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Simple Summary: Tumours of the central nervous system (CNS) are the most common solid tumours
in children. The difficulties in treating this complicated variety of tumours are that they lead to high
mortalities. Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with
stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The
biological functions and clinical significance of CSCs in CNS tumours in children have been reported
in the last few decades. However, there is no comprehensive review in this field and the information
has been fragmented and confusing. Thus, we collected valuable data and findings from these reports
to make a clear and concentrated review to provide a train of thought for experts in the field.

Abstract: Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with
stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The
existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance
to conventional chemotherapy and radiation treatment. Tumours of the central nervous system
(CNS) are the most common solid tumours in children, which have many different types including
highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable
prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in
the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of
CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This
article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours.
Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further
investigations into CSCs are warranted to improve the clinical practice in treating children with
CNS tumours.

Keywords: cancer stem cells (CSCs); tumours of the central nervous system (CNS); children; biology
impact; clinical significance

1. Introduction

Cancer is one of the largest health problems worldwide and is one of the leading
causes of death in the 21st Century [1]. Tumours of the central nervous system (CNS) rank
fourteenth by incidence in all kinds of cancers in both males and females worldwide [1],
and are among the top ten cancer mortalities in spite of gender [2,3]. In children, CNS
tumours are the most common solid tumours, with an age-standardized incidence rate per
million person-years (ASR) of 28.2, accounting for 17.2–26.3% of paediatric malignancy [4].
After being deeply studied, revolutionary molecule-based classifications in the new edition
of the WHO Classification of Tumours of the Central Nervous System were introduced [5].
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However, only a few novel treatments were introduced, such as BRAF-related targeting
therapies in low-grade gliomas, and preliminary studies of histone deacetylase (HDAC)
inhibitors in paediatric high-grade gliomas [6], necessitating the development of new
therapeutic strategies.

Cancer stem cells (CSCs) were first reported in leukaemia in the late 20th Century,
which played an important role in leukaemogenesis, as tumour initiation cells [7]. Although
CSCs were later identified in many types of solid tumours and haematological malignancies,
the heterogeneous nature of various malignancies, as well as phenotypical differences
among patients with the same cancer type, mitigated the efforts to identify, understand,
and develop targeted therapies against CSCs [8,9]. Tumour stem-like cells were pioneers in
anaplastic astrocytoma and glioblastoma tissue in 2002 [10], and identified in several kinds
of paediatric CNS tumours, such as pilocytic astrocytoma, medulloblastoma, ganglioglioma,
anaplastic astrocytoma, glioblastoma multiforme, and ependymoma afterward [11,12].
Neurosphere assay is a standard procedure in insolating neural stem cells and deriving
CNS CSCs, suggesting that CSCs in CNS were transformations of undifferentiated neural
precursor cells [13]. Here, we review the recently published reports on basic research
advances and clinical implications of CSCs in CNS tumours in children to shed light on the
importance of this potential therapeutic target.

2. Tumour Stem Cells in Major Types of Tumours of the Central Nervous System
in Children

According to the new edition of the WHO Classification of Tumours of the Central
Nervous System, tumours of the CNS in children are graded and classified according to
a combination of histological and molecular characteristics, the clinical features of which
and pathways of tumourigenesis are significantly different from adult tumours [14]. Here,
we review the origins and markers of CSCs in the following major types of tumours of the
CNS in children (Table 1).

Table 1. Tumour stem cell markers and markers for their differentiated forms from reports according
to the WHO Classification of Tumours of the Central Nervous System 2021 edition.

Tumour Types Markers for CSCs Markers for Differentiated Cells References

Gliomas, glioneuronal tumours,
and neuronal tumours

Paediatric-type diffuse
low-grade gliomas

Diffuse low-grade glioma, MAPK
pathway-altered (previous

oligodendroglioma)
CD133, SOX2, Nestin CNPase, GFAP, NFP [15]

Paediatric-type diffuse
high-grade gliomas

Diffuse midline glioma, H3
K27-altered

CD133, SOX2, Nestin, PAX6,
Vimentin, (ALDH, Olig2, PDGFRα)

MAP2, GFAP, NeuN,
NOTCH 1, CSPG4 [16–19]

Other types, except the
abovementioned

Nestin, Musashi, CD133, SOX2,
CD44, ALDH, L1CAM, Olig2,
Nanog (partial, case by case),
Podoplanin, Bmi-1, SEEA-1

Beta-III Tubulin, GFAP, O4, MAP2,
NFP, CNPase, NeuN, MBP [12,15,20–22]

Circumscribed astrocytic gliomas

Pilocytic astrocytoma

CD133, Nestin, SOX2, Nanog, Oct4,
CD44, Integrin α6 (CD49f), SSEA-1,
ABCG1, Podoplanin, BLBP, A2B5,

(Olig2, PDGFRα)

Beta-III Tubulin, GFAP, O4, S100B,
NF, EAAT1/2, (Olig2, PDGFRα) [11,23–28]
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Table 1. Cont.

Tumour Types Markers for CSCs Markers for Differentiated Cells References

Pleomorphic xanthoastrocytoma CD15 GFAP [29]

Glioneuronal and neuronal tumours

Dysembryoplastic
neuroepithelial tumour SOX2, AGR2 Beta-III Tubulin, GFAP [30]

Central neurocytoma
CD133, Nestin, SOX2, Nanog,

CD44, EGFR, hTERT, BLBP,
GFAP-delta, Olig2, ASCL1

Beta-III Tubulin, GFAP,
Synaptophysin, MAP2, NeuN,
BMP2, BMPR1B, PSANACM

[31,32]

Ependymal tumours

Supratentorial ependymoma Nestin, CD133, RC2, BLBP,
Vimentin, HES1, PBX1, SOX9, PAX3,
Protein c-Fos, ZFP36, LGR5, EGR1,

JUN, ATF3

Beta-III Tubulin, MAP2, GFAP, S100,
CNPase, NG2, Synaptophysin, O4,
Olig1/2, APC, CSPG2, DNAAF1,

RSPH1, CAPS

[33–36]Posterior fossa ependymoma

Spinal ependymoma

Choroid Plexus Tumours

Choroid plexus carcinoma MYC, Nestin, ATOH1, BLBP, GFAP,
Geminin, GDF7

TTR, AQP1, OTX2, GMNC,
MCIDAS, FOXJ1, CCNO,

TAp73, MYB
[37–39]

Embryonal Tumours

Medulloblastoma

Medulloblastoma, SHH-activated

Nestin, Musashi, p75NTR, TrkC,
Zic1, MATH1, SOX1, SOX2, PLZF,

DACH1, Multimerin 1, PAX6,
ATOH1, MycN

NeuN, GABRA6, Synaptophysin,
PAX2, BLBP, O4 [12,40–42]

Medulloblastoma,
non-WNT/non-SHH

CD133, Nestin, Musashi,
SOX1, SOX2 Beta-III Tubulin, GFAP, CD44, CD24 [12,42]

Other CNS embryonal tumours

Atypical teratoid/rhabdoid tumour
CD133, Nestin, Musashi, Nanog,

Oct4, SOX2, ALDH, SALL4, MYC,
LIN28A/B, NCAM, PAX6, KLF4

MAP2, Vimentin, GFAP,
Synaptophysin, CD99, S-100,

EMA, SMA
[43–46]

Embryonal tumour with
multi-layered rosettes

LIN28A/B, HMGA2, Nestin,
Vimentin, Oct4, SOX2, Nanog,

CRABP1, DNMT3B, SOX3, SOX11,
PAX6, SALL4, POU3F2, MEIS1/2,

MYCN, Wee1, CHEK2

AQP4, GFAP, Synaptophysin,
NeuN, NFP [47–49]

Germ cell tumours

Germinoma
SOX17, SOX2, Lin28A, KLF2/4,

PIWIL1, DAZL, DDX4, NANOS3,
ERVW-1, (Oct4, Nanog)

PLAP, KIT [50]

None germinoma germ cell tumours Lin28A, SOX2, KLF2/4, Oct4,
Nanog Not provided [51]

Tumours of the sellar region

Adamantinomatous
craniopharyngioma

Nestin, SOX2, Oct4, CD133, KLF4,
SOX9, β-catenin, MYC, SCA1,

HESX1, KLF2/4

IT-1/POU1F1), TBX19/TPIT),
SF-1/NR5A1 [52–54]

Pineal Tumours

Pineoblastoma CD133, Musashi, Podoplanin Beta-III Tubulin [55,56]



Cancers 2023, 15, 3154 4 of 24

Table 1. Cont.

Tumour Types Markers for CSCs Markers for Differentiated Cells References

Cranial and Paraspinal
Nerve Tumours

Schwannoma Oct4, SOX2, Nanog, MYC, KLF4,
CD133, CD44, CXCR4 GFAP, S100, GAP43 [57]

Neurofibroma
PLP, Nestin, P75, GAP43, Sox10 GFAP, S100, GAP43 [58,59]Malignant peripheral nerve

sheath tumour

Mesenchymal,
non-meningothelial tumors

Uncertain differentiation
(soft tissue tumours)

Ewing sarcoma CD44, CD59, CD73, CD29, and
CD54, CD90, CD105, CD166

SOX9, COL10A1, PPARg2, FABP4,
LPL, SPP1, ALPL, RUNX2 [60]

Meningiomas

Meningioma Oct4, SOX2, Nanog, MYC, KLF4,
CD133, Nestin Not provided [61]

Abbreviations of markers were listed below; markers controversially reported were listed in brackets. ABCG1:
ATP Binding Cassette Subfamily G Member 1, AGR2: Anterior Gradient 2, ALDH: Aldehyde Dehydrogenase,
ALPL: Alkaline Phosphatase, APC: Adenomatous Polyposis Coli, AQP1: Aquaporin 1, ASCL1: Achaete-Scute
Homolog 1, ATF3: Activating Transcription Factor 3, ATOH1: Atonal BHLH Transcription Factor 1, BLBP: Brain
Lipid Binding Protein, Bmi-1: B cell-specific Moloney Murine Leukaemia Virus Integration Site 1, BMP2: Bone
Morphogenetic Protein 2, BMPR1B: Bone Morphogenetic Protein Receptor Type 1B, CAPS: Calcyphosine, CCNO:
Cyclin O, CHEK2: Checkpoint Kinase 2, COL10A1: Collagen Type X Alpha 1 Chain, CRABP1: Cellular Retinoic
Acid Binding Protein 1, CSPG: Chondroitin Sulfate Proteoglycan, CXCR4: C-X-C Chemokine Receptor Type
4, DACH1: Dachshund Family Transcription Factor 1, DAZL: Deleted in Azoospermia-like, DDX4: DEAD-
Box Helicase 4, DNAAF1: Dynein Axonemal Assembly Factor 1, DNMT3B: DNA Methyltransferase 3 Beta,
EAAT1/2: Excitatory Amino Acid Transporter 1/2, EGFR: Epidermal Growth Factor Receptor, EGR1: Early
Growth Response Factor 1, EMA: Epithelial Membrane Antigen, ERVW-1: Endogenous Retrovirus Group W
Member 1, FABP4: Fatty Acid Binding Protein, FOXJ1: Forkhead Box J1 GABRA6: Gamma-aminobutyric Acid
Receptor Subunit Alpha-6, GAP43: Growth Associated Protein 43, GDF7: Growth differentiation factor 7, GFAP:
Glial Fibrillary Acidic Protein, GMNC: Geminin Coiled-Coil Domain Containing, HES1: Hairy and Enhancer of
Split-1, HESX1: Homeobox Expressed in ES Cells 1, HMGA2: High Mobility Group AT-Hook 2, hTERT: Human
Telomerase Reverse Transcriptase, KIT: Tyrosine-protein Kinase, KLF4: Kruppel-like Factor 4, L1CAM: L1 Cell
Adhesion Molecule, LGR5: Leucine-rich Repeat-containing G-protein Coupled Receptor 5, LIN28A/B: Lin-28
Homolog A/B, LPL: Lipoprotein lipase, MAP2: Microtubule-associated protein 2, MATH1: Mammalian Atonal
Homolog 1, MBP: Myelin Basic Protein, MCIDAS: Multi-Ciliate Differentiation and DNA Synthesis Associated
Cell Cycle Protein, MEIS1/2: Meis Homeobox 1/2, MYB: V-myb Avian Myeloblastosis Viral Oncogene Homolog,
NANOS3: Nanos C2HC-Type Zinc Finger 3, NCAM: Neural Cell Adhesion Molecule, NF: Neurofibromin, NFP:
Neurofilament Protein, NG2: Neuron-glial Antigen, NOTCH 1: Neurogenic Locus Notch Homolog Protein 1,
OTX2: Orthodenticle homeobox 2, p75NTR: p75 Neurotrophin Receptor, PAX6: Paired Box 6, PBX1: Pre-B-cell
Leukaemia Transcription Factor 1, PDGFRα: Platelet-Derived Growth Factor Receptor Alpha, PIT-1 or POU1F1:
Pituitary-specific positive transcription factor 1, PIWIL1: Piwi Like RNA-Mediated Gene Silencing 1, PLAP:
Placental Alkaline Phosphatase, PLP: Myelin Proteolipid Protein, PLZF: Promyelocytic Leukaemia Zinc Finger
Protein, POU3F2: POU Class 3 Homeobox 2, PPARg2: Peroxisome Proliferator-Activated Receptor Gamma 2,
PSANACM: Polysialic Acid-Neuronal Cell Adhesion Molecule, RC2: Radial Glial Cell Marker-2, RSPH1: Radial
Spoke Head Component 1, RUNX2: Runt-related Transcription Factor 2, S100B: Calcium-Binding Protein B,
SALL4: Spalt Like Transcription Factor 4, SCA1: Stem Cell Antigen 1, SF-1 or NR5A1: Steroidogenic Factor-1,
SMA: Smooth Muscle Actin, SOX: Sex Determining Region Y-box, SPP1: Secreted Phosphoprotein 1, SSEA-1 or
CD15: Stage-Specific Embryonic Antigen-1, TBX19 or TPIT: T-box Transcription Factor 19, TrkC: Tropomyosin
Receptor Kinase C, TTR: Transthyretin, ZFP36: Zinc Finger Protein 36 Homolog, Zic1: Zinc Finger Protein of the
Cerebellum 1.

2.1. Gliomas, Glioneuronal Tumours, and Neuronal Tumours

The catalogue of gliomas, glioneuronal tumours, and neuronal tumours in the 2021
WHO classification contained unaltered types from the 2017 edition, such as ependymal
tumours, and glioneuronal and neuronal tumours, while their subtypes expanded by
divergent molecular signatures. Paediatric-type diffuse low-grade gliomas and paediatric-
type diffuse high-grade gliomas were new types of tumours to clearly separate these
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prognostically and biologically distinct groups of tumours from adult ones, as well as
circumscribed astrocytic gliomas that substituted other astrocytic tumours in the 2017
WHO classification [5,62].

The most common low-grade glioma in children was pilocytic astrocytoma, belonging to
the tumour type of circumscribed astrocytic gliomas, caused by extracellular-signal-regulated
kinase (ERK) constitutive activation from its upstream BRAF mutations (BRAF-KIAA1549 fu-
sion or BRAF-V600E) or NF1 alterations [63], and the less common active mutations of FGFR1
and PTPN11, and NTRK2 fusion [64]. The CSCs from pilocytic astrocytoma were identified in
the highly pioneering work in insolating CSCs from CNS tumours by primary tumour sphere
culture [11]. CD133 and Nestin were first used as CSC markers for pilocytic astrocytoma,
while pluripotent markers SOX2, Nanog, Oct4, CD44, Integrin α6 (CD49f), SSEA-1, or CD15,
ATP Binding ABCG1, and neuro-stem cell markers such as Podoplanin, and markers for dif-
ferent precursor/progenitor cells such as BLBP and A2B5, were later introduced by different
research groups [11,23–26]. Specific markers to confirm the differentiation status of pilocytic
astrocytoma CSCs were reported as Beta-III Tubulin, GFAP, Oligodendrocyte Marker O4,
S100B, NF, and EAAT1/2 [11,24–26]. There were also controversial markers such as Olig2 and
PDGFRα, which were regarded as not only CSC markers, but also differentiation markers, in
different reports [24,26–28]. This situation was ascribed to the definition of CSCs in CNS, since
neuro-stem cells, neural precursor cells, and even neuron/oligodendrocyte/glial progenitor
cells were all transformable to the CSCs in generating the tumours in different studies [13].
The latest hypothesis was that pilocytic astrocytoma CSCs were more differentiated radial
glia/oligodendrocyte precursor cell-like cells than those immature neuro stem cell-like CSCs
in high-grade gliomas [28]. In pleomorphic xanthoastrocytoma, another low-grade circum-
scribed astrocytic glioma, CSCs were preliminarily studied and it was revealed that CD133
was low, while a high level of CD15 was detected, with gradually decreased GFAP-positive
cells by passages, in a xenograft model [29]. In other low-grade gliomas, CSCs were expectedly
discovered by the recognition of CSC markers of CD133, SOX2, Nestin, and the confirmation
of their differentiation by oligodendrocyte lineage markers of CNPase, glial markers of GFAP,
and NFP, in oligodendroglioma (defined as diffuse low-grade glioma, MAPK pathway-altered
in the 2021 WHO classification) [15]; by CSC markers of SOX2, AGR2, and differentiation
markers of GFAP, Beta-III Tubulin, in dysembryoplastic neuroepithelial tumours [30]; by CSC
markers of CD133, Nestin, SOX2, Nanog, CD44, EGFR, hTERT, BLBP, GFAP-delta, Olig2,
and ASCL1; and by differentiation markers of Beta-III Tubulin, GFAP, Synaptophysin, MAP2,
NeuN, BMP2, BMPR1B, and PSANACM in central neurocytoma [31,32].

High-grade gliomas in children are relatively less common, but their prognosis is
extremely poor. Since the WHO 2021 classification withdrew glioblastoma in children and
established paediatric-type diffuse high-grade gliomas as a new catalogue, old entities of
glioblastoma, anaplastic astrocytoma, diffuse intrinsic pontin gliomas (DIPG), and other
high-grade gliomas were reclassified to the new tumour type. The CSCs of paediatric
high-grade gliomas were isolated as early as 2003, with stemness markers of Nestin and
Musashi, along with the differentiation markers of Beta-III Tubulin, GFAP, and Oligo-
dendrocyte Marker O4 [12]. Later, CD133, SOX2, CD44, SEEA-1, ALDH, L1CAM, Olig2,
Nanog (partial, case-by-case), Podoplanin, and Bmi-1 were recognized as additional CSC
markers, and MAP2, NFP, CNPase, NeuN, and MBP were introduced as differentiation
markers [15,20–22]. Additionally, in H3 K27-altered Diffuse Midline Gliomas (DMG), a
group of devastating highly malignant tumours raised in children, the driver mutation
itself could have interfered with differentiation and promoted stem cell proliferation with
maintained stemness [65]. Studies on DIPGs by human-derived primary cell lines or iPSC
harbouring H3K27M not only revealed consistent CSC markers of CD133, SOX2, Nestin,
PAX6, Vimentin, and differentiation markers of MAP2, GFAP, NeuN, NOTCH 1, and
CSPG4 in previous studies on high-grade gliomas, but also introduced new CSC markers
of ALDH and controversial markers of Olig2 and PDGFRα; due to the origins of DIPG,
CSCs differed in different research groups [16–19].



Cancers 2023, 15, 3154 6 of 24

Ependymal tumours are groups of tumours derived from the glial cell lining of
the ventricular system, the subgroups of which have been carefully sorted by molecular
signatures and anatomic locations. These tumours can develop in both children and adults,
and treatments are challenging due to the locations and chemo-radiation resistances of
tumours in children. Although the driven mutations of the supratentorial ependymoma
(ZFTA fusion-positive or YAP1 fusion-positive) and posterior fossa ependymoma (either
group PFA or PFB) are fully elucidated, according to the WHO 2021 classification [5,66],
there is still no efficient treatment to control them. In the ground-breaking work from 2005,
CSCs of ependymoma were supposed to be a transformation of radial glia cells (RGCs),
since ependymomas recapitulated the gene expression profiles of regionally specified
RGCs. The CSC markers of Nestin, CD133, RC2, BLBP, and differentiation markers of
β-III Tubulin, MAP2, GFAP, S100, CNPase, and NG2 were accepted [33]. In later studies,
the driver mutations of ZFTA (RELA) fusion and YAP1 fusion were both confirmed to
contribute to the oncogenic signalling by inducing neural progenitor cells or neural stem
cells to form ependymomas [67,68], and single-cell RNA sequencing revealed subgroups
of tumour cells called undifferentiated ependymal cells (UECs) that might act as CSCs in
ependymomas, since their RNA profile overlapped with most of progenitors in different
lineages, with spatiotemporally specific signatures in separating CSCs of supratentorial
and anteroposterior ependymoma [35,36]. In total, the CSC markers for ependymoma
were expanded (there were numerous markers from single-cell sequencing and, here, we
list important ones) to include Vimentin, HES1, PBX1, SOX9, PAX3, Protein c-Fos, ZFP36,
LGR5, EGR1, JUN, and ATF3, and differentiation markers of Synaptophysin, O4, Olig1/2,
APC, CSPG2, DNAAF1, RSPH1, and CAPS were added [34–36].

2.2. Choroid Plexus Tumours

Choroid plexus tumours originate from choroid plexus epithelial cells, which de-
rive from neuroepithelial progenitors with MYC overexpression and a loss of p53, and
are extremely rare in adults but are commonly seen in young children under 1 year of
age [37,38]. According to the 2021 WHO classification, three subtypes of choroid plexus
tumours were grouped as choroid plexus papilloma, atypical choroid plexus papilloma,
and choroid plexus carcinoma [5]. Although recent molecular subgroups based on epi-
genetic profiles have been matched with subtypes in view of pathological characteristics,
patients with choroid plexus papilloma still have poor prognoses, with a 5-year overall
survival of 65% [69,70]. Since choroid plexus papilloma is regarded as a fully differentiated
benign papillary neoplasm closely resembling non-neoplastic choroid plexus tissue, most
studies on CSCs of choroid plexus tumours have focused on choroid plexus carcinoma [38].
The markers for CSCs in choroid plexus carcinoma are MYC, Nestin, ATOH1, BLBP, GFAP,
Geminin, GDF7, and differentiation markers are mainly for choroid plexus epithelial cells,
such as TTR, AQP1, OTX2, GMNC, MCIDAS, FOXJ1, CCNO, TAp73, and MYB [37–39].

2.3. Embryonal Tumours

CNS embryonal tumours are different groups of highly malignant tumours mainly
affecting young children, with gradually increased incidence over a long time period [6,71].
In the new WHO classification, the two types of embryonal tumours are medulloblastomas
and other CNS embryonal tumours. Molecular subtypes of medulloblastomas are extraor-
dinarily famous and practical due to their perfect correlation with clinical features [5]. The
first report of CSCs in medulloblastoma was the pioneering work on isolating multiple
types of paediatric brain tumours in 2003, with anaplastic astrocytoma and glioblastoma,
by the same CSC markers as Nestin and Musashi [12]. The mouse model confirmed that
the SHH subgroup medulloblastoma arose from both granule neuron precursors (GNPs)
and multipotent neural stem cells, by CSC markers of p75NTR, TrkC, Zic1, MATH1, SOX1,
SOX2, PLZF, DACH1, Multimerin 1, PAX6, ATOH1, MycN, and differentiation markers of
NeuN, GABRA6, Synaptophysin, PAX2, BLBP, and O4 [40,41]. Then, in medulloblastoma
cell lines of SHH, group3/4 subtypes, CSCs were successfully discriminated by markers of
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CD133, Nestin, SOX1, and SOX2, and markers of GFAP, CD44, CD24, and Beta-III Tubulin
were applied to indicate differentiation [42]. Furthermore, an interesting phenomenon
had been noticed that, in all four subgroups of medulloblastoma, a small group of Wnt-
active cells existed and could impair the stemness of CSCs by reducing Bmi-1 and SOX2
levels [72].

Embryonal tumour with multilayered rosettes (ETMR) is another type of common
aggressive embryonal tumour in young children, with C19MC-altered or DICER1-altered
molecular signatures. Although ETMRs consist of populations resembling neural stem
cells, radial glial cells, and more differentiated cells, the neuronal and glial cell markers
can be detected in limited parts of tumour tissues [48]. CSC components have been found
in different histological subtypes of ETMRs by markers of LIN28A/B, HMGA2, Nestin,
Vimentin, Oct4, SOX2, Nanog, CRABP1, DNMT3B, SOX3, SOX11, PAX6, SALL4, POU3F2,
MEIS1/2, MYCN, Wee1, and CHEK2, and their induced differentiation cells have been
marked with AQP4, GFAP, Synaptophysin, NeuN, and NFP [47–49].

Atypical teratoid/rhabdoid tumours (AT/RT) have been divided into three molec-
ular subtypes, TYR, SHH, and MYC, which predominantly affect infants or young chil-
dren, with a remarkably simple alteration of SWItch/sucrose nonfermentable related,
Matrix-associated, Actin-dependent regulator of Chromatin, Subfamily B1 (SMARCB1) or
SMARCA4, but with devastating outcomes [73]. After the first report of isolating CSCs
of AT/RT from patients by a marker of CD133 through sphere culture and a xenograft
model [43], SMARCB1-deficient pluripotent stem cells-based experiments revealed that the
origin of CSCs in AT/RT, SMARCB1-deficient neural progenitor-like cells efficiently gave
rise to AT/RT-like tumours and their stemness signatures worsened the prognosis [46]. The
markers of AT/RT CSCs are general markers of CD133, Nestin, Musashi, Nanog, Oct4, and
SOX2, with ALDH, SALL4, MYC, LIN28A/B, NCAM, PAX6, and KLF4, and the induced
differentiation markers are MAP2, Vimentin, GFAP, synaptophysin, CD99, S-100, EMA,
and SMA [43–46].

2.4. Germ Cell Tumours

Intracranial germ cell tumours (GCT) are less seen in children in Western countries
as they account for 0.4–3.4% of all paediatric CNS tumours, while in Asia, they account
for as high as 11%. Since GCTs have various types based on their cell components, the
origins of GCTs have been explored by experts with long-standing controversy in “germ
cell” and “pluripotent stem cell” theories [74]. According to early reports of GCTs, stem-
cell-related proteins of C-KIT, Oct3/4, transcription factor AP-2 gamma (TFAP2C, or AP-
2γ), Nanog, and germ-cell-specific proteins of Melanoma-associated antigen A4 (MAGE-
A4), cancer-testis antigen 1B (CTAG1B, or NY-ESO-1), expressed in tumour tissue, and
primordial germ cells are regarded as tumour generators to convince “germ cell” theory [75].
Nevertheless, the Oct4-activated neural stem cell can trigger the formation of teratoma
in the brain and raise the possibility of “pluripotent stem cell” theory [76]. However, it
has been widely accepted that germinoma is a prototype of all GCTs, by CSC markers of
Oct4, Nanog, SOX17 (germinoma), SOX2 (infantile GCTs), and differentiation markers of
PLAP and KIT (germinoma differentiation markers from ES cells, rare in intracranial none
germinoma GCTs (NGGCTs)) [50]. Due to the complexity of tumour composition, it is
inaccurate to use markers or histopathology alone using small specimens for diagnosis,
also in the identification of CSCs in GCTs [77]. Recent milestone research has supposed
that germinomas are raised from primordial germ cells, while NGGCTs originate from
embryonic stem cells by transcriptome and methylome analysis, and CSC markers are
separated into different subtypes, such as Lin28A, SOX2 KLF2/4 as general CSC markers,
PIWIL1, DAZL, DDX4, NANOS3, and ERVW-1 for germinomas, and Nanog and Oct4 for
NGGCTs [51].
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2.5. Tumours of the Sellar Region

The most seen tumour in the sellar region in children is the adamantinomatous
craniopharyngioma (ACP), which is a distinct type of tumour other than papillary cranio-
pharyngioma in the WHO 2021 classification, due to their different clinical demographics,
radiologic features, histopathologic findings, genetic alterations, and methylation pro-
files [5]. Interestingly, several studies found that CSCs of ACPs shared the same origin
with paediatric rare tumour of pituitary adenoma, from pituitary stem cells (PSCs) [53].
The CSC markers for ACPs were Nestin, SOX2, Oct4, CD133, KLF4, SOX9, β-catenin,
MYC, SCA1, HESX1, and KLF2/4, and the differentiation markers were similar to pitu-
itary hormone-secreting cells, such as PIT-1 (or POU1F1), TBX19 (or TPIT), and SF-1 (or
NR5A1) [52–54]

2.6. Other Tumours

In other less common assorted CNS tumours in children, CSCs differ from each other
due to their different oncogenesis alterations and tumour origins.

In a catalogue of pineal tumours, pineoblastoma caused by the recurrent homozygous
deletion of DROSHA and the microduplication of PDE4DIP in primitive neuroepithelia
acted as an aggressive malignancy, and their CSCs were marked with CD133, Musashi,
Podoplanin, and neuro-glial differentiation by Beta-III Tubulin [55,56].

In cranial and paraspinal nerve tumours, neurofibroma and its high-grade form
malignant peripheral nerve sheath tumour (MPNST), mainly presented in the department
of neurology or dermatology, were more frequently seen than schwannoma in children.
CSCs in these tumours were somewhat different, the markers of which were PLP, Nestin,
P75, GAP43, and Sox10, with GFAP, S100, and GAP43 (as a Schwann cell marker) in
differentiated cells, in neurofibroma and MPNST [58,59]; and Oct4, SOX2, Nanog, MYC,
KLF4, CD133, CD44, and CXCR4 in CSCs of schwannoma [57].

CNS Ewing sarcoma belongs to the catalogue of mesenchymal, non-meningothelial
tumours, driven by EWS gene fusions, which might originate from mesenchymal stem
cells since their CSCs are confirmed by CD44, CD59, CD73, CD29, and CD54, CD90, CD105,
and CD166, with differentiation markers of chondrocyte lineage-SOX9, COL10A1, PPARg2,
FABP4, LPL, and osteogenic differentiation SPP1, ALPL, and RUNX2 [60].

Meningioma is rare in young children and its CSCs have been mainly reported and
isolated from adult patients, with markers of Oct4, SOX2, Nanog, MYC, KLF4, CD133, and
Nestin [61].

3. Major Biological Impact of Tumour Stem Cells in Tumours of the Central Nervous
System in Children

The biological functions of CSCs contribute to all major aspects of tumourigenesis,
tumour progression, resistance in anti-tumour therapies, and tumour relapse. Since CSCs
have been named due to their stem cell characteristics, their abilities of expansion and differ-
entiation into different lineages through self-renewal and pluripotency are self-evident [78].
In CSCs from the tumours of CNS, the origins of tumours differ as embryonic stem cells,
neural crest cells, neural stem cells, neural progenitor cells, and oligodendrocyte-progenitor
cells according to the neurodevelopmental processes, and tumour types, grades, and ma-
lignancies have been tightly associated to the origins of CSCs or the components of CSC
subgroups [79,80]. Nevertheless, their roles in tumours depend on the following biologi-
cal functions: (1) CSCs secrete angiogenic factors or even transdifferentiate into vascular
endothelial cells in promoting tumour angiogenesis; (2) CSCs are highly metabolically
adapted to help tumours survive the low oxygen, acidic pH, and low nutrient availability
in the hypoxic niche; (3) CSCs are enriched in their capacity for both immune evasion and
immunosuppression (stemness signatures are negatively correlated with PD-L1 expression);
(4) CSCs secrete a variety of cytokines or ligands to transform normal fibroblasts into cancer-
associated fibroblasts in supporting CSCs; (5) CSCs upregulate the epithelial-mesenchymal
transition (EMT) signalling and change in adhesion receptor expression in helping tumour
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invasion and migration, and even convert non-CSCs into CSCs, in promoting metastasis;
(6) CSCs express multidrug resistance proteins, such as ATP-Binding Cassette (ABC) trans-
porters, protecting tumours from chemotherapy [81–83]. Major biological functions are
illustrated with main markers in CSCs from selected types of paediatric CNS tumours
(Figure 1).
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3.1. CSCs in Neovascularization

A microenvironment with adequate oxygen and nutrition is essential for tumourigene-
sis and maintenance. The perivascular niche might be the best tumour ecosystem for CSCs
to conduct this role, and it has been perhaps best characterized in glioblastoma, since an
early study revealed that glioblastoma CSCs intimately contacted with the aberrant tumour
vasculature and maintained self-renewal by several factors through autocrine and paracrine
in this special environment [84]. Afterward, in CSN tumours other than glioblastoma, such
as medulloblastomas, ependymomas, and oligodendrogliomas, it was confirmed that CSCs,
marked with CD133 and Nestin, were closely located next to capillaries [85].

There are several ways CSCs function in core vascularization; the first and most easily
accessible path is the secretion of vascular factors by CSCs to promote both angiogenesis
and vasculogenesis in peritumoural vessels. It was reported in 2006 that VEGF was highly
expressed by CD133-positive glioblastoma CSCs [86]. Later, in ependymoma and medul-
loblastoma, similar phenomena were observed in that VEGF, dickkopf WNT signalling
pathway inhibitor 3 (DKK3), EGF, FGF, and PDGF from CSCs intensively enhanced neovas-
cularization and correlated with patient outcomes [87–90]. Notably, although fewer but
wider vessels and a relatively lower turnover of endothelial and tumour cells were found
in pilocytic astrocytoma, in comparison with glioblastoma, the critical overlap in vessel
immaturity/instability and the angiogenic profile was seen between both tumours [91].

Another path was the transdifferentiation of CSCs, which was groundbreakingly re-
ported in glioblastoma, from an accidental discovery of p53 alterations in endothelial cells
of glioblastoma capillaries, indicating that a significant portion of the vascular endothelium
has a neoplastic origin [92]. The hypoxia condition, with additional VEGF, induced glioblas-
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toma CSCs differentiated with expression patterns of vascular endothelial cell markers [93].
This transdifferentiation performance was also confirmed in Oct4-positive CSCs in neurob-
lastomas through VEGF stimulation [94]. Although there are many signalling pathways
involved in the CSC-endothelium transdifferentiation path, reports from the tumours of
CNS in children are still limited. The presentation of this phenomenon in post-chemo
radiation glioblastoma has alerted the urgency for further understanding and overcoming
this crucial process [95,96].

3.2. CSCs in the Hypoxic Niche

Hypoxia acts as an extremely important role in CSC maintenance, since it can induce
other important roles of CSCs, the angiogenesis, immunosuppression, and EMT [82,97,98].
The high metabolism caused by the proliferation and migration of cancer expands the
necrosis in tumour tissue, commonly seen in highly malignant tumours. These necrotic
areas with hypoxic and acidic niches increase CSC maintenance and therapeutic resistance.
In the early exploration of medulloblastoma, it was recognized that hypoxia-induced
hypoxia-inducible factor (HIF)-1α could sustain Neurogenic locus notch homolog protein 1
(Notch 1) in its active form by preserving medulloblastoma CSC viability and expansion [99].
It has been recently revealed in ependymoma that PFA ependymomas are initiated from a
cell lineage that resides in restricted oxygen [100]. The mechanism of this function was later
extensively investigated, and it was clear that HIF1a/STAT3 co-activator complex induced
Vasorin expression to reduce Notch turnover, augmenting Notch signalling under hypoxic
stress in CSCs from glioblastomas [101]. In glioblastoma, low-pH conditions displayed
a consistent increase in cancer stem cell markers, including Olig2, Oct4, and Nanog, and
increased production of VEGF in promoting angiogenesis [102].

In the hypoxic niche, the function of nutrition uptake also reorientates in the CSCs of
glioblastoma, in that they outcompete for glucose uptake by co-opting the high-affinity
neuronal glucose transporters, which correlate with pluripotency in glioblastoma CSCs
and the outcomes of patients [103].

The new technology of the organoid culture system has made it possible to investigate
the hypoxic niches that were difficult to mimic through normal culture methods in finding
a rapidly dividing outer region of CSCs surrounding a hypoxic core of primarily non-stem
senescent cells and diffuse, quiescent CSCs in glioblastoma [104]. However, the devastating
discovery of dedifferentiation in glioblastoma cells under hypoxic conditions through
regulators of HIF and SOX2 [105] has made researchers and oncologists reconsider the
position of the hypoxic niche in treatments targeting CSCs.

3.3. CSCs in Immune Evasion and Immunosuppression

Immune evasion and immunosuppression are basic abilities of cancers to survive in
immunocompetent hosts. In the classical theory of tumour immunology, tumour immune
evasion and immunosuppression contain several key elements, including defective tumour
antigen presentation, derived immunosuppressive regulatory cells, the production of
immunosuppressive mediators, dysregulated costimulatory molecules expression, immune
deviation, and induce apoptosis of tumour-specific immune cells [106]. CSCs follow these
procedures and enhance function in immune evasion and immunosuppression [107].

It had been confirmed that both glioblastoma CSCs and paired mature glioblas-
toma tumour cells are weakly positive and negative for MHC-I, MHC-II, and NKG2D
ligand molecules, with defective antigen-processing machinery molecules [108]. Evidence
has shown that CSCs induced Treg cells through TGF-β1 and Treg chemokine attractant
CCL-2 [109], and immunosuppressive macrophages/microglia through soluble colony-
stimulating factor, macrophages inhibitory cytokine-1 [110], to inhibit T-cell proliferation.
The secretion of immunosuppressive mediator Prostaglandin E2 (PGE2) induced by irradia-
tion from glioblastoma CSCs even enhanced cell survival and proliferation, causing tumour
recurrence afterward [111], and macrophage migration inhibitory factor increased the
production of the immune-suppressive enzyme arginase-1 and stimulated myeloid-derived
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suppressor cell function in glioblastoma [112]. Programmed cell death ligand 1 (PD-L1) is a
member of the B7 family of co-stimulatory/inhibitory molecules, which perhaps is one of
the most famous targets of the last decade in the anticancer field. Highly expressed PD-L1
in glioblastoma CSCs was recovered in the mechanism of the EMT/β-catenin/STT3/PD-L1
signalling axis [113]; however, it was still difficult to treat patients with glioblastoma, as the
clinical trials are yet to reveal significant improvement in terms of outcomes [114]. This
could be blamed not only on the brain-blood barrier, but also the unaffected treatment, and
the PD-L1 independent PD-1 function in glioblastoma CSCs [115]. All of the mentioned
functional steps of immune evasion and immunosuppression have also been described in
medulloblastoma [116,117], but are not available in other types of paediatric CNS tumours.

Immune therapies in tumours of the CNS in children are challenged not only through
the above immune evasion and immunosuppression processes, but also through the charac-
teristics of the genomic landscape, which have revealed low microsatellite instabilities [118],
as well as unique anatomical, physiological, and immunological barriers of CNS [119].
Still, there are aspirations, with the discoveries of the pan-expressed B7 homolog 3 protein
(B7-H3) [120] and fat mass and obesity-associated protein (FTO) [121], which are powerful
candidates for immunotherapeutic targets in paediatric CNS tumours in the future.

3.4. CSCs in Correlation with Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) are important components of the tumour mi-
croenvironment. There are several origins of CAF, such as the transference of fibroblasts
in the host stroma, EMT, the transdifferentiation of perivascular cells, the differentiation
of MSCs derived from bone marrow, etc. [83]. There has been evidence that CAF could
also originate from CSCs during induced differentiation in other cancers [122], and the
same behaviour in tumours of CNS has also attracted investigators since CAFs, or Glioma-
associated stromal cells (GASCs), were identified with CAF functions of wound healing and
angiogenesis [123]. However, most reports have suggested that these GASCs [124] originate
from cells rather than CSCs, and recruited endothelial cells or reactive astrocytes with stem
cell properties through EMT, transdifferentiated pericytes and vascular smooth muscle
cells, and mesenchymal stem cells [124]. The latest research has found that glioma CSCs
and GASCs cooperate with each other in protumoural effects, since CSCs chemotactically
secrete PDGF and transforming growth factor beta (TGF-β) as mediators on GASCs, and
GASCs induced CSC enrichment through osteopontin and HGF [125]. Tumour-associated
pericyte (TAP) is another synonym of CAF in gliomas, and this fibroblast activation protein
α (FAP) and the PDGFRβ positive cell can be targeted by oncolytic adenovirus [126].

There has been no report of CAF, GASC, or TAP from tumours of the CNS in children
to date, yet their involvement in the reciprocation of CSCS and CAF maintenance and
enrichment, the EMT of CSCs [127,128], and drug resistance [129] raise the importance of
further investigating the features of these cells.

3.5. CSCs in Epithelial-Mesenchymal Transition

Metastasis is an eternal topic in basic research on and clinical practice in cancers.
It is clear that EMT plays an indispensable role in this biological process. The phrase
“migrating cancer stem cells” was introduced for cancer cell-combined EMT properties
with a stem-cell-like phenotype, to explain the complex cancer cell-(EMT)-migrating CSC-
(MET)-metastatic cancer cell reversion [81]. In an early report from brainstem glioma, the
expression of β-catenin and E-/N-cadherin in patient samples revealed no obvious staining
for E-cadherin, but higher β-catenin and N-cadherin levels in high-grade tumours, and
worse outcomes indicated the EMT’s involvement in glioma aggressive behaviour [130]. In
SHH medulloblastoma, the downregulation of miR-466f-3p, together with the concordant
upregulation of VEGFa and Neuropilin 2, encouraged cell proliferation and the self-renewal
ability of CSCs through the EMT process, which sustained the mesenchymal phenotype
of SHH medulloblastoma CSCs [131]. In posterior fossa ependymoma, it was found
that the mesenchymal-like tumour cells were transformed and associated with distal
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metastases through the activation of NFκB and AP-1 complexes, induced by TNF-α in
combination with TGF-β1 [132], and enhanced EMT correlated with poor outcomes in
children and adults with different types of ependymomas [133]. Notably, C19MC, the
key alteration in ETMR, could suppress EMT-associated genes [134], which indicated
ETMR with mutant C19MC might have enhanced the EMT profile. Lastly, EMT processes
in high-grade glioma and pilocytic astrocytoma were simultaneously discovered, but
higher EMT activities correlated with a higher grade of tumours and worse prognoses
for the patients, while the existence of apparent aggressive glioblastoma subtypes with
high E-cadherin expression [135,136] caused experts in the field to rethink EMT/MET in
tumour aggressiveness.

3.6. CSCs in Multidrug Resistance

Chemoradiation resistance has plagued oncologists and cancer researchers for a long
time. ATP binding cassette (ABC) transporters were the first family of proteins described
in the function of transporting a range of substrates, including peptides, to conduct drug-
resisting functions [137]. Clinical data has shown the ABCG2 transporter is increasingly
expressed according to the tumour grades in gliomas, especially in CD133-positive CSCs.
In an in vitro experiment, adding ABCG2 inhibitor nicardipine successfully enhanced the
sensitivity to mitoxantrone in CSCs [138]. In ependymoma, the high expression level of
ABCB1 was observed in the CSC population, and the inhibition of ABCB1 by vardenafil or
verapamil could potentiate the response to chemotherapeutic drugs of vincristine, etopo-
side, and methotrexate [139]. The biological significance of ABC transporters expanded
when the study on medulloblastoma showed the specificity of expression levels of different
family members of ABC transporters, and that in SHH medulloblastoma, ABCA8 and
ABCB4 levels were higher, while ABCC8 levels were lowest in the SHH subgroup [140],
which may be due to the different origins of CSCs in different medulloblastoma subgroups.
Although the function of CSC-expressed ABC transporters highlights that the binding of
hydrophobic substrates, including chemotherapeutic drugs, leads to a conformation change,
ATP binding, and the release of substrates outward the formation of a pore-like structure,
the results of CSC-eliminating clinical trials indicate that molecules or antibodies targeting
ABC transporters generally show a less convincing response rate in clinical settings [141].
This raises the importance of other participants in CSC multidrug resistance function.

The specific roles of CSC marker CD133 in CSC biology have been investigated in
many kinds of cancers, as well as its involvement in the positive regulation of autophagy
correlated with chemoresistance capability [142]. In low-grade glioma of pilocytic astrocy-
toma, the recurrent cases always face difficulty in readopt chemotherapies, while targeting
CD133-positive CSCs can significantly improve chemotherapeutic efficacy [143]. Other
CSC markers, such as SOX2 [144], Nanog [145], CD44 [146], etc., have been investigated,
and their involvement in the chemoresistance of CSCs was confirmed through various
signalling pathways.

The DNA damage repair process in CSCs is also a key area in the research field
of chemoresistance. O6-alkylguanine repair, DNA mismatch repair, DNA base excision
repair, and the sensing of DNA damage are all steps CSCs involve in the restoration of
the chemoradiation-injured DNA. A large number of novel molecular drugs had been
introduced in targeting CSCs’ function of chemoresistance [147].

4. Clinical Significance of Tumour Stem Cells in Tumours of the Central Nervous
System in Children

Since CSCs are isolated in various types of CNS tumours in children and play critical
roles in many biological processes in tumour development, their existence highlights the
correlation of clinical practices regarding CNS tumours in children.
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4.1. CSCs and Clinical Features

Although the hypothesis of the CSC model remains uncertain, either generated from
normal stem cells, normal progenitor cells, or even dedifferentiated from mature tumour cells,
the CSCs can perfectly unify hierarchical and stochastic models in carcinogenesis [98]. It has
been revealed that CSCs are involved in determining tumour (sub)types, the timing of tumour
developments, the positioning of tumour origins, and the inciting of tumour aggressiveness.

During the early exploration of the origins of CSCs in medulloblastoma, specialists
noticed that alterations in the critical SHH signalling pathway for regulating proliferation
on the granule neuron precursor could induce SHH subgroup medulloblastoma, which led
researchers to consider the possibility that different medulloblastoma subtypes arose from
CSCs with distinct cell lineages [148]. Recently, it has become clear that lineage-specific
molecular signatures in medulloblastoma CSC played a decisive role in the formation
of four molecular subgroups of medulloblastomas [149]. They were protein patched
homolog 1 (PTCH1)-deleted CSCs with granule neuron progenitors or a neural stem cell
lineage, WNT alterations in CSCs matched to the lower rhombic lip pontine mossy fibre
lineage in the brainstem, CSCs with a mixed population of malignant cells with divergent
differentiation along the cerebellar lineage, or CSCs closely associated with a neuronal
differentiation metaprogram and the unipolar brush cell lineage arising from the upper
rhombic lip.

The involvement of CSCs in the timing of tumour development relies on the process
of acquired mutations in different origins of CSCs (normal stem cells, precursor cells, or
progenitor cells). It is clear that the incidence of CNS tumours overall increases with
age [150], due to long-term carcinogen exposure that may be mutagenic in oncogenes or
tumour-suppressor genes in the origins of CSCs. This does not conflict with a high incidence
of CNS malignancies in children because epigenetic regulation in paediatric CNS tumours
is more apparent than in adult tumours, which are more influenced by environmental and
microenvironmental features [151]. Genetic alterations in early embryogenic pathways in
CSC origin cells and the time of gene alterations in different differentiation stages both
contribute to the timing of tumour development, especially to distinct tumour types in
early childhood. For example, the dysregulation of embryonal development pathways
SHH, WNT, and NOTCH, or the alteration of the proto-oncogenic tumour suppressor
Retinoblastoma protein (Rb) oncogene Rb, are commonly seen in paediatric embryonal
CNS tumours and are rarely seen in adult CNS tumours; CSCs from embryonic stem cells,
neural crest cells, and neural stem cells can form embryonal tumours, while those from less
pluripotent neural stem cells and neuronal/glial progenitor cells mainly form malignant
gliomas [80,152]. There has also been a hypothesis that the temporal identities of the cell
of origin determine tumour malignancies, which emphasizes the importance of the early
temporal window in the cell cycle, but not the stemness stages [153].

Ependymal tumours, on the other hand, were the first kind of tumours that elucidated
that the anatomic locations of the tumours correlated with CSCs from different populations
of progenitor cells in the tissues of origin. These different populations of ependymoma-
CSCs (with a radial glia cell phenotype) had self-renewal abilities and were multipotent
in culture; additionally, they also had anatomic site-specific chromosomal alterations or
expression signatures, such as Ephrin type B receptor 2/3/4 (EPHB2/3/4), Ephrin A3/4,
Jagged1/2 (JAG1/2) in supratentorial tumours, an inhibitor of a differentiation family of
proteins 1/2/4 (ID1/2/4), AQP1/3/4 in anteroposterior tumours, and Homeobox (HOX)
in spinal tumours [33], later confirmed by the single-cell RNA sequencing technique.

According to the results of single-cell RNA sequencing, the proportions of CSCs in
ependymal tumours correlate with their aggressiveness, which enrich differentiated popu-
lations and CSCs with quiescent neural stem cell profiles, underlying their more indolent
clinical behaviours in patients with YAP and PFB ependymomas, or tumours enriching
differentiated lineages of PF-Ependymal-like and PF-Astroependymal-like programs in PFB
and PF-subependymoma, which have been revealed to have distinctly favourable clinical
outcomes; while tumours enriching undifferentiated PFA subpopulation are associated
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with more-aggressive clinical courses [35,36]. Intriguingly, in adult astrocytic tumours, we
previously noticed that the frequency of Sox2/CD44v9-negative and phospho-S6-positive
tumour cell populations (differentiated tumour cells), but not Sox2/CD44v9-positive and
phospho-S6-negative CSC populations, correlated with the grade of glioma. This phe-
nomenon revealed the complexity of research on CSCs by different methods or conditions,
and pathways such as mTOR may contribute to tumour aggressiveness and the separate
maintenance of stemness [154].

4.2. CSCs and Anti-Cancer Therapies

The first approach to treating tumours of the CNS in children is surgical resection, the
extent of which is related to outcomes in children with low- or high-grade gliomas (except
midline gliomas) [155,156]. Notably, evidence has increasingly shown that an operation
might cause residual CSCs to survive and grow through postoperative angiogenesis, reac-
tive astrogliosis, CSC niche formation, growth factor productions, and neuro-inflammation,
due to surgical brain injury [157,158]. These clues come from glioblastoma in adults, where
surgery-induced microglia/macrophage infiltration, angiogenesis, and the upregulation
of stem-cell-related genes were confirmed by RNA sequencing in recurrent and primary
tumour tissues [159]. Unfortunately, there are no reports on postoperative CSC status in
paediatric CNS tumours yet, and maximal safe resection had limitations in eliminating all
perilesional CSCs.

Chemotherapy is applied in many types of CNS tumours in children; however, the
chemoresistance of CSCs has been as widely known by experts as early as the concept of
CSCs was first accepted. Clinical evidence has shown the chemo-medication-induced CSC
marker upregulated in breast cancer patients receiving neoadjuvant chemotherapies or
an EGFR/HER2 inhibitor [160]. Since chemo-medications target vigorously proliferating
cells, the quiescent CSCs can perfectly escape from chemotherapies through their intrinsic
and extrinsic drug-resistant abilities, which are DNA sensor and repair pathways, the
expression of drug transporters, EMT in the tumour microenvironment, and the shelter of
the niche [161].

Radiation therapies are commonly introduced to combat malignant tumours such
as paediatric high-grade gliomas, embryonal tumours, germ cell tumours, and benign
tumours arising in special locations with functional impairment. A clinical study in breast
cancers found that fractionated radiation not only spared CSCs, but also mobilized them
from a quiescent phase into actively cycling cells, while the surviving non-tumourigenic
cells were driven into senescence [162]. Similar to chemoresistance, the radioresistance
of CSCs was mediated by redistribution in terms of the cell cycle, the enhanced repair of
DNA, the scavenging of reactive oxygen species and free radicals, and the induction of
inflammatory and tumourigenesis pathways in the CSC microenvironment [163]. There
was also a hypothesis that irradiation could “awaken” quiescent CSCs to enter the cell
cycle, causing tumour recurrence after initial treatments [164].

For over a decade, it has been known that the treatment principle of the elimination or
induction of the differentiation of CSCs had become a promising way by which to deal with
CSCs, through targeting pathways such as WNT, SHH, and NOTCH, which are required
for the maintenance of CSCs [165]. The microenvironments of CSCs are also considerable
targets, since they provide suitable space for self-renewal and increased CSC chemical
and radiological tolerance, which include vascularization, hypoxia, tumour-associated
macrophages/fibroblasts, and the extracellular matrix [83]. The drug and gene delivery
systems, such as nanoparticles, have also been extensively studied for enhancing target-
ing therapies for CSCs in paediatric CNS tumours [166]. In recent preliminary reports,
controversial results were achieved for the same (class) medications in several common
paediatric CNS tumours by different study groups. In recurrent, progressed, or relapsed
SHH group medulloblastoma, both SHH pathway inhibitors Vismodegib and Sonidegib,
targeting transmembrane protein Smoothened (SMO), were revealed with anti-tumour
activities in monotherapy stratums [167], while the combination of Vismodegib and Temo-
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zolomide failed as the proportion of successes required was not reached [168]. In trials of
HDAC inhibitors Vorinostat and valproic acid, promising efficacies were achieved in re-
lapsed/refractory neuroblastoma [169], and in very young children (less than 48 m/o) with
medulloblastoma or ETMR [170], in a combination of other agents, while using continuous
valproic acid with post-irradiation bevacizumab or monotherapy of Vorinostat, it failed
to improve outcomes in children with DIPG [171,172]. In targeting immune checkpoints,
great challenges were recognized since the tumour mutational burden (TMB) was relatively
low in various CNS tumours in children [118]. In a large trial testing antibodies of Cyto-
toxic T-lymphocyte-associated protein 4 (CTLA 4) and programmed death-1 (PD-1), the
monotherapy or combined therapy could not improve the survival rate in children with
DIPG and advanced high-grade tumours of medulloblastoma, ependymoma, and other
high-grade gliomas [173]. It is important to emphasize that the suitable target population
should be carefully selected by elevated PD-L1 expression and high TMB, as a response of
treatments is worlds apart [174].

Nevertheless, other novel therapeutic methods have also attracted experts to improve
treatment efficacy. Chimeric antigen receptor T-cell (CAR-T) therapy has been considered
as a candidate approach since the FDA has approved its application in haematological
malignancies. The advances in the development of multi-antigen targeting CAR-T and
the generation of CSC-specific CAR-T have enhanced confidence in its potential benefits
in treating children with CNS tumours [175–177]. However, with no reports from large-
scale trials and methodological challenges, such as the presence of the blood-brain barrier,
the cross-expression of CSC markers in immature normal tissue, immune suppression by
tumour microenvironment [178,179], treatment with CAR-T in targeting CSCs in paediatric
CNS tumours still has a long way to go. The oncolytic virus was another potential way to
target CSCs in children with CNS tumours, as an early review revealed multiple types of
oncolytic viruses having the ability to kill CSCs [180]. A recent report on using oncolytic
HSV-1 G207 in high-grade glioma in children showed satisfying safety data and preliminary
positive antitumour efficacy [181]. Since there are a large number of ongoing studies on
the oncolytic virus in paediatric CNS tumours, based on the results of trials in adults [182],
evidence of this therapy is highly anticipated.

4.3. CSCs and Tumour Recurrences

Tumour relapse and metastasis are major causes of cancer-related mortality. There
have been studies on paired primary and recurrent tumours using various techniques
in determining the biological difference and novel targets for further treatments. It was
revealed that cancers from different systems shared similar contributions of CSCs in tumour
post-treatment recurrences, including the evidence of upregulated CSC markers, such as
CD133 and CD44 variants in recurrent tissues, which might act as predictive, prognostic,
and therapeutic targets [183–186]. In tumours of the CNS, early reports from adult high-
grade gliomas revealed that the accumulation of CSCs in post-irradiated necrosis areas [187]
or the expansion of CSCs in post-chemoradiation recurrences [188] and CSC markers were
related to the time to recurrence and overall survival of these patients [189,190].

In children with CNS tumours, the detection of CSCs in clinical research has been
rarely conducted, while basic research using RNA sequencing in both ependymoma and
medulloblastoma has indicated a trend toward the enrichment of CSCs in recurrent tu-
mours, surviving from multidisciplinary treatments [36,191]. The CSCs are involved in the
rare phenomenon of radiation-induced glioblastoma (RIG) in children treated for medul-
loblastoma, since the RIG showed a similar CSC-specific profile with not only the primary
medulloblastoma, but also with other astrocytomas and medulloblastomas [192].

We can rely on the great progress in clinical laboratory technology; tests on CSCs
for diagnostic procedures or outcome predictions in children with CNS tumours may
emerge in future practices. Liquid biopsy to obtain cell-free DNA from a patient’s blood or
cerebrospinal fluid for methylation sequencing has provided reliable data on medulloblas-
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toma [193]; this might be a candidate method in follow-up examinations for children with
CNS tumours.

5. Conclusions

CSC is an enduring hotspot for medical workers and researchers in the oncology
specialty. This comprehensive review considers the distinct CSCs in common types of
tumours of the CNS in children by their CSC markers, discusses the biological functions in
tumour initiation and maintenance, and describes their relationship with clinical practice.
However, there are plenty of tasks awaiting further investigations in order to clarify the
real model of CSCs, the real role of CSCs in tumourigenesis/progression, and a real therapy
targeting CSCs. By increasing research and clinical trials on CSCs of the CNS tumours in
children today, a better understanding of these CSCs may be achieved.
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