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Simple Summary: The liver function reserve of patients with hepatocellular carcinoma (HCC) is
heterogeneous. The preoperative accurate evaluation of liver function has a vital role in the prevention
of unfavorable postoperative complications such as post-hepatectomy liver failure. In this study,
unsupervised clustering analysis of radiomics features extracted from preoperative gadoxetic-acid-
enhanced MRIs was performed for liver function stratification on 276 HCC patients. Two distinct
subgroups were identified (i.e., subgroups 1 and 2). Subgroup 2 had impaired liver function as
presented by older age, more albumin–bilirubin grades 2 and 3, and a higher indocyanine green
retention rate than that of subgroup 1 (all p < 0.05). Compared with subgroup 1, subgroup 2 was
associated with a higher risk of postoperative liver failure, postoperative complications, and longer
hospital stays (all p < 0.05). Our findings indicate the potential for the use of radiomics features
based on preoperative gadoxetic-acid-enhanced MRI for noninvasive liver function assessment in
HCC patients.

Abstract: Objective: To identify subgroups of patients with hepatocellular carcinoma (HCC) with
different liver function reserves using an unsupervised machine-learning approach on the radiomics
features from preoperative gadoxetic-acid-enhanced MRIs and to evaluate their association with the
risk of post-hepatectomy liver failure (PHLF). Methods: Clinical data from 276 consecutive HCC
patients who underwent liver resections between January 2017 and March 2019 were retrospectively
collected. Radiomics features were extracted from the non-tumorous liver tissue at the gadoxetic-
acid-enhanced hepatobiliary phase MRI. The reproducible and non-redundant features were selected
for consensus clustering analysis to detect distinct subgroups. After that, clinical variables were
compared between the identified subgroups to evaluate the clustering efficacy. The liver function
reserve of the subgroups was compared and the correlations between the subgroups and PHLF, post-
operative complications, and length of hospital stay were evaluated. Results: A total of 107 radiomics
features were extracted and 37 were selected for unsupervised clustering analysis, which identified
two distinct subgroups (138 patients in each subgroup). Compared with subgroup 1, subgroup 2
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had significantly more patients with older age, albumin–bilirubin grades 2 and 3, a higher indocya-
nine green retention rate, and a lower indocyanine green plasma disappearance rate (all p < 0.05).
Subgroup 2 was also associated with a higher risk of PHLF, postoperative complications, and longer
hospital stays (>18 days) than that of subgroup 1, with an odds ratio of 2.83 (95% CI: 1.58–5.23),
2.41(95% CI: 1.15–5.35), and 2.14 (95% CI: 1.32–3.47), respectively. The odds ratio of our method was
similar to the albumin–bilirubin grade for postoperative complications and length of hospital stay
(2.41 vs. 2.29 and 2.14 vs. 2.16, respectively), but was inferior for PHLF (2.83 vs. 4.55). Conclusions:
Based on the radiomics features of gadoxetic-acid-enhanced MRI, unsupervised clustering analysis
identified two distinct subgroups with different liver function reserves and risks of PHLF in HCC
patients. Future studies are required to validate our findings.

Keywords: radiomics; magnetic resonance imaging; machine learning; liver function; hepatocellular
carcinoma

1. Introduction

Hepatocellular carcinoma (HCC) ranks as the fourth most common cause of cancer-
related mortality globally, with a median survival ranging from 6 to 10 months [1,2]. A
host of therapies are available for HCC treatment, including traditional surgical resection,
ablation, transplantation, interventional therapy, and newly emerged molecular targeted
therapy and immunotherapy [3]. Among these options, liver resection remains a cor-
nerstone in the treatment of HCC. Before liver resection, a comprehensive and accurate
evaluation of the liver function reserve is essential to ensure a safe surgery and to avoid
unfavorable postoperative complications, such as post-hepatectomy liver failure (PHLF) [4].
PHLF, which is the leading cause of perioperative mortality and hence is a feared compli-
cation, has an approximate incidence of 10–30% [5,6]. Except for supportive care or liver
transplantation, there are no effective therapies for the treatment of PHLF [4]. In order
to avoid surgery in patients with too high risk of PHLF, it is crucial to thoroughly assess
the liver function reserve before liver resection. This issue is unfortunately often a clinical
reality, given that HCC is often developed at the basis of underlying liver disease (such
as hepatitis B/C virus infection or alcohol abuse) and liver fibrosis/cirrhosis [7]. In these
patients, the liver function reserve is chronically undermined. In addition, the distribution
of liver function among the different liver segments might be uneven [8].

Traditional approaches used for preoperative assessment of liver function reserve in-
clude serum biochemical tests (such as aspartate/alanine transaminase, albumin, bilirubin,
and prothrombin time) and clinical scoring systems (for instance, the Child–Pugh scoring
system and the model for end-stage liver disease (MELD) system). In surgical oncology,
the indocyanine green (ICG) test is also a widely applied approach for the quantitative
evaluation of liver function reserve [9]. ICG is an inert dye that is almost exclusively
extracted by the hepatocytes after intravenous injection and excreted into the bile without
biotransformation [10]. It is a well-established test and has been incorporated in several
guidelines used for the recommendation of treatment options and liver resection extent,
especially in Asian countries [11]. The two common parameters in the ICG test are the
retention rate at 15 min after administration (ICG-R15, %) and the plasma disappearance
rate (ICG-PDR, %/min) [10].

Gadoxetic acid is a liver-specific contrast medium for magnetic resonance imaging
(MRI). It is commonly used for the detection, diagnosis, and characterization of hepatic
lesions in clinical practice [12]. In recent years, an extensive body of studies has demon-
strated that gadoxetic-acid-enhanced MRI can be applied to evaluate liver function and to
estimate the risk of PHLF by quantifying the signal intensity of the hepatic parenchyma
or by measuring the T1 relaxometry [13–16]. The images used are from the hepatobiliary
phase, i.e., 10–40 min after gadoxetic acid administration, in which the uptake and excretion
of the gadoxetic acid by the hepatocytes reaches an equilibrium [17]. Parameters derived
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from gadoxetic-acid-enhanced hepatobiliary phase MRIs have shown a close correlation
with the Child–Pugh score, MELD score, and ICG tests [15,18]. When predicting the risk of
PHLF, the efficacy of gadoxetic-acid-enhanced MRI even outperforms the ICG tests [14].

In the past decades, various high-throughput techniques have been employed for
the investigation of liver cancers, including transcriptomics, proteomics, epigenetics, and
phenomics [19–21]. This field has also witnessed the emergence of a novel technique called
radiomics, which extracts high-throughput imaging features from daily used images, such
as MRI [22]. While traditional “omics techniques” have provided valuable insights into
the molecular profiles and biological processes involved in tumorigenesis, they often re-
quire invasive sample collection methods or extensive laboratory procedures. In contrast,
radiomics harnesses the power of commonly used imaging modalities to extract quanti-
tative features [22,23]. These radiomics features encompass a wide range of information,
including tumor shape, texture, intensity, and spatial relationships, offering a noninvasive
and complementary approach to understanding liver tumor heterogeneity and predicting
patient outcomes [22,23]. Radiomics holds great promise in the comprehensive analysis
and characterization of liver cancers [24].

To date, a host of powerful and robust radiomics models have been developed by
using various machine/deep-learning approaches, such as random forest, support vector
machine, convolutional neural networks, transfer learning, and deep-learning architec-
tures [25–28]. Yet, most techniques used in those studies can be categorized into supervised
machine-learning techniques, in which the clinical outcomes have been artificially labeled.
By contrast, unsupervised machine learning is a type of algorithm that detects cluster num-
bers, membership, and boundaries in an unlabeled dataset. Compared with supervised
machine learning, unsupervised machine learning allows researchers to gain insights into
the underlying data distribution, capture complex tumor/disease heterogeneity, identify
novel biomarkers, and understand the inherent structures and relationships within the
medical data [29].

The heterogeneity of the liver function reserve in HCC patients might also be reflected
by the radiomics features of the gadoxetic-acid-enhanced MRI, but research using these
features for liver function evaluation remains rare. Only a few studies using supervised
machine learning have developed radiomics models for estimating ICG levels or predicting
the risk of PHLF [30–33]. To date, there has not been any research exploring the role of
unsupervised machine learning in the stratification of the liver function reserve. This
study was therefore designed to use unsupervised machine learning to identify distinct
subgroups of different liver function reserve in the radiomics features of the preoperative
gadoxetic-acid-enhanced MRI in HCC patients who were scheduled for liver resection. The
differences in the risk of PHLF, postoperative complications, and length of hospital stay
were then evaluated between the subgroups.

2. Materials and Methods
2.1. Study Design and Patient Inclusion

This study was a secondary analysis of existing data that previously had been used
to develop and internally validate a clinical-radiomics model for PHLF prediction. The
research protocol was approved by the Institutional Review Board of the hospital, Army
Medical University [No. (B)KY2021068]. The study was conducted in accordance with the
Helsinki Declaration and the data were analyzed anonymously. Informed consent was
waived due to the retrospective nature of this study.

Consecutive patients who underwent liver resection between January 2017 and March
2019 and were diagnosed with HCC by the postoperative pathology exam were initially
included. Exclusion criteria were: (1) Gadoxetic-acid-enhanced MRI was performed more
than one month before liver resection; (2) Anti-cancer therapies were performed before
liver resection; for instance, radiofrequency ablation, transarterial chemoembolization,
hepatectomy, portal vein embolization, and systematic therapy; (3) Insufficient imaging
quality, such as motion artifacts and obvious noise. A total of 276 eligible patients were
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eventually included in this study. The study CONSORT flow diagram is provided in
Figure 1.
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Figure 1. CONSORT flow diagram of this study. Note: HCC, hepatocellular carcinoma; MRI,
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2.2. Clinical Variables

The following clinical variables were collected: demographic and baseline information
(including age, gender, and body mass index); chronic liver disease (etiology and cirrhosis);
tumor size (≤5 or >5 cm); surgery and intraoperative data, including resection extent
(minor if resected segments < 3 or major if segments ≥ 3) [34], laparoscopic surgery (yes
or no), operative time (≤60 min or >60 min), and estimated blood loss (≤400 or >400 mL);
laboratory tests, including platelet count (≤125 or >125 × 109/L), aspartate transaminase
(AST) (≤42 or >42 IU/L), and alanine transaminase (ALT) (≤42 or >42 IU/L); Child–Pugh
grade; MELD score (≤9 or >9); albumin–bilirubin (ALBI) score (the results were categorized
into Grades 1, 2, and 3; Grade 2 and Grade 3 were merged into “Grade 2/3” in this study);
ICG tests (including ICG-R15 and ICG-PDR); and length of hospital stay (dichotomized by
the median, i.e., ≤18 or >18 days).

PHLF was diagnosed in accordance with the International Study Group of Liver
Surgery definition: an increased international normalized ratio and hyperbilirubinemia
(above the local laboratory’s normal range) on postoperative day 5 or later [35]. Postopera-
tive complications were graded by applying the Clavien–Dindo classification, with grade
≥ II as significant complications.

2.3. Gadoxetic-Acid-Enhanced MRI Exam

All patients underwent their MRI exam on a 3.0 T scanner (Magnetom Trio, Siemens
Healthcare, Germany). A T1-weighted 3D volume interpolated breath-hold exam sequence
was used to acquire dynamic contrast-enhanced images before, at the time of aorta en-
hancement, ~60 s, and 15 min after contrast media administration, corresponding to the
unenhanced, arterial, portal venous, and hepatobiliary phase, respectively [36]. Gadoxetic
acid (0.1 mg/kg body weight, Primovist®, Bayer Pharma, Berlin, Germany) was admin-
istered through an antecubital vein followed immediately by a 20 mL saline flush. The
detailed scanning parameters at each phase are provided in Supplementary Table S1.
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After acquisition of the MR images, the workflow of this research consisted of five
steps: liver delineation, feature extraction, feature selection, clustering analysis, and cluster
comparison (Figure 2).

Figure 2. The workflow of this study using unsupervised clustering analysis on radiomics features
extracted from the preoperative gadoxetic-acid-enhanced MRI for stratification of liver function
reserve in patients with hepatocellular carcinoma.

2.4. Liver Delineation and Radiomics Feature Extraction

The volume of interest (VOI) of the non-tumoral hepatic parenchyma at the hepatobil-
iary phase images was manually delineated by one researcher (C.L., with 3 years’ experience
of abdominal imaging) using the software ITK-SNAP (http://www.itksnap.org/, accessed
on 1 July 2022) (Figure 3). Before feature extraction, the images were resampled into a
voxel size of 1 × 1 × 1 mm3, and the intensity histogram-bin width was fixed at 25. Ra-
diomics features were extracted from the VOI by using the Python package “PyRadiomics”
(https://github.com/AIM-Harvard/pyradiomics, accessed on 20 August 2022), includ-
ing the following categories of features: (1) Shape (2D and 3D) (n = 14), (2) First-order
statistics (n = 18), (3) Gray level co-occurrence matrix-derived feature (n = 24), (4) Gray
level run length matrix-derived feature (n = 16), (5) Gray level size zone-derived feature
(n = 16), (6) Gray level dependence matrix-derived feature (n = 14), (7) Neighboring gray
tone difference matrix feature (n = 5). In total, 107 radiomics features were extracted.
Radiomics features extracted by “PyRadiomics” are consistent with the Image Biomarker
Standardization Initiative [37].

2.5. Radiomics Feature Selection

To evaluate the interobserver agreement, interclass correlation coefficient (ICC) analy-
sis was performed on 30 randomly selected cases that were delineated by two researchers
(C.L and P.C., with 3 and 20 years of abdominal MRI diagnosis experience, respectively).
Radiomics features with an ICC greater than 0.75 were considered reproducible [38]. Spear-
man correlation analysis of the reproducible radiomics features was then performed to
reduce redundancy, with one feature in all pairs with a correlation coefficient greater than
0.99 randomly abandoned.

2.6. Unsupervised Clustering Analysis

An unsupervised machine learning algorithm, consensus clustering analysis [39], was
applied to identify the clinical subtypes of patients based on the filtered radiomics features.
Consensus clustering analysis applies a subsampling technique to induce variability, and
then it calculates the stability of the clusters (“consensus”) under multiple iterations of

http://www.itksnap.org/
https://github.com/AIM-Harvard/pyradiomics
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a specific clustering algorithm on the subsamples [40]. It can distinguish samples into
several subtypes by using a predefined number of clusters (k), so as to discover new disease
subtypes or perform a comparative analysis of different clusters [39]. It is a robust and
commonly used approach in cancer genetic research [41].
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After the feature data were normalized with z-score normalization, the R package
“ConsensusClusterPlus” (https://bioconductor.org/packages/ConsensusClusterPlus/,
accessed on 1 September 2022) was used to perform the consensus clustering analysis [42],
with the key parameters settings as follows: clusters (k) range: 2 to 5; proportion of items
to subsampling: 80%; number of subsampling: 200; cluster algorithm: hc (hierarchical
clustering); and distance: Canberra; all other parameters were set to default. The optimal
clustering number (k) was determined by comprehensively evaluating the consensus matrix
heat map, cumulative distribution function, and cluster-consensus scores.

2.7. Cluster Comparison and Statistical Analysis

Continuous variables were expressed as median with range and compared using the
Mann–Whitney U test. Categorical variables were presented as numbers and percentages, and
their differences were detected with the chi-squared test or Fisher’s exact test. The odds ratio
(OR) of the different liver function subgroups, categorized by their Child–Pugh grade, MELD
score, ALBI grade, and our unsupervised clustering analysis, for the PHLF risk, significant
postoperative complications, and length of hospital stay, was calculated and presented in a
forest plot for intuitive comparison. A two-tailed p-value < 0.05 was regarded as statistically
significant and a p-value < 0.10 as a tendency. All statistical analyses were conducted on R
software (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Basic Characteristics of the Entire Cohort

The overall cohort (n = 276) had a predominance of males (86.2%) and patients aged
≤55 years (71.4%). Most patients had hepatitis B virus infection (76.8%), and around half
the patients had cirrhosis (52.9%). The proportion of tumor size ≤5 and >5 cm was roughly
equal (47.1% vs. 52.9%). A majority of patients received a minor liver resection (71%). A
majority of patients had a Child–Pugh Grade A (98.6%) or a MELD score ≤ 9 (93.8%), while
the number of patients with an ALBI Grade 1 was roughly equal to those with Grade 2/3
(45.7% vs. 54.3%). The median ICG-R15 test was 3.7%, with a range from 0.3% to 33.5%,
and the median ICG-PDR was 21.9%/min (range 7.3%/min–39.4%/min). The incidence of
PHLF was 23.6%, and 12.7% of patients developed significant postoperative complications
(Clavien–Dindo classification ≥ grade II).

https://bioconductor.org/packages/ConsensusClusterPlus/
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3.2. Radiomics Feature Selection and Unsupervised Clustering Analysis

Among the 107 radiomics features extracted from the hepatobiliary phase, 37 repro-
ducible and non-redundant features remained after the removal of features with ICC less
than 0.75 and a correlation coefficient of more than 0.99. They consisted of 2 morphological
features, 8 first-order statistical features, and 27 textual features (Supplementary Table S2).
These features were then fed into the consensus clustering algorithm, and it assigned a
grouping number to each patient. It finally yielded 2, 3, 4, and 5 subgroups according to
the preset clustering number (k) (Figure 4).
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By examining the consensus matrix heat map, cumulative distribution function plot,
and cluster-consensus values, the most stable results were observed when the clustering
number (k) was set to 2. Coincidentally, the two subgroups had an equal number of patients
(each n = 138).

3.3. Subgroup 1 vs. Subgroup 2

Subgroup 1 had significantly more patients with younger age (≤55 years) (79.7% vs.
63.0%, p < 0.05) and a tendency to less cirrhosis (47.1% vs. 58.7%, p = 0.07) in comparison
with subgroup 2. Better liver function reserve was observed in subgroup 1 than in subgroup
2, with significantly lower ALBI Grade 2/3 (46.4% vs. 62.3%, p < 0.05), and ICG-R15 (3.2%
vs. 4.1%, p < 0.05), while ICG-PDR was significantly higher (22.9%/min vs. 21.1%/min,
p < 0.05). Detailed information is provided in Table 1.

Table 1. Clinical characteristics of the whole cohort and the two subgroups identified by unsupervised
clustering analysis on radiomics features.

Overall
(n = 276)

Subgroup 1
(n = 138)

Subgroup 2
(n = 138) p Value

Gender 0.382
Female 38 (13.8%) 22 (15.9%) 16 (11.6%)
Male 238 (86.2%) 116 (84.1%) 122 (88.4%)

Age (years) 0.003 *
≤55 197 (71.4%) 110 (79.7%) 87 (63.0%)
>55 79 (28.6%) 28 (20.3%) 51 (37.0%)

BMI (kg/m2) 0.224
≤27 249 (90.2%) 121 (87.7%) 128 (92.8%)
>27 27 (9.8%) 17 (12.3%) 10 (7.2%)

Etiology 0.887
HBV 212 (76.8%) 105 (76.1%) 107 (77.5%)
Non-HBV 64 (23.2%) 33 (23.9%) 31 (22.5%)

Cirrhosis 0.070
Cirrhosis 146 (52.9%) 65 (47.1%) 81 (58.7%)
Non-cirrhosis 130 (47.1%) 73 (52.9%) 57 (41.3%)

Tumor size (cm) 0.278
≤5 130 (47.1%) 70 (50.7%) 60 (43.5%)
>5 146 (52.9%) 68 (49.3%) 78 (56.5%)

Resection extent 0.691
Major 80 (29.0%) 38 (27.5%) 42 (30.4%)
Minor 196 (71.0%) 100 (72.5%) 96 (69.6%)

Laparoscopy 1.000
No 234 (84.8%) 117 (84.8%) 117 (84.8%)
Yes 42 (15.2%) 21 (15.2%) 21 (15.2%)

Blood loss (mL) 0.288
≤400 222 (80.4%) 107 (77.5%) 115 (83.3%)
>400 54 (19.6%) 31 (22.5%) 23 (16.7%)

Hepatectomy time (min) 0.753
≤60 227 (82.2%) 112 (81.2%) 115 (83.3%)
>60 49 (17.8%) 26 (18.8%) 23 (16.7%)

ALT (IU/L) 0.181
≤42 158 (57.2%) 85 (61.6%) 73 (52.9%)
>42 118 (42.8%) 53 (38.4%) 65 (47.1%)

AST (IU/L) 0.181
≤42 158 (57.2%) 85 (61.6%) 73 (52.9%)
>42 118 (42.8%) 53 (38.4%) 65 (47.1%)

Platelet (×109/L) 0.164
≤125 96 (34.8%) 42 (30.4%) 54 (39.1%)
>125 180 (65.2%) 96 (69.6%) 84 (60.9%)

Child–Pugh grade 0.622
A 272 (98.6%) 137 (99.3%) 135 (97.8%)
B 4 (1.4%) 1 (0.7%) 3 (2.2%)

MELD score 1.000
≤9 259 (93.8%) 130 (94.2%) 129 (93.5%)
>9 17 (6.16%) 8 (5.80%) 9 (6.52%)

ALBI grade 0.011 *
Grade 1 126 (45.7%) 74 (53.6%) 52 (37.7%)
Grade 2/3 150 (54.3%) 64 (46.4%) 86 (62.3%)

ICG-R15 (%) 3.7 (0.3–33.5) 3.2 (0.3–25.3) 4.1(0.3–33.5) 0.002 *
ICG-PDR (%/min) 21.9 (7.3–39.4) 22.9 (8.5–39.4) 21.1 (7.3–35.7) 0.002 *
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Table 1. Cont.

Overall
(n = 276)

Subgroup 1
(n = 138)

Subgroup 2
(n = 138) p Value

PHLF 0.001 *
Non-PHLF 211 (76.4%) 118 (85.5%) 93 (67.4%)
PHLF 65 (23.6%) 20 (14.5%) 45 (32.6%)

Postoperative complication # 0.030 *
Not significant 241 (87.3%) 127 (92.0%) 114 (82.6%)
Significant 35 (12.7%) 11 (8.0%) 24 (17.4%)

Length of
hospital stay (days) 0.003 *

≤18 140 (50.7%) 83 (60.1%) 57 (41.3%)
>18 136 (49.3%) 55 (39.9%) 81% (58.7%)

Note: # defined by the Clavien–Dindo classification, with Grade ≥ II as significant complications and Grade I as
not significant complications. Data are expressed as counts with percentages or mean with standard deviation,
as appropriate. * p < 0.05. ALBI grade, albumin–bilirubin grade; ALT, alanine transaminase; AST, aspartate
transaminase; BMI, body mass index; HBV, hepatitis B virus; ICG-PDR, indocyanine green plasma disappearance
rate; ICG-R15, indocyanine green retention rate at 15 min; MELD score, model for end-stage liver disease score;
PHLF, post-hepatectomy liver failure.

Subgroup 2 had a higher incidence of PHLF and significant postoperative complica-
tions than subgroup 1 (32.6% vs. 14.5% and 17.4% vs. 8.0%, respectively, both p < 0.05).
More patients in subgroup 2 had a long hospital stay (>18 days) than the patients in
subgroup 1 (58.7% vs. 39.9%, p < 0.05).

3.4. Comparison among Different Systems

Compared with subgroup 1, subgroup 2 was associated with a higher risk of PHLF,
significant postoperative complications, and longer length of hospital stay, with an OR of
2.83 (95% confidence interval (CI): 1.58–5.23), 2.41(95% CI: 1.15–5.35), and 2.14 (95% CI:
1.32–3.47), respectively (Figure 5).
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ALBI grade systems, and our unsupervised clustering analysis method. Note: # grade ≥ 2 evaluated
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bilirubin grade; CI, confidence interval; OR, odds ratio; MELD, model for end-stage liver disease; PHLF,
post-hepatectomy liver failure, UCA-rad, unsupervised clustering analysis based on radiomics features.
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When comparing the unsupervised clustering method for classification with the
preexisting clinical scoring systems, ALBI and the unsupervised clustering method showed
to be a significant risk factor for PHLF, postoperative complications, and longer hospital
stay (with odds ratios of 4.55 vs. 2.83, 2.29 vs. 2.41, and 2.16 vs. 2.14, respectively), while
the Child–Pugh and MELD scoring systems were not significantly different (both p > 0.05)
(Figure 5).

4. Discussion

This study identified two distinct subgroups among HCC patients scheduled for liver
resection using an unsupervised machine learning algorithm based on radiomics features
from preoperative gadoxetic-acid-enhanced MRIs. The two subgroups demonstrated
significantly different liver function reserves and were associated with different risks of
PHLF, postoperative complications, and length of hospital stay. These findings suggest the
potential of preoperative gadoxetic-acid-enhanced MRI for liver function reserve evaluation,
which may aid the decision making when managing the treatment of HCC patients. To the
best of our knowledge, this is the first attempt to use an unsupervised machine learning
algorithm on radiomics features of gadoxetic-acid-enhanced MRI to stratify patients into
different liver function reserves.

Patients in subgroup 2 were characterized by older age and marginally more severe
cirrhosis, which are two well-established indicators of decreased liver function reserve [43].
The impaired liver function reserve in subgroup 2 was also manifested as a higher rate
of ALBI grade 2/3. The ALBI score, which is a novel parameter proposed in recent years,
consists of two common liver function biochemical tests: serum albumin and bilirubin [44].
It has proven to be a reliable and accurate alternative to the Child–Pugh system in the
objective evaluation of liver function in HCC patients [45]. The newly updated Barcelona
Clinic liver cancer (BCLC) staging system has incorporated the ALBI score for objective
hepatic reserve estimation and prognosis prediction [46]. Traditional approaches, including
laboratory tests (such as ALT, AST, and platelet count) and clinical scoring systems (Child–
Pugh and MELD scores), did not show a significant difference between subgroups 1 and 2.

In the present study, both ICG tests were significantly different between the two sub-
groups. The strong association between the radiomics features of gadoxetic-acid-enhanced
MRI and the ICG test is probably explained by their shared transport pathways [12,47].
The influx and efflux of gadoxetic acid and ICG are both mediated by the hepatocytes via
the organic anion transporter (OATP1B3) and the membrane multidrug resistance protein
2 [12,47]. The signal intensity on hepatobiliary phase images of gadoxetic-acid-enhanced
MRIs will therefore be closely associated with the ICG test. In fact, signal-intensity-based
parameters from the hepatobiliary phase of a gadoxetic-acid-enhanced MRI are the “con-
ventional” method for the quantitative evaluation of liver function [13]. Thus, a decreased
function, as indicated by a high ICG test, would result in less MRI signal in the hepato-
biliary phase, affecting the radiomics parameters. The findings are in line with those of a
pilot study involving 60 patients, showing a similar link between the radiomics features of
gadoxetic-acid-enhanced hepatobiliary phase MRI and the ICG test [48].

The 107 radiomics features extracted from the gadoxetic-acid-enhanced MRI belonged
to morphological features, first-order statistics features, and second-order statistics fea-
tures [21]. After reproducibility and redundancy evaluation, 37 radiomics features were
selected for unsupervised clustering analysis. A majority of these features (27/37) were
texture-related features, which evaluated the inter-voxel relationships of the image via
grayscale dependence matrices. Eight features (8/37) were based on the first-order his-
togram, which describes the distribution of the gray levels. In other words, these statistical
and textural patterns (so-called hand-crafted radiomics features) [49] do contain biolog-
ical information for liver function evaluation. The wavelet filter is usually considered a
powerful tool to characterize the textural patterns in low- and high-frequency signals [50],
and theoretically it can better evaluate the liver function based on gadoxetic-acid-enhanced
MR images. Interestingly, in the exploratory stage of this study, unsupervised consensus
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clustering analysis on the wavelet-transformed radiomics features did not yield a mean-
ingful result. Compared with the standard radiomics technique, deep learning algorithms
can detect deep imaging patterns without human inference and its related bias [51]; thus,
deep learning may provide a more powerful and robust tool in the evaluation of liver
function. Based on hepatobiliary phase images of gadoxetic-acid-enhanced MRIs from
1014 subjects, Park et al. developed a deep learning model to estimate the liver function
reserve, showing an area under the receiver operating characteristic curve of 0.93 for
predicting ICG-R15 ≥ 20% [52].

Subgroup 2 was associated with a higher risk of unfavorable postoperative events such
as PHLF, postoperative complications, and longer hospital stays, suggesting a prognostic
value of our unsupervised clustering classification. In recent years, several radiomics
models have been developed to predict PHLF in HCC patients using preoperative gadoxetic-
acid-enhanced MRI showing an area under the receiver operating characteristic curve as
high as 0.90 [30–33]. However, those models were developed from cohorts with a small
sample size (<200 patients) without external validation [30–32]. In addition, the algorithms
used in those studies belonged to supervised machine learning, which is limited by the
subjective tags labeled by humans and the delicate model training process [49]. By contrast,
unsupervised machine learning excels at detecting hidden patterns within the data and
identifying clinically distinct clusters, as shown in this study.

When evaluating the predictive performance of the three clinical scoring systems
and our unsupervised clustering method, ALBI grading and our unsupervised clustering
method not only outperformed the Child–Pugh and MELD scoring systems but also showed
similar predictive power in the prediction of unfavorable postoperative events. Even so,
gadoxetic-acid-enhanced MRI still seems to be a superior approach to the ALBI score, as
it can be used to provide the regional liver function information, i.e., the function of the
future liver remnant [53]. This can be achieved by delineating the future liver remnant
along the planning resection line and extracting the radiomics features for modeling. Those
features would be more accurate in the prediction of the postoperative events such as
PHLF. This information would be useful for the surgeons when planning an extended
hepatobiliary surgery.

Even though the biological meaning of radiomics features was explained in part by the
ICG test in this study, the specific links between radiomics features and the molecular/gene
expression levels are lacking. Future studies can be designed to evaluate the link between,
for example, OATP1 expression and radiomics features (the work of “radiogenomics”) [54].
Furthermore, although the radiomics features extracted by PyRadiomics have their own
formulas, an intuitive understanding of the correlation between these features and liver
function classification still lacks. In addition, further investigation is needed to establish the
clinical relevance of the identified clusters, given that unsupervised clustering can naturally
group image data into different clusters. Although various clinical phenotypes between
the two clusters were compared and some significant associations were detected in this
study, it is important to assess the meaningfulness of these clusters.

This study has several limitations. First, the analysis was based on a retrospective
cohort of exclusive HCC patients undergoing liver resection at a single medical center from
one single MRI scanner using the same sequences. Whether our findings can be extrapolated
to a more general patient population or other MRIs remains to be proven by independent
cohorts, but we failed in finding an appropriate cohort for external validation. However,
a random repeated subsampling cross-validation has been inherently incorporated into
the “ConsensusClusterPlus” package used in this study for clustering [42], which might
partly ensure the reliability of our results. Second, there might be some confounders for the
radiomics features extracted from the non-tumoral liver parenchyma, such as body size, age,
and cirrhosis. Our study did not correct these variations as their impact on the radiomics
features remains largely unknown. Third, only radiomics features from the hepatobiliary
phase were adopted in this study. However, the dynamic changes of radiomics features
over the contrast enhancement phases may contain more liver function information. It
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would be interesting to explore the association between the “delta radiomics features” and
liver function/risk of PHLF. Fourth, a comparison between the results of unsupervised
machine learning and commonly used supervised machine learning was absent. It would
be of interest to compare their predictive efficacy and make new discoveries. Lastly, it is of
note to point out that this study is more a preliminary exploring study than a translation
study. Our results initially proved the advantages of unsupervised machine learning as a
powerful tool for detecting hidden data patterns, grouping patients based on their intrinsic
characteristics. Before implementing our results into clinical practice, a great deal of work
is required for future research: validation of our findings using external cohorts, automatic
segmentation of the non-tumoral part of the liver (or even the future liver remnant),
selection of reproducible and informative radiomics features, model interpretation, and
integration of the results into daily reports.

5. Conclusions

Unsupervised consensus clustering analysis of the preoperative gadoxetic-acid-enhanced
MRIs identified two distinct subgroups of HCC patients who had different liver function
reserves and different risks of PHLF. With the increasing use of gadoxetic-acid-enhanced MRI
in clinical practice and the advances of artificial intelligence, future research is required to
assess and validate the implementation of this unsupervised consensus clustering approach
in the management of HCC patients planned for liver resection.
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40. S, enbabaoğlu, Y.; Michailidis, G.; Li, J.Z. Critical limitations of consensus clustering in class discovery. Sci. Rep. 2014, 4,
6207. [CrossRef]

41. Brière, G.; Darbo, É.; Thébault, P.; Uricaru, R. Consensus clustering applied to multi-omics disease subtyping. BMC Bioinformatics.
2021, 6, 361. [CrossRef] [PubMed]

42. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.
Bioinforma. Oxf. Engl. 2010, 26, 1572–1573. [CrossRef] [PubMed]

43. Clavien, P.-A.; Petrowsky, H.; DeOliveira, M.L.; Graf, R. Strategies for Safer Liver Surgery and Partial Liver Transplantation. New
Engl. J. Med. 2007, 356, 1545–1559. [CrossRef] [PubMed]

44. Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.;
et al. Assessment of Liver Function in Patients with Hepatocellular Carcinoma: A New Evidence-Based Approach—The ALBI
Grade. J. Clin. Oncol. 2015, 33, 550–558. [CrossRef] [PubMed]

45. Kawaguchi, T.; Shimose, S.; Yamamura, S.; Nakano, D.; Tanaka, M.; Torimura, T. Changes in prognostic factors for patients
with hepatocellular carcinoma underwent transarterial chemoembolization with the transition of the time: Child-Pugh class,
Albumin-Bilirubin grade, and then. Ann. Transl. Med. 2020, 8, 1045. [CrossRef]

46. Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.;
Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76,
681–693. [CrossRef]

47. Cieslak, K.P.; Runge, J.H.; Heger, M.; Stoker, J.; Bennink, R.J.; van Gulik, T.M. New Perspectives in the Assessment of Future
Remnant Liver. Dig. Surg. 2014, 31, 255–268. [CrossRef]

48. Shi, Z.; Cai, W.; Feng, X.; Cai, J.; Liang, Y.; Xu, J.; Zhen, J.; Liang, X. Radiomics Analysis of Gd-EOB-DTPA Enhanced Hepatic MRI
for Assessment of Functional Liver Reserve. Acad. Radiol. 2022, 29, 213–218. [CrossRef]

49. Hosny, A.; Aerts, H.J.; Mak, R.H. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet
Digit. Health 2019, 1, e106–e107. [CrossRef]

50. Fan, M.; Chen, H.; You, C.; Liu, L.; Gu, Y.; Peng, W.; Gao, X.; Li, L. Radiomics of Tumor Heterogeneity in Longitudinal Dynamic
Contrast-Enhanced Magnetic Resonance Imaging for Predicting Response to Neoadjuvant Chemotherapy in Breast Cancer. Front.
Mol. Biosci. 2021, 8, 622219. [CrossRef]

51. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; Depristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to
deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]

52. Park, H.J.; Yoon, J.S.; Lee, S.S.; Suk, H.-I.; Park, B.; Sung, Y.S.; Hong, S.B.; Ryu, H. Deep Learning-Based Assessment of Functional
Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI. Korean J. Radiol. 2022, 23, 720. [CrossRef]

https://doi.org/10.1002/mp.13678
https://doi.org/10.1016/j.suronc.2018.11.013
https://doi.org/10.1259/bjr.20211136
https://www.ncbi.nlm.nih.gov/pubmed/35816550
https://doi.org/10.1186/s12957-021-02459-0
https://www.ncbi.nlm.nih.gov/pubmed/34895260
https://doi.org/10.3389/fonc.2021.605296
https://www.ncbi.nlm.nih.gov/pubmed/33777748
https://doi.org/10.1016/j.surg.2009.10.043
https://www.ncbi.nlm.nih.gov/pubmed/20004441
https://doi.org/10.1016/j.surg.2010.10.001
https://doi.org/10.1016/j.ejrad.2015.12.015
https://doi.org/10.1148/radiol.2020191145
https://www.ncbi.nlm.nih.gov/pubmed/32154773
https://doi.org/10.1002/jmri.27199
https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1038/srep06207
https://doi.org/10.1186/s12859-021-04279-1
https://www.ncbi.nlm.nih.gov/pubmed/34229612
https://doi.org/10.1093/bioinformatics/btq170
https://www.ncbi.nlm.nih.gov/pubmed/20427518
https://doi.org/10.1056/NEJMra065156
https://www.ncbi.nlm.nih.gov/pubmed/17429086
https://doi.org/10.1200/JCO.2014.57.9151
https://www.ncbi.nlm.nih.gov/pubmed/25512453
https://doi.org/10.21037/atm-2020-112
https://doi.org/10.1016/j.jhep.2021.11.018
https://doi.org/10.1159/000364836
https://doi.org/10.1016/j.acra.2021.04.019
https://doi.org/10.1016/S2589-7500(19)30062-7
https://doi.org/10.3389/fmolb.2021.622219
https://doi.org/10.1038/s41591-018-0316-z
https://www.ncbi.nlm.nih.gov/pubmed/30617335
https://doi.org/10.3348/kjr.2021.0892


Cancers 2023, 15, 3197 15 of 15

53. Ba-Ssalamah, A.; Bastati, N.; Wibmer, A.; Fragner, R.; Hodge, J.C.; Trauner, M.; Herold, C.J.; Bashir, M.R.; Van Beers, B.E. Hepatic
gadoxetic acid uptake as a measure of diffuse liver disease: Where are we? Hepatic GA Uptake as a Measure of Diffuse Liver
Disease. J. Magn. Reson. Imaging. 2017, 45, 646–659. [CrossRef] [PubMed]

54. Tomaszewski, M.R.; Gillies, R.J. The Biological Meaning of Radiomic Features. Radiology 2021, 298, 505–516. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/jmri.25518
https://www.ncbi.nlm.nih.gov/pubmed/27862590
https://doi.org/10.1148/radiol.2021202553
https://www.ncbi.nlm.nih.gov/pubmed/33399513

	Introduction 
	Materials and Methods 
	Study Design and Patient Inclusion 
	Clinical Variables 
	Gadoxetic-Acid-Enhanced MRI Exam 
	Liver Delineation and Radiomics Feature Extraction 
	Radiomics Feature Selection 
	Unsupervised Clustering Analysis 
	Cluster Comparison and Statistical Analysis 

	Results 
	Basic Characteristics of the Entire Cohort 
	Radiomics Feature Selection and Unsupervised Clustering Analysis 
	Subgroup 1 vs. Subgroup 2 
	Comparison among Different Systems 

	Discussion 
	Conclusions 
	References

