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Simple Summary: We propose an automated system that handles numerous problems encountered
when diagnosing the presence of numerous types of lesions in the liver based on multiparametric
magnetic resonance (MR) images. Using a properly built and processed dataset and deep-learning
segmentation algorithms, we devised a method for screening MR images for the presence of focal
lesions in the liver.

Abstract: The problems in diagnosing the state of a vital organ such as the liver are complex and
remain unresolved. These problems are underscored by frequently published studies on this issue.
At the same time, demand for imaging diagnostics, preferably using a method that can detect the
disease at the earliest possible stage, is constantly increasing. In this paper, we present liver diseases
in the context of diagnosis, diagnostic problems, and possible elimination. We discuss the dataset and
methods and present the stages of the pipeline we developed, leading to multiclass segmentation of
the liver in multiparametric MR image into lesions and normal tissue. Finally, based on the processing
results, each case is classified as either a healthy liver or a liver with lesions. For the training set, the
AUC ROC is 0.925 (standard error 0.013 and a p-value less than 0.001), and for the test set, the AUC
ROC is 0.852 (standard error 0.039 and a p-value less than 0.001). Further refinements to the proposed
pipeline are also discussed. The proposed approach could be used in the detection of focal lesions
in the liver and the description of liver tumors. Practical application of the developed multi-class
segmentation method represents a key step toward standardizing the medical evaluation of focal
lesions in the liver.

Keywords: liver tumor segmentation; classification; deep learning; focal lesions; hepatocellular
carcinoma; adenoma; focal nodular hyperplasia; magnetic resonance imaging (MRI)

1. Introduction

The liver is a vital organ unique for metabolism, in which numerous biochemical
pathways are present [1]. Due to the liver’s complexity and unique functional role, liver
health and preservation of the liver parenchyma represent major causes of concern. The
liver, as the only place where certain processes occur (such as detoxification), is vulnerable
to damage caused by various toxins, with alcohol being the most prevalent among the
population [2,3]. Prolonged exposure to toxic substances leads to cirrhosis with a high
incidence of hepatocellular carcinoma [4]. Hepatocellular carcinoma is the most common
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primary liver cancer [5]. The probability of developing HCC is more than 20% in the
cirrhotic liver, and outcome of the tumor is fatal [6]. Due to its involvement in the hormonal
pathways, the liver is also subject to the influence of the both endogenous and exogenous
hormones, which are related to the formation of lesions such as FNH [7,8]. Hormonal
simulation can also induce the dimensional growth of hemangiomas [9]. Finally, the liver’s
anatomy itself, due to its many tubular structures filled with fluids, promotes the formation
of cysts. Consequently, benign cysts are the most frequent lesions [10]. The importance of
the liver itself and probability of different lesions being formed makes the liver a point of
interest in evaluations using diagnostic imaging procedures. Magnetic resonance is the
most important modality in the diagnosis of the most common primary form of liver cancer:
hepatocellular carcinoma. The diagnostic accuracy of MRI in the detection of liver tumors
is high compared to that of tumors in other organs [11–13]. According to international
guidelines, MRI is the first step of the diagnostic process, and histopathological analysis
is required for liver nodules with an atypical imaging presentation [14,15]. However,
a liver biopsy is not always feasible, especially in the case of very small liver nodules;
furthermore, this procedure is not free from risks and is limited by an elevated rate of
false negatives (about 30%) [16]. Therefore, the implementation of radiomics and machine
learning software in clinical practice appears to be a promising and interesting new field
of investigation.

Sensitivity and specificity for MRI-supported diagnosis are over 90% in hemangioma,
cyst, and FNH detection [17–20]. With this high detection sensitivity, MRI outperforms
CT in the detection of lesions with diameters less than 2 cm [21]. Notably, MRI is also
advantageous in the detection and characterization of intracellular compounds, which
may indicate the state of disease or even level of advancement of morbidity. The use of
hepatobiliary contrast agents and the introduction of diffusion-weighted imaging sequences
in the protocol supported the recognition of premalignant lesions helps to assess risk in
atypical or indeterminate nodules [22,23]. Importantly, MR requires no radiation exposure,
which is especially important in abdominal CT, for which the dose is relatively large,
ranging from 15 to 24 mSv and corresponding to a dose equivalent to 220 to 350 single chest
X-rays. This exposure may influence lifetime attributable cancer risk [24]. Although MRI
efficiency is reported as remarkably high, it must be noted that those numbers represent the
best human experience in the detection of lesions reported in diagnostic processes. Human
perception of the patterns of textures present in the analyzed image plays a key role in the
diagnostic process [25]. Detection relies on differences in the lesion textures compared to
the background. Recognition is a process based on a comparison of the perceived textures
against the “gold standard” lesion attributes as specified in, e.g., atlas recommendations.
This process is subjective and prone to errors and intra-reader variability, which makes
computer-based supporting systems highly anticipated by the medical community.

In the past years, an enormous increase in the number of medical imaging examina-
tions performed has been observed [24]. This trend is connected to an increase in demand
for radiological opinions in clinical decision-making processes [26]. Increasing the number
of imaging exams introduces large amounts of data, which cannot be analyzed in the time
expected by patients. Therefore, the concept of automated image analysis is growing in
popularity as a promising approach for obtaining results faster and more effectively in
order to meet clinical needs [27]. Among the problems related to the automated analysis
of medical images, the task of screening for the presence of cancer mass is emerging and
continues to gain popularity, especially in the fields of lung cancer and brain lesions but also
in liver cancer detection [28–30]. The use of automated analysis methods such as radiomics
and machine learning improves cancer detection in early stages, which is connected to an
increased survival rate [31]. This increase is often connected to the detection of incipient
cancer, which in the worst case scenario, could potentially be overlooked by a human [32].

Recently, studies have presented many automatic and semi-automatic methods based
on classical methods of image analysis and deep learning (DL) techniques, aimed at creating
systems for the reliable diagnosis and detection of liver tumors. The proposed approaches
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are mostly applied to CT images of livers and based on available public liver CT databases.
Given that the liver can undergo various pathologies such as hepatic fat, iron deposits,
fibrosis, and tumors, which can modify the liver’s density and signal intensity or simply
distort its shape, existing methods suffer from inaccuracies. Another important aspect is
the location of the liver, whose immediate surroundings, due to having a similar intensity,
add to the difficulty of corresponding problems. Liver segmentation is one of the key
steps in various clinical applications such as tumor detection and is often preceded by the
preprocessing required to achieve high accuracy in later stages. Preprocessing can include
applying windowing to the raw image [33]; histogram equalization, the most widely used
being contrast limited adaptive histogram equalization [34]; data normalization [35]; image
denoising, e.g., median filter [36]; MR bias field correction, e.g., N4 bias correction [37]; or
the joint removal of MRI bias [38].

MR images provide much better differentiation between healthy tissues and lesions.
Nevertheless, automated methods for the analysis of these images are not common, espe-
cially when it comes to the analysis of multiparametric MR images of the liver. In light
of these facts, in our study, we analyze T1 (pre- and post-contrast), T2 TSE, and DWI. We
propose a DL-based processing pipeline aimed at screening MR liver examinations for
the presence of lesions. Because multiparametric MR liver databases are not available
in the public domain, as a part of this study, an imaging database was collected, which
includes both MR abdominal examinations and reference manual segmentation of the liver
and lesions.

2. Materials and Methods
2.1. Materials

The study protocol was developed based on the guidelines of the Helsinki Declaration
and the Declaration of Good Clinical Practice. All images were anonymized prior to pro-
cessing to ensure the security of personal data. In addition, written consent from the Local
Ethics Committee was obtained to conduct this study 1072.6120.22.22 (23 February 2022).

Images were selected in the Hospital Data Reporting System—Hospital Information
System (HIS). To select the group of interest, 6500 records were reviewed by data scientists
and the radiology team. From this dataset, 1520 records were selected for further evaluation
and examined in the hospital PACS for the presence of lesions (hepatocellular carcinoma,
hemangioma, liver cysts, and focal nodular hyperplasia). The control group, with no lesions
confirmed, was also selected from the database. In total, 500 records that met the quality
criteria (free of artefacts and completeness of the desired sequences) were exported for
further analyses. Meticulous scanning and verification of the lesions revealed 145 cystic
lesions (C), 126 hemangiomas (HM), 28 hepatocellular carcinomas (HCC), and 78 focal
nodular hyperplasia (FNH) cases. For some patients, more than one type of lesion was
present in the liver. The distribution of particular lesions is given in Figure 1.

In this study, we used data from the selected 500 patients scanned in a 1.5 T MR system.
MRI images were acquired using the standard diagnostic protocol for patients referred for
an abdominal evaluation in MRI. DWI, single-shot echo-planar imaging, EPI, T2 turbo-spin
echo, T1 turbo-spin echo, post-contrast early (T1 + C), and T1 turbo-spin echo post-contrast
(non-hepatospecific) delayed (T1 Delayed) were used in in this study. Diffusion weighted
sequences (EPI) were produced with 50-400-800 B using 2, 4, and 8 averages, with three
diffusion weightings. In all applied sequences, the signal/noise ratios were equal to 1. The
protocol outline of sequences used for the evaluation is presented in Table 1.
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Table 1. MR protocol applied in standard abdominal imaging.

TE TR FA MX VOX FOV CON AV PAT DF T

T2 (AX) 100 4000 180 182 × 320 1.3 × 1.3 × 4 200 4 1 2 30 1.38

T1 (AX) 2.58 215 70 154 × 256 1.6 × 1.6 × 4 400 4 1 2 30 0.44

DWI (AX) 71 7800 0 118 × 192 2.1 × 2.1 × 4 400 4 2,4,8 2 30 5.53

TE—time echo, TR—relaxation time, FA—flip angle, MX—imaging matrix, VOX—voxel size in mm3, FOV—field
of view (mm), BW—bandwidth, AV—averages, CON—concentrations, TF–turbo factor, T—overall sequence
time (minutes).

The reference manual segmentation of the liver and lesions was prepared with the
3D Slicer Imaging Computing Platform (https://www.slicer.org/, accessed on 1 February
2023). For each patient, the liver was segmented in each MR sequence. For each lesion, the
lesion’s presence was confirmed, and its outlines were drawn for each slice in which the
lesion was visible. Each lesion was outlined for a single MR sequence where the lesion was
most prominent, as determined using a visual assessment. The liver and lesion outlines
were prepared by two members of the research team. The initial outlines were then verified
by a group of three radiologists (with 40, 15, and 6 years of experience) who applied an
intrareader multistep consensus procedure to arrive at the final outlines. Agreements over
92% were accepted for further image analysis. Lower agreement resulted in corrections of
the initial outlines. The workflow is presented in Figure 2.
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2.2. Methods

The dataset of 500 MR examinations was randomly split into training and testing
portions. Stratified sampling was applied to the training and test sets when selecting
examinations: approximately 20% of examinations were selected for the test set from each
group of examinations (healthy, with HM, with HCC, with cyst, with cyst and FNH, etc.).
The training set consisted of 405 MR examinations, including 178 examinations in which no
lesions in the liver were visible and 227 examinations in which lesions were present. The
test set consisted of 95 MR examinations, including 43 examinations in which lesions in the
liver were not visible and 52 examinations in which changes were present.

To complete the task of patient classification, we devised a pipeline consisting of the
steps described below. Firstly, the four diagnostic images, denoted T2, T1 + C, T1 Delayed,
and DWI in the following, were loaded from the corresponding DICOM sequences and
entered into a spatial mesh with unified spatial resolution based on linear interpolation
and information stored in appropriate DICOM tags (pixel size and slice thickness equal to
inter-slice distance).

In the next step, the liver in each of the four images was segmented. For this process,
we used U-Net, as implemented in nnU-Net framework [39]. The nnU-Net implementation
of U-Net differs slightly from that of the vanilla U-Net [40]. Most notably, in nnU-Net,
stride convolutions were used instead of max-pooling, and Leaky ReLU was used instead
of plain ReLU. There was also a difference in data preparation. The authors of nnU-Net
implemented a universal framework, which means that this framework can be used for
very different datasets, often with better results than neural networks solutions aimed at
operating on only one concrete dataset. Network topology details are also established based
on datasets. This process allows for the appropriate aggregation of spatial information and
is also influenced by hardware parameters, such as GPU memory. To account for these
factors, we started with the initial patch size and verified that the size would fit within the
GPU memory. If so, the batch size was increased; if not, the patch size was decreased. In
addition to input patch size and number, pooling operations per axis were set, which also
implicitly set the number of convolutional layers [41]. For the above-mentioned neural
network, we chose training in a fivefold cross-validation scheme, where the training set
was randomly divided into five parts. Four of these parts were used as the actual training
set and one as the validation set. The validation set was selected in five possible ways by
running five training sessions and obtaining five models of liver segmentation. These five
models were used in the prediction stage by averaging their responses.

Data augmentation was applied during the dataset preparation stage and was imple-
mented using the Batchgenerators framework [42] with the following augmentations [39]
(the value of the probability of applying each augmentation is given in parenthesis): Spatial:
rotation, scaling (0.4)—in the case of isotropic patches, the angles of rotation around each
axis, given in degrees, were sampled from U (−30, 30), and for anisotropic patches, from
U (−180, 180); the scaling factor was sampled from U (0.7, 1.4). Gaussian noise (0.15), if
applied, was added to each voxel independently with the variance of the noise drawn from
U (0, 0.1). For Gaussian blur (0.2), the width of the Gaussian kernel, expressed in voxels,
was taken from U (0.5, 1.5), and the blur (0.5) was applied to each modality independently.
For brightness (0.15), the intensity of each voxel was multiplied by the value drawn from U
(0.7, 1.3). For contrast (0.15), the intensity of each voxel was multiplied by the value drawn
from U (0.7, 1.3); the latter was subsequently trimmed to the original range. A simulation
of low resolution (0.25) was achieved using nearest neighbor interpolation to downsample
the modalities by a U (1, 2) factor and then resample the modalities back to their original
size using cubic interpolation. The gamma intensities (0.15, and the voxel intensities were
inverted beforehand) were scaled to a factor [0, 1] of their respective range of values, a
nonlinear transformation of the intensities per voxel was applied, and then the intensities
were scaled back to their original range of values. Mirroring (0.5) was performed with a
given probability along all axes. After liver segmentation, we removed all but the largest
connected components. This process was found to be beneficial for our task.
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Then, we performed registration between T2 and the remaining diagnostic images.
The registration step was necessary because, typically, the effects of a patient’s movements
between acquisition of the four sequences were clearly visible. We first found three trans-
formations between the liver segmentations in T2 images, which we set as fixed images.
These transformations were, respectively, T1 + C, T1 Delayed, and DWI liver segmentations
and were set as moving images. We used a method that allows for two-stage registration,
where each stage is characterized by different transforms. At the beginning of the first
stage, we set a similarity 3D transform with rotation, uniform scaling around a fixed center,
and translation. To ascertain the agreement between the two registered images, we used
negative normalized cross correlation with the sampling strategy set to random (sample
image voxels with replacements using a uniform distribution) and the sampling percentage
set to 1%. At this stage, we used a linear interpolator and regular step gradient descent opti-
mizer. The second stage was implemented in an analogous way. We changed the transform
to B-spline and the optimizer to Limited memory Broyden, Fletcher, Goldfarb, Shanno, and
Bound Constrained (LBFGSB) [43,44]. Subsequently, we applied the found transformations
to the MR images obtained by combining all sequences under one spatial mesh. After the
registration step, we cropped the images to the region of liver segmentation.

We then fed the data into nnU-Net, which was trained in the same way as before,
only this time for simultaneous liver and liver lesion segmentations. The output returned
multiclass segmentation of the liver and lesions.

The ultimate screening task was solved based on the results of the multiclass seg-
mentation. Whenever the segmentation indicated that the number of voxels labeled as
being contained within a lesion was larger than a certain decision threshold, the MR ex-
amination was labeled as containing a lesion. ROC curves were then obtained by varying
the decision threshold in a range from 0 to 100,000 voxels. Additionally, the liver and
lesion segmentation quality were measured by means of two standard metrics: the Dice
coefficient and robust Hausdorff distance (with tolerance set to 0.99). Computation of
the segmentation quality metrics was accomplished using the surface–distance library
(https://github.com/deepmind/surface-distance, accessed on 1 February 2023). The pro-
cessing workflow is shown in Figure 3.
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3. Results

In Figure 4, we show plots of the loss function for the task of liver segmentation
in T2 images. The U-Net models were trained until a plateau of the loss function was
reached for a validation set. During training, the best models for the validation set were
saved and subsequently used for predictions. The training and validation curves for other
segmentation tasks looked similar to the examples shown in Figure 4. In Figure 5, we
show the results of registration between T2 (fixed) images and the remaining diagnostic
images. Clearly, the effect of patient movement was very prominent, as demonstrated by
relatively low values of the Dice coefficient before registration. Registration compensated
for patient movement to some extent, as the Dice coefficient after registration was around
96%. Figure 6 shows the ROC curves for the training and test sets in the screening task. The
ROC AUC value was found to be substantially higher for the training set than for the test
set. Given the number of true positive and true negative cases in the training and test sets,
the ROC AUC values equal to 0.925 (standard error 0.013) and 0.852 (standard error 0.039)

https://github.com/deepmind/surface-distance


Cancers 2023, 15, 3142 7 of 15

for the training and test sets, respectively, were statistically significant at a p-value less than
0.001. After fixing specificity (SPE) at 0.79 for the test set, the sensitivity (SEN) of detection
for patients with liver lesions was equal to 0.79. For the test set and decision threshold
equal to 100 voxels, the SEN, SPE, and accuracy (ACC) of classification were equal to 0.79,
and the positive predictive value (PPV) was equal to 0.82. The corresponding values for
the training set were 0.85 and 0.88. For the test set and the decision threshold equal to 300
voxels, the ACC was equal to 0.83, SEN was equal to 0.73, SPE was equal to 0.95, and PPV
was equal to 0.95. The respective values for the training set were 0.82, 0.75, 0.91, and 0.91.
Figure 7 shows box plots for the liver segmentation task. The values of the Dice coefficient
were found to be quite high at about 0.98. In contrast, the task of lesion segmentation is
not solved equally well, as demonstrated by the box plots for the liver lesion segmentation
task (Figure 8). Figure 9 demonstrates that the accuracy of hepatic lesion segmentation,
measured by the Dice coefficient, was strongly dependent on the lesion volume measured
by the number of voxels, with the segmentation of larger lesions being more accurate.
These conclusions regarding segmentation quality were further supported by the values of
robust Hausdorff Distance (rHD). For the task of liver segmentation, the median rHD in
the training set was equal to 1.0 voxels, standard deviation was equal to 2.5 voxels, and
the 95% quantile was equal to 4.0 voxels. The respective values for the test set were 1.4,
5.5, and 15.2 voxels. For the task of lesion segmentation, the median rHD in the training
set was equal to 23.2 voxels, the standard deviation was equal to 42.9 voxels, and the 95%
quantile was equal to 193.5 voxels. The corresponding values for the test set were 25.9, 53.8,
and 168.7 voxels.
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Figure 6. ROC curve for the “healthy liver/liver with a lesion present” classification task. On the left,
the figure presents results for the training set. Here, the area under the ROC (AUC ROC) is equal
to 0.925 (standard error 0.013, p-value less than 0.001). On the right, the results for the test set are
presented. Here, the AUC ROC is equal to 0.852 (standard error 0.039, p-value less than 0.001). TPR:
true positive rate; FPR: false positive rate.
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are presented. On the right, the results for the test set are presented.
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according to lesion volume (measured by number of voxels). On the left, the results for the training
set are presented. On the right, the results for the test set are presented.
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4. Discussion

There are numerous possible lesions in the liver. These lesions can be aggressive in
terms of growth and also represent a danger in replacing healthy parenchyma [45,46]. The
impact of liver dysfunction on the health status of an individual is enormous, so there is a
strong need for accurate diagnoses. Contemporary radiology with MR is the most effective
modality used for the detection of soft tissue lesions. One of the most important limitations
of this process is the ability of the human eye to find differences between lesions and the
liver parenchyma in the most effective and repeatable way. The field training of imaging
specialists, psychosomatic conditions, and overall light condition in the examination room
are all recognized factors that can influence lesion detection [47,48]. The application of
different sequences where various constituents of the lesions can be visualized aids in
recognition of such lesions. However, this effect might be alleviated with lesion polymor-
phism [49]. Therefore, the first step of lesion recognition—a border setting between normal
parenchyma and the lesion—is a segmentation task run based on training with multi-step
verified man-made descriptions. The second task—recognition of the patterns related to
lesions—relies on associated processes and requires significance experience from the reader,
including the ability to engage in comparative interpretation [50]. Both steps are part of
daily practice in radiology, with special importance in oncology, where lesion dimensions
and associated change are of particular importance in treatment assessment and further
planning [51].

Deep learning methods are promising in the field of lesion detection and could help
optimize the detection of liver lesions [52]. Some studies describing DL methodologies
explored combined liver segmentation and liver tumors, but many focused only on liver
segmentation. The 3D Deep Supervised Network described by Dou et al. [53] is based on a
fully convolutional network architecture. The presented framework was evaluated on the
MICCAI SLiver07 CT data ASD set. For this architecture, the total inference time for a single
subject was 5 s for the 3D Deep Supervised Network and 87 s for conditional random fields,
which corresponds to approximately one and a half minutes in total. Another algorithm
using deep supervision was presented by Lv et al. [54]. The authors replaced the encoder’s
standard convolution with a residual block and provided an atrous inception module to
connect the encoder and decoder, allowing the model to obtain multi-scale features; the
authors also incorporated a deep supervision mechanism into the decoder. In addition,
the authors employed the Tversky loss function to balance segmented and nonsegmented
regions and performed further refinements with a dense conditional random field. This
method was validated on three public CT databases: LiTS17, 3DIRCADb, and SLiver07. As
a drawback, the authors noted that the large amount of 3D network parameters hindered
and slowed the training process. The authors also noted the susceptibility of the method
to errors when considering livers with borderline tumors. Additionally, since this work
was aimed at segmenting the liver, it may not be suitable for segmenting liver tumors.
A two-step method was presented by Lu et al. [55]. In the first step, this method uses a
3D convolutional neural network to segment the liver. In the second step, segmentation
accuracy is improved using cutting charts and maps. The model was tested on 40 CT
volumes derived from the publicly available datasets Sliver07 and 3DIRCADb. The authors
concluded that this method performs reasonably well compared to the manual method due
to the latter’s long processing time and erroneous results. An evaluation of three different
convolutional neural network (CNN) architectures was performed by Hoang et al. [56].
These architectures were a Fully Convolutional Network with Conditional Random Fields,
Deep retinal image understanding, and the V-net model. The authors used contrast-
enhanced images from the different datasets of LiTS, mayo, EMC_LD, EMC_NC_LD,
which were collected from different medical centers. The results showed that all three
CNNs achieved a mean Dice score of over 90% in liver segmentation with typical contrast-
enhanced CT images of the liver, but these three architectures did not perform well for
non-contrast-enhanced CT and low dose images. An automatic methods based on CNNs
using 30 enhanced CT volumes were compared by Li et al. [57]. A Dice score of 80%
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was achieved in this study, demonstrating that the CNN methods performed better than
the classical machine learning methods AdaBoost, Random Forests, and support vector
machine. Li et al. [58] proposed a deep attention neural network including a high-resolution
branch that can maintain input image resolution and thus preserve spatial details, as well
as multiscale feature aggregation for cascading liver and tumor segmentation from CT
images. This model achieved a Dice score of 76.3% for lesions and 96.0% for the liver when
LiTS datasets were used for the evaluation.

For liver tumor segmentation in CT, the task is more difficult than liver segmentation.
This process requires the patient to be injected with a contrast agent that enhances the
contrast between the healthy liver and cancerous tissues of the liver. Even then, the variety
of tumors makes this task difficult. However, the main reason segmentation of liver
tumors is not frequently studied compared to whole liver segmentation is caused by the
unavailability of public datasets with ground truth masks for liver tumors, which is due to
the fact that manually annotating liver and liver tumor data is time consuming and prone
to errors.

Magnetic resonance imaging has become the golden standard radiological modality for
liver mass evaluation [59] due to the absence of ionizing radiation and good differentiation
of morphological features of different tumor classes under this method [60]. With increasing
clinical demand for MR-based diagnosis, there is a need to develop fast and comprehensive
clinical protocols for liver mass detection and differentiation [61]. Proposed protocols
consist of the sequences important for the detection of malignancies with less of a possible
time expense [62]. Studies presenting different approaches showed the importance of T1-
weighted pre- and post-contrast images but also T2-weighted images and DWI sequences,
as summarized in the work of Brunsing [63]. These protocols called AMRI (Abbreviated
MRI) protocols, enable the rejection of time consuming and costly abdominal procedures.
The sensitivity and specificity of AMRI protocols were found to exceed 84% and 92%,
respectively [64].

While the results presented in this study are promising, further research in this area
is warranted to improve the quality of both screening and lesion segmentation. The dif-
ferences between the results obtained for the training and test sets show that the trained
models do not generalize very well. Since methods preventing overfitting (data augmen-
tation) were intensively used during training, it can be concluded that in order to further
improve the quality of the models, it is necessary to increase the training set. The relatively
weak performance of the models in the task of lesion segmentation could also be a conse-
quence of the heterogeneity of the dataset, which contains both very small and very large
(e.g., 1/3 of the whole liver) lesions.

Further improvements are possible in the designed pipeline. The first step of liver
segmentation in the diagnostic sequences was quite accurate (with a Dice coefficient above
0.98). While marginal improvements to liver segmentation are possible, it is unlikely that
such improvements would improve the quality of the end-to-end process. The registration
was also quite accurate (with a Dice coefficient around 0.96). However, because all four
diagnostic sequences were used to segment the lesions, some small inaccuracies in the
registration may lead to large inaccuracies in the segmentation of small lesions. For
this reason, further research on high-quality inter-modality registration is required to
improve end-to-end processing. Besides classic elastic registration, other methods were
also tested (including ones based on deep learning, particularly the DeepReg framework;
https://github.com/DeepRegNet/DeepReg, accessed on 1 February 2023), but no better
results were obtained. Finally, after improving the inter-modality registration step and
increasing the image database, keeping in mind the heterogeneity of the data, multi-
class segmentation, which works well for large lesions, could be supplemented by object
detector tools to detect small lesions. Deep-learning-based object detectors (MONAI library:
https://monai.io/, accessed on 1 February 2023, nnDetection framework: https://github.
com/MIC-DKFZ/nnDetection, accessed on 1 February 2023) were already applied to the
current dataset, given the current registration algorithm, but the results were not sufficient

https://github.com/DeepRegNet/DeepReg
https://monai.io/
https://github.com/MIC-DKFZ/nnDetection
https://github.com/MIC-DKFZ/nnDetection
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to improve the end-to-end quality of the screening task. Today, there are tremendous efforts
being undertaken to develop solutions based on radiomics analysis aimed at increasing the
diagnostic utility of MR in the task of diagnosing liver lesions. Different approaches have
been used to detect and classify liver lesions with promising results [65]. In the near future,
it is expected that the expansion of computer-assisted classification systems developed in
the field of liver malignancies will improve diagnostic accuracy to the level where making
accurate diagnoses will be possible without expanding the process to invasive procedures.
This measure will markedly increase patient comfort and safety.

The present study also has limitations, first of which is lack of adenomas and metas-
tases in our database. Hemangiomas were rare in our material (over 30 cases) and were
difficult to differentiate in the stage of manual segmentation preparation. Therefore, these
hemangiomas were not ultimately used in the present study. The limited incidence of
Hemangiomas is a consequence of the fact that these lesions are rare. Some studies reported
a frequency of up to 20% in the general population [66], but in other studies, a frequency as
low as 0.4% was found [67]. Metastases were not present in our material due to profile of
the medical unit where the data were collected. Another limitation is that the analyses were
based on four sequences only. The inclusion of more sequences may have improved the
performance of the detection model. On the other hand, the inclusion of more sequences
should be preceded by improving the inter-sequence registration algorithm. Otherwise,
the benefits of using more data may be hindered by inaccuracies in the registration. The
final limitation of our study is the size of the dataset, which, despite including 500 cases,
was found to be too small based on a comparison of the results found for the training and
test sets.

5. Conclusions

In this study, we designed a pipeline for liver screening. This method involves
classifying examined patients into one of two groups: patients with healthy livers and
patients with liver lesions. The quality of this method was found to be promising, with
the AUC ROC for the testing set equal to 0.85 and sensitivity and specificity equal to 0.79.
Further improvements to this pipeline and increasing the volume of the training set would
likely further improve the quality of the results. The proposed system could aid practical
radiological routines in the detection and differentiation of lesions of different types. We
believe that further implementation of the proposed approach will improve the diagnostic
process, for which the accurate recognition of lesions is mandatory but remains challenging.
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