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Simple Summary: Renal cell carcinoma causes over 179,000 deaths per year worldwide, and
the Fuhrman grading (FG) system is crucial for diagnosing this deadly cancer. However, visual
histopathological assessment is influenced by inter-observer variability and irreproducibility. In this
study, we trained a deep learning model named SSL-CLAM using whole slide histopathology images
to objectively diagnose the FG status of patients with clear cell renal cell carcinoma (ccRCC). We
demonstrated that the SSL-CLAM model successfully diagnosed five FG states of ccRCC (Grade-0,
1, 2, 3, and 4) and validated the results in two independent cohorts. The attention heatmap of the
SSL-CLAM model visualized high attention regions, and we found that cell nuclear size, contour,
and cellular pleomorphism were critical morphologies that align with the existing FG criteria. In
summary, a human–machine collaborative diagnostic model may assist pathologists in making
diagnostic decisions, and further prospective clinical trials are needed to confirm its efficacy.

Abstract: (1) Background: The Fuhrman grading (FG) system is widely used in the management of
clear cell renal cell carcinoma (ccRCC). However, it is affected by observer variability and irrepro-
ducibility in clinical practice. We aimed to use a deep learning multi-class model called SSL-CLAM
to assist in diagnosing the FG status of ccRCC patients using digitized whole slide images (WSIs).
(2) Methods: We recruited 504 eligible ccRCC patients from The Cancer Genome Atlas (TCGA)
cohort and obtained 708 hematoxylin and eosin-stained WSIs for the development and internal
validation of the SSL-CLAM model. Additionally, we obtained 445 WSIs from 188 ccRCC eligible
patients in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort as an independent
external validation set. A human–machine fusion approach was used to validate the added value of
the SSL-CLAM model for pathologists. (3) Results: The SSL-CLAM model successfully diagnosed
the five FG statuses (Grade-0, 1, 2, 3, and 4) of ccRCC, and achieved AUCs of 0.917 and 0.887 on
the internal and external validation sets, respectively, outperforming a junior pathologist. For the
normal/tumor classification (Grade-0, Grade-1/2/3/4) task, the SSL-CLAM model yielded AUCs
close to 1 on both the internal and external validation sets. The SSL-CLAM model achieved a better
performance for the two-tiered FG (Grade-0, Grade-1/2, and Grade-3/4) task, with AUCs of 0.936
and 0.915 on the internal and external validation sets, respectively. The human–machine diagnostic
performance was superior to that of the SSL-CLAM model, showing promising prospects. In addi-
tion, the high-attention regions of the SSL-CLAM model showed that with an increasing FG status,
the cell nuclei in the tumor region become larger, with irregular contours and increased cellular
pleomorphism. (4) Conclusions: Our findings support the feasibility of using deep learning and
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human–machine fusion methods for FG classification on WSIs from ccRCC patients, which may assist
pathologists in making diagnostic decisions.

Keywords: clear cell renal cell carcinoma; tumor grading; deep learning; whole slide image;
human–machine fusion

1. Introduction

Renal cell carcinoma (RCC) is the most common renal tumor, affecting approximately
4.4 individuals per 100,000 people globally [1,2]. According to The International Agency
for Research on Cancer, there were 431,288 new cases and 179,368 deaths in 2020 [3]. The
most common histological subtype of RCC is clear cell RCC (ccRCC), which accounts
for 90% of cases and has a poor prognosis [4]. The Fuhrman grading (FG) system and
tumor–node–metastasis (TNM) staging system are important clinical evidence for assessing
the malignancy and predicting the prognosis of ccRCC [5,6]. FG is based on the evaluation
of nuclear features, including nuclear size, shape, and prominence of nucleoli [7]. Based on
these evaluations, ccRCC is classified into one of four different grades (Grade-1, 2, 3, or 4).
Although the International Society of Urological Pathology has introduced a new ccRCC
grading system, which has been incorporated into the renal tumor classification system
by the World Health Organization, FG is still widely used in clinical management [8].
Generally, pathologists diagnose and grade RCC by examining histological images of the
tumor. However, this manual process is time consuming, and there is a risk of misdiagnosis
or missed diagnoses, with previously reported inter-observer variability [9,10]. Therefore,
there is an urgent need for a rapid, objective, and accurate cancer grading diagnostic system
to address the challenge.

Artificial intelligence technology has become one of the most promising fields in com-
putational pathology [11–14]. Multiple studies have shown that deep learning algorithms
can extract key features from hematoxylin and eosin (H&E)-stained histopathological im-
ages, enabling diagnosis and subtyping with comparable or better accuracy than expert
pathologists [15–19]. This evidence not only demonstrates the potential of deep learning to
improve traditional diagnosis and prediction, but also helps pathologists reduce repetitive
and tedious work, freeing up time to handle more complex tasks [20]. Hence, we assume
that deep learning can facilitate the grading diagnosis of ccRCC and improve traditional
diagnostic methods. However, most deep learning models rely heavily on manual pixel-
level annotations, which seriously hinders the development of artificial intelligence in
computational pathology. It is necessary to further use unsupervised or weakly supervised
models to improve clinical applicability while ensuring model performance.

Image-driven deep learning has the potential to improve the accuracy of visual di-
agnosis. In ccRCC patients, H&E-stained slides have some morphological features that
can be identified by pathologists, including tumor cell clusters and extensive lymphocyte
infiltration [21,22]. Pathologists can learn and utilize these known features to stage or grade
patients. In addition to these recognizable features, deep learning may extract more morpho-
logical features that pathologists are not yet aware of, leading to more accurate diagnoses.

In this study, we used a weakly supervised multi-class deep learning model [23] with a
self-supervised learning (SSL) feature extractor, named SSL-CLAM, to accurately diagnose
the FG status of ccRCC from H&E-stained whole slide images (WSIs). We validated the
robustness of diagnostic model in two independent cohorts and revealed the interpretability
of the model. Importantly, we further demonstrated a human–machine fusion strategy
that utilizes the SSL-CLAM model to assist pathologists in making diagnoses, which can
simultaneously improve the diagnostic performance of both parties.
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2. Materials and Methods
2.1. Patient Cohorts

In this study, we developed SSL-CLAM by retrospectively analyzing two independent
cohorts. The first cohort was The Cancer Genome Atlas (TCGA) dataset, which included
519 H&E-stained WSIs from 513 candidate ccRCC patients. After excluding cases with poor
pathological image quality, or missing FG information or important clinical information,
a total of 509 WSIs were included in the analysis. Additionally, we collected 199 H&E-
stained images of normal tissues for Grade-0. The second cohort was from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) dataset, consisting of 783 H&E-stained
WSIs from 222 candidate ccRCC patients. After excluding cases with poor pathological
image quality, or missing FG information or important clinical information, a total of
445 WSIs were included in the analysis, of which 307 were tumors and 138 were normal
tissues. Furthermore, we collected all available clinical and pathological information of the
patients in both cohorts and confirmed informed consent. The WSIs and clinico-pathological
information of the TCGA cohort can be downloaded directly from the NIH GDC data portal
of the TCGA-KIRC project, while those of the CPTAC cohort can be downloaded from the
CPTAC data portal. The recruitment pathway is illustrated in Figure 1.
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Figure 1. The recruitment pathway of this study. Available patients and whole slide images were
recruited from the TCGA and CPTAC cohorts. TCGA, The Cancer Genome Atlas; CPTAC, Clinical
Proteomic Tumor Analysis Consortium.

2.2. WSI Preprocessing

First, foreground and background segmentation were performed on all WSIs to iden-
tify the tissue regions (foreground). The binary mask of tissue regions was computed
by thresholding the saturation channel of the median blurred image to smooth edges,
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followed by morphological closing to fill small gaps and holes. After segmentation, patches
were extracted from the tissue regions of each WSI at 20× magnification, with a size of
256 × 256 pixels. Each patch and its corresponding information were stored in the hdf5 data
format. A pretrained ResNet-50 model based on SSL was used to extract 1024-dimensional
feature vectors from each patch, which were cropped after the third residual block.

2.3. Deep Learning Algorithm

This study utilized the clustering-constrained-attention multiple-instance learning
(CLAM) framework [23] for implementation. CLAM is a weakly supervised deep learning
method that employs an attention-based multiple-instance learning model to automatically
detect subregions of high diagnostic value, enabling accurate classification of the entire
WSI. It also incorporates instance-level clustering to restrict and refine the feature space.
CLAM employs an attention-based pooling function to aggregate patch-level features into
slide-level representations for classification. Additionally, the model identifies and ranks
all patches within the tissue region, assigning an attention score to each patch to indicate
its contribution or importance in the slide-level prediction.

Unlike conventional binary classification algorithms that focus on positive/negative
categorization, CLAM is designed to address multi-class problems. The CLAM model
incorporates N parallel attention branches, which collectively generate N distinct slide-level
predictions. Each prediction is derived from a distinct set of high-attention regions within
the WSI. The classification layer assesses the class-specific slide predictions to derive the
overall slide prediction probability.

Most previous works, including those using CLAM, have primarily concentrated
on using pretrained weights from the ImageNet dataset. However, recent research has
demonstrated that image feature extractors (encoders) can be pretrained via self-supervised
learning (SSL) [24]. This approach has shown improved performance compared to relying
on the ImageNet weights. Wang et al. [25] employed a clustering-guided contrastive SSL
algorithm to train a ResNet-50 model using a vast collection of 15 million pathology images
extracted from 32,000 WSIs sourced from the TCGA and PAIP datasets. Therefore, here,
we used the pretrained ResNet-50 with these weights as the feature extractor for CLAM,
named SSL-CLAM. In this study, SSL-CLAM was used to solve a five-classification task,
targeting the five grades of ccRCC: normal/non-cancerous (Grade-0), Grade-1, Grade-2,
Grade-3, and Grade-4. Specifically, when a WSI is input for prediction, SSL-CLAM will
output predicted probability values corresponding to the five different categories. The
probability values range from 0 to 1, and their sum is equal to 1. The TCGA dataset was
randomly divided into a training set and an internal validation set in a 4:1 ratio, and the
model was trained using a five-fold cross-validation strategy. The CPTAC dataset was used
for external evaluation of SSL-CLAM. The schematic workflow of this study is shown in
Figure 2.

2.4. Human–Machine Fusion

In order to further evaluate the performance of the SSL-CLAM model, we invited a
junior pathologist A undergoing training, and a chief expert uropathologist B, to jointly
diagnose 445 WSIs from the CPTAC cohort. They were blinded to the labels and clinico-
pathological information of these WSIs beforehand. First, they independently made di-
agnoses for each WSI relying on their own expertise, and repeated the review five times.
Subsequently, with the aid of heatmaps and slide-level diagnoses of SSL-CLAM, five
replicate diagnostics were performed. The results of each diagnosis were recorded and
compared with the performance of SSL-CLAM.
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Figure 2. Schematic workflow of this study. (A) Preprocessing of whole slide images. All whole slide
images have their backgrounds removed and divided into small patches (256 × 256 pixels) to fit
the convolutional neural network architecture. (B) Pretrained ResNet-50 based on self-supervised
learning for feature extraction. For multi-classification tasks, attention-based multi-instance learning
is applied. (C) Attention heatmap is used to explain deep learning model and improve diagnostic
performance with human–machine fusion mode.

2.5. Interpretability of the Model

To better understand the morphological features used by the deep learning model for
classification, we visualized interpretable heatmaps with normalized attention scores using
the attention module of SSL-CLAM. In these heatmaps, regions with high attention scores
are shown in red and contribute more to decisions made by the model, while regions with
low attention scores are shown in blue and contribute less to decisions made by the model.

2.6. Statistical Analysis

The classification performance of the SSL-CLAM model was evaluated using receiver
operating characteristic curves and area under the curve (AUC), as well as accuracy and
precision. For all AUC, accuracy, and precision calculations, we used the macro-average
evaluation method. Cohen’s kappa coefficient was calculated to evaluate the diagnostic con-
sistency between the SSL-CLAM model and pathologists/human–machine fusion methods.
McNemar’s test was performed to compare the diagnostic differences in accuracy between
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the SSL-CLAM model and pathologists/human–machine fusion methods. Differences
were considered significant when the p value from the two-tailed test was <0.05. Python
(version 3.8.13) and the deep learning platform PyTorch (version 1.10) were used for model
construction and data analysis.

3. Results
3.1. Patient Characteristics

We used 708 WSIs from 504 ccRCC patients in the TCGA cohort for the develop-
ment and internal validation of the SSL-CLAM model, including 199 Grade-0, 14 Grade-1,
218 Grade-2, 203 Grade-3, and 74 Grade-4 WSIs. Considering the limited sample size of
Grade-0, which may lead to a decrease in model performance, we adopted a data augmen-
tation strategy for Grade-1 and obtained 70 Grade-1 WSIs. Additionally, we used 445 WSIs
from 188 ccRCC patients in the CPTAC cohort for external validation of the SSL-CLAM
model, including 138 Grade-0, 28 Grade-1, 130 Grade-2, 114 Grade-3, and 35 Grade-4 WSIs.
Table 1 summarizes the demographic and clinico-pathological characteristics of the two
cohorts, and the detailed data distribution is shown in Supplementary Table S1.

Table 1. Clinico-pathological features of TCGA and CPTAC cohorts.

TCGA CPTAC

Number of patients 504 188
WSI format SVS SVS
Age (years) 60.57 (±12.20) 60.92 (±12.05)
Gender

Female 177 (35.12%) 64 (34.04%)
Male 327 (64.88%) 124 (65.96%)

pT stage
pT1 257 (50.99%) 58 (30.85%)
pT2 66 (13.10%) 14 (7.45%)
pT3 170 (33.73%) 41 (21.8%)
pT4 11 (2.18%) 3 (1.6%)
pTx 0 (0%) 72 (38.3%)

pN stage
pN0 230 (45.63%) 23 (12.23%)
pN1 14 (2.78%) 4 (2.13%)
pNx 260 (51.59%) 161 (85.64%)

pM stage
pM0 402 (79.76%) 33 (17.55%)
pM1 74 (14.68%) 3 (1.6%)
pMx 28 (5.56%) 152 (80.85%)

pTNM stage
Stage I 251 (49.81%) 84 (44.68%)
Stage II 54 (10.71%) 20 (10.64%)
Stage III 118 (23.41%) 47 (25.00%)
Stage IV 80 (15.87%) 21 (11.17%)
Missing 1 (0.20%) 16 (8.51%)

Fuhrman grade
G1 12 (2.38%) 13 (6.92%)
G2 216 (42.86%) 95 (50.53%)
G3 202 (40.08%) 60 (31.91%)
G4 74 (14.68%) 20 (10.64%)

Survival status
Alive 334 (66.27%) 145 (77.13%)
Dead 170 (33.73%) 27 (14.36%)
Not reported 0 (0%) 16 (8.51%)

Overall survival (years) 3.64 (± 2.67) 2.43 (± 1.83)
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3.2. Diagnostic Performance of the SSL-CLAM Model

Firstly, in the five-class classification task (Grade-0, 1, 2, 3, 4), the SSL-CLAM model
yielded an average accuracy and AUC of 0.818 (95% confidence interval [CI], 0.805–0.831)
and 0.947 (95% CI, 0.938–0.956) on the training set, respectively. On the internal valida-
tion set, the SSL-CLAM model yielded an average accuracy and AUC of 0.776 (95% CI,
0.742–0.812) and 0.917 (95% CI, 0.905–0.928), respectively. Even on the external validation
set, the SSL-CLAM model demonstrated strong generalization ability, with an average ac-
curacy and AUC of 0.771 (95% CI, 0.739–0.803) and 0.887 (95% CI, 0.872–0.904), respectively.
Figure 3 shows the receiver operating characteristic curves and confusion matrices of the
highest-performing SSL-CLAM model. In the internal validation set, all 37 Grade-0 cases
were correctly predicted as Grade-0. Thirteen of the fifteen Grade-1 cases were correctly
predicted as Grade-1, but two were predicted as Grade-2. Two of the forty-seven Grade-2
cases were predicted as Grade-1, eight were predicted as Grade-3 and the other five were
predicted as Grade-4. Three of the thirty-eight Grade-3 cases were predicted as Grade-2,
and six were predicted as Grade-4. Of the 16 Grade-4 cases, only 11 were correctly pre-
dicted. The misdiagnoses included 5 cases predicted as Grade-3. Overall, 122 (79.9%) of
the 153 cases were correctly predicted in the internal validation set, and 352 (77.4%) of the
455 cases were correctly predicted in the external validation set.
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and (F) show the confusion matrices of the training set, internal validation set, and external validation
set, respectively.

In the task of binary classification (Grade-0, Grade-1/2/3/4), we obtained a robust
cancer diagnostic model using the SSL-CLAM model. The average accuracy and AUC on
the internal validation set were 0.997 (95% CI, 0.992–1.000) and 0.999 (95% CI, 0.999–1.000),
respectively, and on the external validation set they were 0.989 (95% CI, 0.986–0.992) and
0.991 (95% CI, 0.989–0.994), respectively (Table 2 and Figure 4A–F).
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sification task in the (A) training set, (B) internal validation set, and (C) external validation set.
(D,E) and (F) show the confusion matrices of normal/tumor classification task in the training set,
internal validation set, and external validation set, respectively. Receiver operating characteris-
tic curves of the SSL-CLAM model for two-tiered Fuhrman grading task in the (G) training set,
(H) internal validation set, and (I) external validation set. (J,K,L) show the confusion matrices of
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set, respectively.
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Table 2. Accuracy and AUC of the SSL-CLAM model.

a. Diagnostic Performance in Five-Class Fuhrman Grade (Grade-0, 1, 2, 3, 4)
Accuracy (95% CI) AUC (95% CI)

Training set 0.818 (0.805, 0.831) 0.947 (0.938, 0.956)
Internal validation set 0.776 (0.742, 0.812) 0.917 (0.905, 0.928)
External validation set 0.771 (0.739, 0.803) 0.887 (0.872, 0.904)

b. Diagnostic performance in normal/tumor classification (Grade-0, Grade-1/2/3/4)
Accuracy (95% CI) AUC (95% CI)

Internal validation set 0.997 (0.992, 1.000) 0.999 (0.999, 1.000)
External validation set 0.989 (0.986, 0.992) 0.991 (0.989, 0.994)

c. Diagnostic performance in two-tiered Fuhrman grading (Grade-0, Grade-1/2, Grade-3/4)
Accuracy (95% CI) AUC (95% CI)

Internal validation set 0.872 (0.845, 0.899) 0.936 (0.906, 0.962)
External validation set 0.838 (0.829, 0.847) 0.915 (0.907, 0.922)

Furthermore, we investigated the diagnostic performance of the SSL-CLAM model
on a simplified two-tiered FG system. The FG merged Grade-1 and Grade-2 as low-grade
tumors and Grade-3 and Grade-4 as high-grade tumors, simplifying the four-tiered grading
system into two tiers. The average accuracy and AUC using the internal validation set
were 0.872 (95% CI, 0.845–0.899) and 0.936 (95% CI, 0.906–0.962), respectively, and on the
external validation set they were 0.838 (95% CI, 0.829–0.847) and 0.915 (95% CI, 0.907–0.922),
respectively (Table 2 and Figure 4G–L).

In addition, we invited a junior pathologist A, who is undergoing training, and a chief
expert uropathologist B to jointly diagnose 445 WSIs from the CPTAC cohort. As shown
in Table 3, the accuracy of junior pathologist A was 0.737 (95% CI; 0.721–0.753), while
our grading diagnostic model SSL-CLAM outperformed A (p = 0.002, paired chi-square
test). The diagnostic accuracy of expert uropathologist B was 0.824 (95% CI; 0.808–0.839).
There was no significant difference between SSL-CLAM and expert B (p > 0.05, paired
chi-square test). The SSL-CLAM model achieved good interobserver agreement with expert
uropathologist B (kappa = 0.889) (Table 3).

Table 3. Comparisons of the SSL-CLAM model with human pathologists and human–machine fusion
in the external validation set.

Accuracy (95% CI) Precision (95% CI) p-Value * Kappa #

SSL-CLAM model 0.771 (0.739, 0.803) 0.786 (0.762, 0.811) - -
Junior Pathologist A 0.737 (0.721, 0.753) 0.695 (0.678, 0.712) 0.002 0.837
Expert Uropathologist B 0.824 (0.808, 0.839) 0.800 (0.779, 0.821) 0.336 0.889
Junior A—SSL-CLAM
fusion 0.787 (0.772, 0.801) 0.773 (0.758, 0.788) 0.902 0.904

Expert B—SSL-CLAM
fusion 0.856 (0.843, 0.867) 0.839 (0.819, 0.858) <0.001 0.906

* A paired chi-square test (McNemar’s test) was used to examine differences in accuracy between the SSL-CLAM
model and each uropathologist/human–machine fusion; # Inter-observer agreement between the SSL-CLAM
model and each uropathologist/human–machine fusion assessed by the Cohen kappa coefficient.

3.3. Human–Machine Fusion

To investigate whether the SSL-CLAM model could help pathologists in diagnosis
in clinical practice, we further employed a human–machine fusion strategy to test the
performance of two pathologists (A and B) with the assistance of the SSL-CLAM model.
The diagnostic fusion of SSL-CLAM with junior pathologist A and expert uropathologist B
achieved an average accuracy of 0.787 (95% CI; 0.772–0.801) and 0.856 (95% CI; 0.843–0.867),
respectively, which were superior to the use of SSL-CLAM alone (Table 3). Both pathologists
showed improved diagnostic performance with the assistance of the SSL-CLAM model.
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3.4. Attention-Based Interpretation Analysis

Next, we used the highest-performing model during the training process to conduct
attention-based visualization analysis, in order to reveal the black-box property of the deep
learning model and understand the morphological features that contribute the most to
the FG diagnosis. Figure 5 displays the attention heatmaps of the model for the four FG
statuses. Overall, the heatmaps showed a higher focus on dense and deeply stained tumor
cells, and lower focus on surrounding normal tissues (Figure 5). As the FG grade increased,
the size of the tumor cell nuclei that the model paid attention to became significantly
enlarged at the same magnification. In the Grade-1 tumor area, the tumor cell nuclei were
relatively uniform and regular, similar to normal cell nuclei. In the Grade-2 and Grade-3
tumor areas, the nuclei began to exhibit irregular contours. This phenomenon became more
pronounced in Grade-4, with more dysplastic cells appearing.
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4. Discussion

In this study, we used two independent cohorts to confirm that the deep learning
model SSL-CLAM can accurately diagnose the FG status in ccRCC H&E-stained WSIs with
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high performance. Specifically, SSL-CLAM outperformed a junior pathologist and achieved
good inter-observer agreement with an expert uropathologist. Importantly, our study
further demonstrated that a human–machine fusion strategy can improve the performance
of SSL-CLAM in diagnosing FG status, although further prospective clinical trials are
needed to confirm its effectiveness.

A recent study showed that a deep learning-based, fully automated classifier can
diagnose FG statuses with an accuracy of 90.09% [26]. However, their method requires
pathologists to manually annotate all billion pixels of the slides, which would severely
hinder its clinical applicability. More importantly, there was no comparison of diagnostic
performance between the deep learning model and pathologists. Whether a deep learning
model can provide additional value to current clinical pathologists in diagnosing FG status
is still unknown. Our study is the first to compare the performance of a deep learning
model with that of pathologists in the diagnosis of FG in ccRCC. The performance of the
SSL-CLAM model was significantly better than that of a junior pathologist and is expected
to exceed that of an expert pathologist. In the human–machine fusion, the diagnostic
performance of the human–machine fusion was better than that of SSL-CLAM, suggesting
that inexperienced junior pathologists can combine the diagnosis of SSL-CLAM with their
own diagnosis to achieve an overall expert-level diagnostic performance.

The most widely used predictive method in computational pathology is to patch
images from digitized WSIs to train a multi-instance learning model [27–29]. Lu et al. [23]
proposed the CLAM model based on a gated attention method, which aggregates patch-
level features and subsequently aggregates the information required for multi-classification
at the slide level, making it more suitable for diagnosing FG status. A significant advantage
of CLAM is that it uses an attention mechanism to aggregate patch-level instances into
slide-level predictions, generating interpretable heatmaps. In addition, training CLAM
only requires slide-level labels without the need for additional annotations, thereby im-
proving data utilization efficiency and reducing a significant amount of manual annotation.
Most importantly, we used ResNet-50 pretrained on SSL as the image feature extractor,
which has been demonstrated to outperform traditional pretrained methods based on
ImageNet [24,25].

The most widely used nuclear grading scheme in the world is the FG system; how-
ever, the inter-observer consistency for diagnosis using the traditional four-tiered FG is
moderate [30]. This is attributed to RCC being a heterogeneous tumor, typically composed
of cells of different grades rather than all cells being of the same grade [31]. It has been
shown that the simplified two-tiered FG (Grade-1 combined Grade-2, Grade-3 combined
Grade-4) performs as well as the traditional four-tiered FG. Using the simplified grading
scheme may be more advantageous for pathologists and clinicians [32,33]. From a clinical
practice perspective, pathologists do not need to distinguish between Grade-1 and Grade-2
tumors as their difference lies in the presence of nucleoli only visible at 400× magnifica-
tion. Similarly, the difference between Grade-3 and Grade-4 tumors lies in the presence of
bizarre multinucleated cells [32]. This relatively subjective definition may undermine the
reproducibility of FG. In this study, we also analyzed the two-tiered FG using SSL-CLAM.
The results showed that SSL-CLAM had a better diagnostic performance for the two-tiered
FG compared to the four-tiered FG. It appears that breaking down the FG system into a
lower grade (Grade-1 and Grade-2) group and higher grade (Grade-3 and Grade-4) group
may better match clinical use.

Deep learning models are often considered “black boxes”, as their working mech-
anisms are not transparent. To explain the diagnostic pattern of SSL-CLAM, we used
attention heatmaps to determine the diagnostic features used by SSL-CLAM. We observed
significant differences in the nuclei of tumor cells within the highly focused regions of the
model. Specifically, the nuclei of low-FG tumor cells exhibited uniformity, and unclear
and irregular contours, while the nuclei of high-FG tumor cells showed distinct irregular
contours and a higher presence of atypical cells. This diagnostic pattern is consistent with
the grading criteria proposed by Fuhrman et al. [34]: Grade-1 tumors are characterized by
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small nuclei (~10 µm) that are round, uniform, with indistinct or absent nucleoli; Grade-2
tumors have larger (~15 µm) nuclei with irregular contours and nucleoli visible at high mag-
nification (400×); Grade-3 tumors have even larger nuclei (~20 µm) with distinct irregular
contours and prominent nucleoli, visible even at low magnification (100×); Grade-4 tumors
exhibit similar features to Grade-3 tumors but also have bizarre, often multinucleated cells
and heavy chromatin clumping. Thus, an advantage of this study is that heatmaps were
created to aid in the visualization of the regions of interest, making it easier to understand
the basic principles underlying the decision-making process of SSL-CLAM.

Although SSL-CLAM has yielded promising results, our study does have some limi-
tations. First, further prospective clinical trials are needed to confirm the effectiveness of
SSL-CLAM and the human–machine fusion strategy. Second, the unbalanced number of
FGs in the TCGA cohort will affect the performance of SSL-CLAM. More available data
needs to be collected in the future to eliminate the negative impact of class imbalance.
Third, we observed that the fusion of the expert uropathologist with the SSL-CLAM model
significantly enhanced the accuracy of SSL-CLAM. Comparing the assistance provided to
pathologists by clinico-pathological information rather than relying solely on SSL-CLAM is
worth further exploration. Four, we observed the presence of artifacts and some interfering
factors in some slides that met the inclusion criteria in both cohorts. Although the attention
of SSL-CLAM is focused less on these areas according to the visualization, it is necessary to
establish a standardized procedure for pathological slide image creation to improve the
quality of images in the future.

5. Conclusions

We investigated the FG status of ccRCC diagnosed from H&E-stained WSIs using
SSL-CLAM. The attention heatmaps provide a visualization of high-attention areas at
the cellular level, allowing for the analysis of potential factors used in the pathological
diagnoses. In addition, the diagnostic performance of SSL-CLAM is apparently not as
reliable as that of an expert uropathologist but may be superior to that of inexperienced
pathologists; however, this remains to be determined. A human–machine fusion diagnostic
mode may help pathologists make diagnostic decisions, and further prospective clinical
trials are needed to confirm its effectiveness.
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