of long-term efficacy outcomes. Given the knowledge gap that currently exists on
these new approaches, continuous research on therapeutic EUS is warranted to not only
investigate survival benefits but also establish standardized procedural protocols and help
with device innovation to maximize efficacy while minimizing procedural complications.
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