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Simple Summary: Breast cancer is one of the leading causes of cancer death among women. Ul-
trasound is a harmless imaging modality used to help make decisions about who should undergo
biopsies and several aspects of breast cancer management. It shows high false positivity due to high
operator dependency and has the potential to make overall breast mass management cost-effective.
Deep learning, a variant of artificial intelligence, may be very useful to reduce the workload of
ultrasound operators in resource-limited settings. These deep learning models have been tested for
various aspects of the diagnosis of breast masses, but there is not enough research on their impact
beyond diagnosis and which methods of ultrasound have been mostly used. This article reviews
current trends in research on various deep learning models for breast cancer management, including
limitations and future directions for further research.

Abstract: Breast cancer is the second-leading cause of mortality among women around the world.
Ultrasound (US) is one of the noninvasive imaging modalities used to diagnose breast lesions and
monitor the prognosis of cancer patients. It has the highest sensitivity for diagnosing breast masses,
but it shows increased false negativity due to its high operator dependency. Underserved areas do
not have sufficient US expertise to diagnose breast lesions, resulting in delayed management of breast
lesions. Deep learning neural networks may have the potential to facilitate early decision-making by
physicians by rapidly yet accurately diagnosing and monitoring their prognosis. This article reviews
the recent research trends on neural networks for breast mass ultrasound, including and beyond
diagnosis. We discussed original research recently conducted to analyze which modes of ultrasound
and which models have been used for which purposes, and where they show the best performance.
Our analysis reveals that lesion classification showed the highest performance compared to those
used for other purposes. We also found that fewer studies were performed for prognosis than
diagnosis. We also discussed the limitations and future directions of ongoing research on neural
networks for breast ultrasound.

Keywords: deep learning; ultrasound modalities; breast cancer; classification; segmentation; breast
cancer diagnosis

1. Introduction

Breast cancer is the leading cause of cancer worldwide and the second leading cause
of death among women [1]. Ultrasound (US) is used in conjunction with mammography
to screen for and diagnose breast mass, particularly in dense breasts. US has the potential
to reduce the overall cost of breast cancer management as well as it can reduce benign
open biopsies by facilitating fine needle aspiration, which is preferable because of its high
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sensitivity, specificity, and limited invasiveness [2–5]. The BI-RADS classification helps
distinguish patients who need followup imaging from patients who require diagnostic
biopsy [6] Moreover, intraoperative use can localize breast cancer in a cost-effective fashion
and reduces the tumor-involved margin rate, eventually reducing the costs of additional
management [7,8]. However, one of the major disadvantages of ultrasonography is high
operator dependency, which increases the false-negative rate [9].

Thus, deep learning may come into play in reducing the manual workload of opera-
tors, creating a new role for doctors. Incorporation of deep learning models into ultrasound
may have the potential to reduce the false-negative rate and reduce the overall cost of
breast cancer management. It can help physicians and patients make prompt decisions by
detecting, diagnosing, and monitoring the prognosis and treatment progress with consider-
able accuracy and time efficiency. This possibility has created considerable enthusiasm, but
it also needs critical evaluation.

There have been several review papers published in the last decade on the role of
deep learning in ultrasound for breast cancer segmentation and classification. They mostly
combined deep learning models with B mode, shear wave elastography (SWE), color
Doppler images, and sometimes with other imaging modalities [10–15]. Several surveys
have been published on deep learning and machine learning models with B mode and
SWE images, as well as multimodality images for breast cancer classification [16–18]. There
are several concerns, such as bias in favor of the new model and whether the findings
are generalizable and applicable to real-world settings. There are a considerable number
of deep learning models developed to study breast cancer automatic segmentation and
classification, but there is a lack of data on how they are improving the overall management
of breast cancer, starting from screening to diagnosis and ultimately to survival. There are
insufficient data on which modes of ultrasound are being used for deep learning algorithms
as well.

This article reviews the current research trends on deep learning models in differ-
ent ultrasound modalities for breast cancer management, from screening to diagnosis to
prognosis, and the future challenges and directions of the application of these models.

2. Imaging Modalities Used in Breast Lesions

Various imaging modalities are used to diagnose breast masses. Self-examination,
mammography, and ultrasound are usually used for screening, and if a mass is found,
ultrasonography and/or MRI are usually preformed to evaluate the lesion [19]. Ultrasound
has been used in various stages of breast cancer management including screening of dense
breasts, diagnosis, and prognosis during chemotherapy due to its noninvasive nature,
nonuse of ionizing radiation, portability, real-time nature to enable guidance for biopsies,
and cost-effectiveness. Figure 1 shows different modalities of imaging that are used for
breast mass management including their sensitivity, specificity, advantages, and disadvan-
tages. Ultrasound technology, which has been advancing, includes various methods such
as color Doppler, power Doppler, contrast-enhanced US, 3D ultrasound, automated breast
ultrasound (ABUS), and elastography. These methods have been increasing the sensitivity
and specificity of conventional US to a maximum level [20,21].
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Figure 1. Various imaging modalities used for breast mass management, with ultrasound showing
the highest sensitivity [20,21].

3. Computer-Aided Diagnosis and Machine Learning in Breast Ultrasound

Computer-aided diagnosis (CAD) can combine the use of machine learning and
deep learning models and multidisciplinary knowledge to make a diagnosis of a breast
mass [22]. Handheld US has been supplemented with automated breast US (ABUS)
to reduce intraoperator variability [23]. The impact of 3D ABUS as a screening modality
has been investigated for breast cancer detection in dense breasts as the CAD system
substantially decreases interpretation time [23]. In the case of diagnosis, several studies
have shown that 3D ABUS can help in the detection of breast lesions and the distinction of
malignant from benign lesions [24], predicting the extent of breast lesion [25], monitoring
response to neoadjuvant chemotherapy [26], and correlating with molecular subtypes
of breast cancer [27], with a high interobserver agreeability [23,28]. A study proposed
a computer-aided diagnosis system using a super-resolution algorithm and used a set
of low-resolution images to reconstruct a high-resolution image to improve the texture
analysis methods for breast tumor classification [29].

In machine learning, features are discerned and encoded by expert humans that may
appear distinctive in the data and organized or segregated with statistical techniques
according to these features [30,31]. Research on various machine learning models for
the classification of benign and malignant breast masses has been published in the past
decade [32]. Most recent papers used the k-nearest neighbors algorithm, support vector
machine, multiple discriminant analysis, Probabilistic-ANN (Artificial Neural Network),
logistic regression, random forest, decision tree, naïve Bayes and AdaBoost for diagnosis
and classification of breast mass, binary logistic regression for classification of BI-RADS
category 3a, and linear discriminate analysis (LDA) for analysis of axillary lymph node
status in breast cancer patients [32–37].

4. What Is Deep Learning and How It Is Different

Deep learning (DL) is part of a broader family of machine learning methods that mimic
the way the human brain learns. DL utilizes multiple layers to gather knowledge, and the
convolution of the learned features increases in a sequential layer-wise manner [30]. Unlike
machine learning, deep learning requires little to no human intervention and uses multiple
layers instead of a single layer. DL algorithms have also been applied in cancer images
from various modalities to make a diagnosis or classification, lesion segmentation, etc. [38].
These algorithms have been used to incorporate various clinical or histopathological data
to make cancer diagnoses as well in some studies.
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There are various types of convolutional neural networks. The important parts of
CNNs are the input layer, output layer, convolutional layers, max-pooling layers, and fully
connected layers [30,39]. The input layer should be the same as the raw or input data [30,39].
The output layer should be the same as the teaching data [30,39]. In the case of classification
tasks, the unit numbers in the output layer must be the same as the category numbers in
the teaching data [30,39]. The layers which are present between the input and the output
layers are called hidden layers [30,39].

These multiple convolutional, fully connected, and pooling layers facilitate the learn-
ing of more features [30,39]. Usually, the convolution layer, after extracting a feature from
the input image, passes to the next layer [30,39]. Convolution maintains the relationships
between the pixels and results in activation [30,39]. The recurrent application of a similar
filter to the input creates a map of activation, called a feature map, which facilitates reveal-
ing the intensity and location of the features recognized in the input [30,39]. The pooling
layers adjust the spatial size of the activation signals to minimize the possibility of overfit-
ting [30,39]. Spatial pooling is similar to downsampling, which adjusts the dimensionality
of each map, retaining important information. Max pooling has been the commonest type
of spatial pooling [30,39].

The function of a fully connected layer is to obtain the results from the convolu-
tional/pooling layers and utilize them to classify the information such as images into
labels [30,39]. Fully connected layers help connect all neurons in one layer to all neurons in
the next layer through a linear transformation process [30,39]. The signal is then output via
an activation function to the next layer of neurons [30,39]. The rectified linear unit (Relu)
function is commonly used as the activation function, which is a nonlinear transforma-
tion [30,39]. The output layer is the final layer producing the given outputs [30,39]. Figure 2
shows the overview of a deep learning network.

Cancers 2023, 15, x FOR PEER REVIEW 4 of 34 
 

 

uses multiple layers instead of a single layer. DL algorithms have also been applied in 
cancer images from various modalities to make a diagnosis or classification, lesion seg-
mentation, etc. [38]. These algorithms have been used to incorporate various clinical or 
histopathological data to make cancer diagnoses as well in some studies. 

There are various types of convolutional neural networks. The important parts of 
CNNs are the input layer, output layer, convolutional layers, max-pooling layers, and 
fully connected layers [30,39]. The input layer should be the same as the raw or input data 
[30,39]. The output layer should be the same as the teaching data [30,39]. In the case of 
classification tasks, the unit numbers in the output layer must be the same as the category 
numbers in the teaching data [30,39]. The layers which are present between the input and 
the output layers are called hidden layers [30,39]. 

These multiple convolutional, fully connected, and pooling layers facilitate the learn-
ing of more features [30,39]. Usually, the convolution layer, after extracting a feature from 
the input image, passes to the next layer [30,39]. Convolution maintains the relationships 
between the pixels and results in activation [30,39]. The recurrent application of a similar 
filter to the input creates a map of activation, called a feature map, which facilitates re-
vealing the intensity and location of the features recognized in the input [30,39]. The pool-
ing layers adjust the spatial size of the activation signals to minimize the possibility of 
overfitting [30,39]. Spatial pooling is similar to downsampling, which adjusts the dimen-
sionality of each map, retaining important information. Max pooling has been the com-
monest type of spatial pooling [30,39]. 

The function of a fully connected layer is to obtain the results from the convolu-
tional/pooling layers and utilize them to classify the information such as images into labels 
[30,39]. Fully connected layers help connect all neurons in one layer to all neurons in the 
next layer through a linear transformation process [30,39]. The signal is then output via 
an activation function to the next layer of neurons [30,39]. The rectified linear unit (Relu) 
function is commonly used as the activation function, which is a nonlinear transformation 
[30,39]. The output layer is the final layer producing the given outputs [30,39]. Figure 2 
shows the overview of a deep learning network. 

 
Figure 2. Overview of a CNN. 

5. IoT Technology in Breast Mass Diagnosis 
Recently, the Industrial Internet of Things (IIoT) has emerged as one of the fastest-

developing networks able to collect and exchange huge amounts of data using sensors in 
the medical field [40]. When it is used in the therapeutic or surgical field, it is sometimes 
termed the “Internet of Medical Things” (IoMT) or the “Internet of Surgical Things” 
(IoST), respectively [41–44]. IoMT implies a networked infrastructure of medical devices, 
applications, health systems, and services. It assesses the physical properties by using 
portable gadgets with integration into AI methods, often enabling wireless and remote 

Figure 2. Overview of a CNN.

5. IoT Technology in Breast Mass Diagnosis

Recently, the Industrial Internet of Things (IIoT) has emerged as one of the fastest-
developing networks able to collect and exchange huge amounts of data using sensors
in the medical field [40]. When it is used in the therapeutic or surgical field, it is some-
times termed the “Internet of Medical Things” (IoMT) or the “Internet of Surgical Things”
(IoST), respectively [41–44]. IoMT implies a networked infrastructure of medical devices,
applications, health systems, and services. It assesses the physical properties by using
portable gadgets with integration into AI methods, often enabling wireless and remote
devices [45,46]. This technology is improving remote patient monitoring, diagnosis of
diseases, and efficient treatment via telehealth services maintained by both patients and
caregivers [47]. Ragab et al. [48], developed an ensemble deep learning-based clinical
decision support system for breast cancer diagnosis using ultrasound images.

Singh et al. introduced an IoT-based deep learning model to diagnose breast lesions
using pathological datasets [49]. A study suggested a sensor system using temperature
datasets has the potential to identify early breast mass with a wearable IoT jacket [50].
One study proposed an IoT-cloud-based health care (ICHC) system framework for breast
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health monitoring [51]. Peta et al. proposed an IoT-based deep max-out network to classify
breast mass using a breast dataset [52]. However, most of these studies did not specify
what kind of dataset they used. Image-Guided Surgery (IGS) using IoT networks may
have the potential to improve surgical outcomes in surgeries where maximum precision is
required in anatomical landmark tracking and instruments as well [44]. However, there is
no study on IoST-based techniques involving breast US datasets.

6. Methods

Medline and Google Scholar databases were searched for research conducted be-
tween 2017 and February 2023 using the following terms: “deep learning models”, “breast
ultrasound”, “breast lesion segmentation”, “classification”, “detection and diagnosis”,
“prediction of lymph node metastasis”, “response to anticancer therapy”, “prognosis”,
and “management”. After analyzing around 130 papers, we decided to exclude review
papers, surveys on deep learning, and papers regarding machine learning models for breast
ultrasound. We also excluded articles that didn’t specify the DL models that had been used.
We finalized the list to include 59 papers focused on primary research carried out on deep
learning models for breast mass ultrasound. EndNote, the reference management tool, was
used to detect duplicates. The final step of the review process was to evaluate the whole
manuscript to exclude articles that were deemed unnecessary.

7. Discussion

Various deep learning models have been tested on different stages of breast lesion
management. Table 1 shown below presents all the original research conducted on breast
lesion management from 2017 to February 2023, according to our search. Table 2 shows the
architectures, hyperparameters, limitations, and performance metrics of the deep learning
neural networks used in those studies. Most studies focused on categorizing breast lesions
as benign or malignant. Five studies were performed on the BI-RADS classification of
breast lesions. There is only one study on breast cyst classification. There are two studies on
the distinction between benign subtypes. There are only three studies on the classification
of breast carcinoma subtypes. Segmentation is the second-most common step that deep
learning models were applied to. Numerous deep learning studies on segmentation may
have the potential to detect tumors on screening in the future in resource-limited settings.
Seven studies were conducted on the prediction of axillary lymph node metastasis. There
are three studies on the prediction of response to chemotherapy. One study tested a deep
learning model for segmentation during breast surgery to improve the accuracy of tumor
resection and evaluate the negative margin.

Segmentation of breast mass is an important earlier step in diagnosing and character-
izing mass, as is the followup on a mass once diagnosed. The most common model used
in breast mass segmentation is U-Net (See Table 2). U-Net is a CNN, which is basically
an encoder–decoder architecture for feature extraction and localization [53–56]. Atten-
tion U-Net is another model that was used for segmentation purposes which introduces
attention layers into the U-Net to identify and focus on relevant areas such as margins
or salient features of the mass to efficiently extract features [57,58]. SegNet is another
encoder–decoder-based architecture that can provide semantic segmentation by using
skip connections and preserving contextual information, improving margin delineation
capability [59,60]. Mask R-CNN, used in another study, can provide both pixel-level seg-
mentation and object detection [61]. Various studies used different modules other than
neural networks to extract features such as transformer-based methods, local nakagami
distributions, etc., and combined them to the CNN or introduced an attention layer to
the CNN or modified the original CNN by adding an additional residual layer or layers
to obtain an output to improve missed detections or false detections. These models can
efficiently (compared to radiologists) segment the breast mass in US images within a very
short amount of time.
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Classifying the breast mass into benign and malignant, or BI-RADS categories, us-
ing ultrasound can help facilitate earlier decision-making in breast mass management.
AlexNet [62–64], VGG [65,66], ResNet [62,63,65,67–70], and Inception [62,65,69], including
GoogleNet, Faster R-CNN [63,66,70], and generative adversarial networks [62,71], were
mostly used for breast mass classification during this period (stated in Tables 1 and 2).
AlexNet is composed of multiple convolutional layers, pooling layers, fully connected
layers, and a softmax classifier [62–64]. VGG is composed of 16 or 19 weight layers,
3 × 3 convolutional filters, and max-pooling layers to extract features [65,66]. ResNet
uses residual connections to learn residual mapping [62,63,65,67–70]. Inception architec-
tures including GoogleNet use parallel convolutional layers of varying sizes to capture
features of multiple scales [62,65,69]. Faster R-CNN is an improved model from R-CNN,
which initially extracts features using a backbone CNN (such as VGG or ResNet) then
predicts region of interests, the features of which are again pooled to undergo classifica-
tion, bounding box regression, and finally nonmaximum suppression, improving efficacy
significantly [63,66,70]. Generative adversarial network is composed of a generator and a
discriminator [62,71]. The generator can map the input to generate data, which resemble
the real data [62,71]. The discriminator component usually distinguishes between the
real and generated data [62,71]. They are usually trained in an adversarial manner, using
two separate loss functions [62,71]. These models can mimic radiologist performance in
classifying breast mass into benign and malignant or BI-RADS categories in an efficient
manner. Only one study predicted the molecular subtype [72].

Axillary lymph node metastasis detection is an important prognostic indicator for
breast mass management, and its early detection by ultrasound can be valuable in making
this whole management cost-effective and less burdensome for patients. DenseNet [73–75],
Inception [76], ResNet [73,76,77], VGG [78], ANN [79], Xception [80], and Mask R-CNN [73]
were used in the prediction of lymph node metastasis (stated in Table 2). DenseNet is
composed of densely connected layer in a feed-forward manner where feature maps from
all the preceding layers are concatenated in a residual manner [73–75]. In Artificial Neural
Network (ANN), an input layer, one or more hidden layers and an output layer exist
where the weights are learned independently and do not consider the relationship with
neighboring data [79]. Xception is a modified version of Inception that uses depthwise
separable convolutions to reduce the number of parameters to allow more efficient learning
of the features [80].

Monitoring the response of the mass by ultrasound to chemotherapy can be very cost-
effective for cancer patients, as it can help switch the chemotherapy regimen earlier if there
is not a desirable response to the current ongoing therapy. ResNet [81] and VGG19 [82]
were used in the prediction of response to chemotherapy (stated in Table 2). Most studies
compared one model with another model or models or used the same model on different
datasets. Around 15 studies compared these deep learning models with radiologists’
performance [65,76,78–80,82–91]. Mostly automatic classification and prediction of lymph
node metastasis were compared with radiologists’ performance.

Over 40 studies focused only on B-mode images (See Table 1). Four studies were
on B-mode and SWE combined mode. Two studies were on color Doppler mode only,
and two studies were on combined B-mode and color Doppler images. Three studies were
on combined B-mode, SWE, and color Doppler US images. Figure 3 shows a comparison of
the purposes for which deep learning models are applied. Figure 4 shows a comparison
among different modes of ultrasound where deep learning models are applied.
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Adam is the most commonly used optimizer for optimizing the models in those studies
(stated in Table 2), followed by stochastic gradient descent. Cross-entropy is the most used
loss function. ReLU and Softmax are the most used activation functions. Image size
256 × 256 was most used as input, followed by 224 × 224 pixels and 128 × 128 pixels.
The range of learning rates used in those studies is 5 × 10−6 to 0.01. The range of epoch
numbers used in all the studies is 10–300. The range of batch sizes used in those studies
is 1–128. However, the hyperparameters and parameters were not well defined in many
studies. Moreover, it is difficult to understand whether fine tuning the hyperparameters
can affect the performance of the models because the performance metrics used in those
studies are heterogeneous.

Table 3 shows the descriptive comparative analysis across deep learning model perfor-
mances among various stages of breast lesion management. This shows that deep learning
models used for classification showed the best performance, with a performance metric
approaching 100% [65], followed by segmentation, prediction of axillary lymph node status,
and prediction of response to chemotherapy. However, the datasets, the structures of the
model, and the performance metrics used by those studies were heterogeneous, so some of
those metrics could not be incorporated into the analysis. Moreover, a significant number of
segmentation studies used both the Dice measure and accuracy as performance metrics, so
the studies overlapped between those metrics. The same phenomenon happened between
accuracy and AUC, used by the classification, prediction of ALN status, and prediction of
response to chemotherapy studies.

Regarding the limitations mentioned (stated in Table 2) in the studies, the most com-
mon limitation is a small dataset. However, it is difficult to define whether the dataset
is adequate; most of the studies considered their datasets small or large based on the
related works that had been conducted previously, whether they contained a diverse range
of data or not, or by comparing the datasets with the data used in benchmark models.
Using single-center samples is another commonly mentioned limitation due to its effect
on making the model less generalizable. Most of the studies were retrospective, making
it hard to identify if they could be applied to a real-world setting. Samples can be biased
sometimes, containing more benign than malignant images or vice versa. Another limita-
tion mentioned is that when the features of the normal region are close to the features of
the mass, there is mis-segmentation. Segmentation becomes difficult when the boundary
is unclear, the intensity is heterogeneous, and the features are complex. Some complex
models are memory- and time-consuming, making their applicability to embedded devices
very difficult. Overfitting occurs when the depth and complexity of the model cannot
handle small-scale image samples. Variation exists in the results due to the involvement of
more than one radiologist.

In this study, we included all the deep learning models used in different US systems for
breast mass management since 2017. There are several studies on breast cancer diagnosis,
but very few studies are available on axillary lymph node metastasis and the overall
prognosis. A significant number of studies did not carry out any comparisons with health
care professionals. Very few studies have also been conducted on multimodality US images.
A considerable number of deep learning models have not been tested on the datasets.
The same model has been tested on various datasets, the datasets which were collected
for other reasons, making those studies retrospective [92]. Lack of standardization while
extracting features can be another issue [11]. Very few prospective studies were conducted
for deep learning models. Some studies confused the terminology, such as the validation
set with the test set. The metrics used in the field of computer science, such as Jaccard,
accuracy, precision, dice coefficient, and F1 score, were the only measures for diagnostic
performance in most of the studies [93]. Most of the studies did not include datasets that
have clinical information, such as age, severity, etc., which can also affect the diagnostic
performance. Additionally, there is no study on how these models may improve the overall
cost of breast cancer management.
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Since the datasets and the models were heterogeneous, comparing the performance
of each model can be quite challenging. Comparing the classifiers used and whether fine-
tuning the hyperparameters affects the performance or not can be a very challenging task
due to heterogeneous dataset and performance metrics. A good number of studies did not
mention their limitations, which can create bias towards that model. A considerable number
of studies did not mention their hyperparameters in a well-defined manner, which have the
potential to affect the computational time. A significant number of studies did not mention
the computational time, which can be a very essential metric to understand whether the
model can be used in a real-world setting. Additionally, fewer studies were conducted for
monitoring prognosis than diagnosis, so further studies are needed in those areas.

Ultrasound often misses certain types of breast mass, such as the depth of invasive
micropapillary carcinoma [94–96], ductal carcinoma in situ, invasive lobular carcinoma,
fat-surrounded isoechoic lesions, heterogeneous echoic lesions with heterogeneous back-
grounds, subareolar lesions, deep lesions in huge breasts, and lesions caused by poor
operator skills [97]. Delayed diagnosis and a lack of prompt management can result in lym-
phovascular involvement and a worse prognosis, especially in the case of rare histological
breast carcinoma subtypes. A study showed micropapillary DCIS assessment using ultra-
sound yielded a 47% false–negative rate, and the true extent of a mass was underestimated
in 81% of the cases [98]. Surgical management often requires extended surgical margins
and careful preoperative axillary staging [94], which are often found by perioperative
ultrasound. Some unusual histological subtypes, such as secretory breast carcinoma, show
benignity on ultrasound [99] Triple hormone receptor-positive breast cancers present as
isoechogenic echo textures compared to subcutaneous fat [99,100]. Triple hormone receptor-
negative carcinomas, such as medullary carcinomas, appear in ultrasound as homogeneous
or inhomogeneous hypoechoic masses with regular margins [99,101]. In a study of another
rare type of breast cancer, metaplastic carcinoma, ultrasound was insensitive in finding
primary lesions but performed better in confirming benign lesions and finding abnormal
axillary lymph nodes [102]. Homogeneous hypoechoic round solid masses with posterior
enhancement suggest benignity; therefore, malignant lesions showing these characteristics
may show false negative results. Despite these inevitable errors, meticulous assessment of
the border and internal echogenicity of the lesion can help identify its actual nature [103].
There is no study on how deep learning models could help in the detection of these rare
types of breast cancer using ultrasound images, which is necessary because they show
a high degree of false negativity and, therefore, missed detection, which can delay the
prompt management of these patients.

Two automated breast ultrasound systems, Smart Ultrasound (Koios) for the B-mode
system and QVCAD (QViewMedical), have been FDA-authorized [30]. Due to hidden
layers, the basis for reaching the diagnosis cannot be shown; this is mentioned as a ‘black
box problem’ in some studies, which makes it essential to develop new models that can
both diagnose and show the clarity of reasoning for a dilemma [30,104].
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Table 1. This shows original studies on deep learning models in breast mass US in various stages of breast lesion management. This table also contains the US
modalities that were used, the number of images and patients, the machines and transducers used for acquisition of US images, and finally the performance metrics.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

1. Ma et al. [105] 2023 Segmentation of breast
mass B mode 780 (600), 163 Siemens ACUSON Sequoia

C512 system 8.5 MHz linear
Dice coefficient:
82.46% (BUSI) and
86.78% (UDIAT)

2. Yang et al. [106] 2023 Breast lesion
segmentation B mode 600, 780

Siemens ACUSON Sequoia
C512 system, LOGIQ E9 and
LOGIQ E9 Agile

8.5 MHz linear Dice coefficient (%)
83.68 ± 1.14

3. Cui et al. [59] 2023 Breast image
segmentation B mode 320, 647 N/A N/A Dice coefficient

0.9695 ± 0.0156

4. Lyu et al. [107] 2023 Breast lesion
segmentation B mode BUSI: 780, OASBUS:

100 N/A N/A

Accuracy and Dice
coefficient for BUSI:
97.13, and 80.71 and
for OASBUD: 97.97,
and 79.62 respectively.

5. Chen et al. [60] 2023 Breast lesion
segmentation B mode

BUSI: 133 normal,
437 benign, and
210 malignant,
Dataset B: 110 benign,
53 malignant

N/A N/A Dice coefficient
80.40 ± 2.31

6. Yao et al. [71] 2023
Differentiation of
benign and malignant
breast tumors

B-mode, SWE 4580

Resona 7 ultrasound system
(Mindray Medical
International, Shenzhen,
China), Stork diagnostic
ultrasound system (Stork
Healthcare Co., Ltd.
Chengdu, China)

L11-3
high-frequency
probe, L12-4
high-frequency
probe

AUC = 0.755 (junior
radiologist group),
AUC = 0.781 (senior
radiologist group)

7. Jabeen et al. [108] 2022 Classification of breast
mass B mode 780 (N/A) N/A N/A Accuracy: 99.1%

8. Yan et al. [58] 2022 Breast mass
segmentation B mode 316 VINNO 70, Feino Technology

Co., Ltd., Suzhou, China 5–14 MHz Accuracy 95.81%

9. Ashokkumar et al. [79] 2022 Predict axillary LN
metastasis B mode 1050 (850), 100 (95) N/A N/A

95% sensitivity, 96%
specificity, and 98%
accuracy
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance

Metrics

10. Xiao et al. [109] 2022 Classification of breast
tumors

B mode and
tomography
ultrasound
imaging

120 Volusone E8 color Doppler
ultrasound imaging system

The
high-frequency
probe was
7–12 MHz, and the
volume probe
frequency was
3.5–5 MHz

Specificity 82.1%,
accuracy 83.8%

11. Taleghamar et al. [81] 2022

Predict breast cancer
response to neoadjuvant
chemotherapy (NAC) at
pretreatment

Quantitative
US (181)

RF-enabled Sonix RP
system (Ultrasonix,
Vancouver, BC, Canada)

L14-5/60
transducer

Accuracy of 88%,
AUC curve of 0.86

12. Ala et al. [82] 2022

Analysis of the
expression and efficacy
of breast hormone
receptors in breast
cancer patients before
and after
chemotherapeutic
treatment

Color doppler (120) Color Doppler ultrasound
diagnostic apparatus

LA523 probe,
4–13 MHz Accuracy 79.7%

13. Jiang et al. [110] 2022

Classification of breast
tumors, breast cancer
grading, early diagnosis
of breast cancer

B mode, SWE,
color doppler
US

(120) Toshiba Aplio500/400 6–13 MHz

Accuracy of breast
lump detection
94.76%,
differentiation into
benign and
malignant mass
98.22%, and breast
grading 93.65%

14. Zhao et al. [57] 2022 Breast tumor
segmentation N/A

Wisconsin Diagnostic
Breast Cancer (WDBC)
dataset

N/A N/A Dice index 0.921

15. Althobaiti et al. [68] 2022

Breast lesion
segmentation, feature
extraction and
classification

N/A 437 benign, 210
malignant, 133 normal N/A N/A Accuracy 0.9949 (for

training:test—50:50)
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance

Metrics

16. Ozaki et al. [80] 2022
Differentiation of
benign and metastatic
axillary lymph nodes

B mode

300 images of normal
and 328 images of
breast cancer
metastases

EUB-7500 scanner, Aplio
XG scanner, Aplio 500
scanner

9.75-MHz linear,
8.0-MHz linear,
8.0-MHz linear

Sensitivity 94%,
specificity 88%, and
AUC 0.966

17. Zhang et al. [111] 2021

Segmentation during
breast conserving
surgery of breast cancer
patients, to improve the
accuracy of tumor
resection and evaluate
negative margins

Color doppler
US (102) M11 ultrasound with color

Doppler N/A Accuracy 0.924,
Jaccard 0.712

18. Zhang et al. [112] 2021
Lesion segmentation,
prediction of axillary
LN metastasis

B-type, energy
Doppler (90)

E-ultrasound equipment
(French acoustic
department Aixplorer type)

SL15-4 probe
Accuracy 90.31%,
94.88%, 95.48%,
95.44%, and 97.65%

19. Shen et al. [83] 2021

Reducing false-positive
findings in the
interpretation of breast
ultrasound exams

B mode, color
doppler 5,442,907 LOGIQ E9 N/A

Area under the
receiver operating
characteristic curve
(AUROC) of 0.976

20. Qian et al. [83] 2021 Prediction of breast
malignancy risk

B-mode,
colour doppler
and SWE

Training set: 10,815
(634), Test set: 912
(141)

Aixplorer US system
(SuperSonic Imagine)

SL15-4 or an
SL10-2 linear

Bimodal AUC: 0.922,
multimodal AUC:
0.955

21. Gao et al. [66] 2021
Differentiation of
benign and malignant
breast nodules

B mode (8966) N/A N/A

Accuracy:
0.88 ± 0.03 and
0.86 ± 0.02,
respectively on two
testing sets

22. Ilesanmi et al. [55] 2021 Breast tumor
segmentation B mode Two datasets, 264 and

830
Philips iU22, LOGIQ E9,
LOGIQ E9 Agile

1–5 MHz on
ML6-15-D matrix
linear

Dice measure
89.73% for
malignant and
89.62% for benign
BUSs

23. Wan et al. [113] 2021 Breast lesion
classification B mode 895 N/A N/A

Random Forest
accuracy: 90%, CNN
accuracy: 91%,
AutoML Vision
(accuracy: 86%
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

24. Zhang et al. [72] 2021

BI-RADS categorization
of breast tumors and
prediction of molecular
subtype

B mode 17,226 (2542) N/A N/A

Accuracy, sensitivity,
and specificity of 89.7,
91.3, and 86.9% for
BI-RADS categorization.
For the prediction of
molecular subtypes,
AUC of triple negative:
0.864, HER2(+): 0.811,
and HR(+): 0.837

25. Lee et al. [73] 2021
Prediction of the ALN
status in patients with
early-stage breast cancer

B mode (153)

ACUSON S2000 ultrasound
system (Siemens Medical
Solutions, Mountain View,
CA, USA)

5–14 MHz linear

Accuracy, 81.05%,
sensitivity 81.36%,
specificity 80.85%, and
AUC 0.8054

26. Kim et al. [65] 2021 Differential diagnosis of
breast masses B mode 1400 (971) Philips, GE, Siemens N/A

AUC of internal
validation sets:
0.92–0.96, AUC of
external validation sets:
0.86–0.90, accuracy
96–100%

27. Zheng et al. [77] 2020 Predict axillary LN
metastasis

B-mode and
SWE 584 (584)

Siemens S2000 ultrasound
scanner (Siemens
Healthineers, Mountain
View, CA, USA)

4–9 MHz linear

AUC: 0.902, accuracy of
differentiation among
three lymph node
status: 0.805

28. Sun et al. [74] 2020

To investigate the value
of both intratumoral
and peritumoral regions
in ALN metastasis
prediction.

B mode 2395 (479) Hitachi Ascendus
ultrasound system 13–3 MHz linear

The AUCs of CNNs in
training and testing
cohorts were 0.957 and
0.912 for the combined
region, 0.944 and 0.775
for the peritumoral
region, and 0.937 and
0.748 for the
intratumoral region
respectively,
accuracy: 89.3%
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance

Metrics

29. Guo et al. [75] 2020

Identification of the
metastatic risk in SLN
and NSLN in primary
breast cancer

B mode 3049 (937)

HITACHI Vision 500 system
(Hitachi Medical System,
Tokyo, Japan) and Aixplorer
US imaging system
(SuperSonic Imagine, SSI,
Aix-en-Provence, France)

linear probe of
5–13 MHz

SLNs (sensitivity =
98.4%, 95% CI
96.6–100), accuracy
in test set: 74.9%
and NSLNs
(sensitivity = 98.4%,
95% CI 95.6–99.9),
accuracy in test set:
80.2%

30. Liang et al. [92] 2020 Classification of breast
tumors B mode 537 (221)

HITACHI Hi Vision Preirus
or Ascendus, Phillips IU22,
IE33, or CX50; GE Logiq E9,
S6, S8, E6, or E8; Toshiba
Aplio 300 or Aplio 500l, and
Siemens S1000/S2000

N/A

Sensitivity 84.9%,
specificity 69.0%,
accuracy 75.0%, area
under the curve
(AUC) 0.769

31. Chiao et al. [61] 2019

Automatic
segmentation, detection,
and classification of
breast mass

B mode 307 (80) LOGIQ S8, GE Medical
Systems, Milwaukee, WI

9 to 12-MHz
transducer

Precision 0.75,
accuracy 85%

32. Tadayyon et al. [114] 2019

Pretreatment prediction
of response and 5-year
recurrence-free survival
of LABC patients
receiving neoadjuvant
chemotherapy

Quantitative
US-B mode
and RF data

(100)
Sonix RP system
(Ultrasonix, Vancouver,
Canada)

6 MHz linear array
transducer
(L14-5/60 W)

Accuracy 96 ± 6%,
and an area under
the receiver
operating
characteristic curve
(AUC) 0.96 ± 0.08

33. Khoshdel et al. [56] 2019 Improvement of
detectability of tumors

Breast
phantoms

1200 (3 phantom
models) N/A N/A

U-Net A AUC: 0.991,
U-Net B AUC: 0.975,
CSI AUC: 0.894

34. Al-Dhabyani et al. [62] 2019
Data Augmentation and
classification of
Breast Masses

B mode Dataset A 780 (600),
Dataset B 163 LOGIQ E9 Agile ultrasound N/A Accuracy 99%
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

35. Zhou et al. [76] 2019

Prediction of clinically
negative axillary lymph
node metastasis from
primary breast cancer
US images.

B-mode 974 (756), 81 (78)

Philips (Amsterdam, The
Netherlands; EPIQ5, EPIQ7
and IU22), Samsung (Seoul,
Republic of Korea; RS80A),
and GE Healthcare
(Pittsburgh, PA, USA;
LOGIQ E9, LOGIQ S7)

N/A

AUC of 0.89, 85%
sensitivity, and 73%
specificity, accuracy:
82.5%

36. Xiao et al. [84] 2019

To increase the accuracy
of classification of breast
lesions with different
histological types.

B mode 448 (437)

RS80A with Prestige,
Samsung Medison, Co.,
Ltd., Seoul, Republic of
Korea

3–12 MHz linear
transducer

Accuracy: benign lesions:
fibroadenoma 88.1%,
adenosis 71.4%,
intraductal papillary
tumors 51.9%,
inflammation 50%, and
sclerosing adenosis 50%,
malignant lesions:
invasive ductal
carcinomas 89.9%, DCIS
72.4%, and invasive
lobular carcinomas 85.7%

37. Cao et al. [63] 2019

Comparison of the
performances of deep
learning models for
breast lesion detection
and classification
methods

B mode 577 benign and 464
malignant cases

LOGIQ E9 (GE) and
IU-Elite (PHILIPS) N/A

Transfer learning from the
modified ImageNet
produces higher accuracy
than random
initialization, and
DenseNet provides the
best result.

38. Huang et al. [115] 2019
Classification of breast
tumors into BI-RADS
categories

B mode −2238 Philips IU22 ultrasound
scanner

5- to 12-MHz
linear

Accuracy of 0.998 for
Category “3”, 0.940 for
Category “4A”, 0.734 for
Category “4B”, 0.922 for
Category “4C”, and 0.876
for Category “5”.
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

39. Coronado-Gutierrez
et al. [78] 2019

Detection of ALN
metastasis from primary
breast cancer

B mode 118 (105)

Acuson Antares (Siemens,
Munich, Germany), MyLab
70 XVG (Esaote, Genoa,
Italy)

10–13 MHz linear,
6–15 MHz linear

Accuracy 86.4%,
sensitivity 84.9% and
specificity 87.7%

40. Ciritsis et al. [85] 2019 Classification of breast
lesions B mode 1019 (582) N/A N/A

Accuracy for BI-RADS
3–5: 87.1%, BI-RADS 2–3
vs. BI-RADS 4–5 93.1%
(external 95.3%), AUC
83.8 (external 96.7)

41. Tanaka et al. [67] 2019 Classification of
breast mass B mode 1536 N/A N/A

Sensitivity of 90.9%,
specificity of 87.0%, AUC
of 0.951, accuracy of
ensemble network,
VGG19, and ResNet were
89%, 85.7%, and 88.3%,
respectively

42. Hijab et al. [116] 2019 breast mass
classification B mode 1300 GE Ultrasound LOGIQ E9

XDclear

Linear matrix
array probe
(ML6-15-D)

Accuracy 0.97, AUC 0.98

43. Fujioka et al. [86] 2019
Distinction between
benign and malignant
breast tumors

B mode Training: 947 (237),
Test: 120

EUB-7500 scanner, Aplio
XG scanner with a
PLT-805AT

8.0-MHz linear,
8.0-MHz linear

Sensitivity of 0.958,
specificity of 0.925, and
accuracy of 0.925

44. Choi et al. [87] 2019
Differentiation between
benign and malignant
breast masses

B mode 253 (226) RS80A system (Samsung
Medison Co., Ltd.)

3–12-MHz linear
high-frequency
transducer

Specificity 82.1–93.1%,
accuracy 86.2–90.9%, PPV
70.4–85.2%

45. Becker et al. [88] 2018 Classification of breast
lesions B mode 637 (632) Logiq E9 9L linear

The training set
AUC = 0.96, validation
set AUC = 0.84, specificity
and sensitivity were 80.4
and 84.2%, respectively

46. Stoffel et al. [89] 2018
The distinction between
phyllodes tumor (PT)
and fibroadenoma (FA)

B mode PT (36), FA (50) Logiq E9, GE Healthcare,
Chicago, IL, USA N/A AUC 0.73

47. Byra et al. [90] 2018 Breast mass
classification B mode 882

Siemens Acuson (59%), GE
L9 (21%), and ATL-HDI
(20%)

N/A AUC 0.890
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Table 1. Cont.

No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

48. Shin et al. [70] 2018 Breast mass localization
and classification B mode SNUBH5624 (2578),

UDIAT 163

Philips (ATL HDI 5000,
iU22), SuperSonic Imagine
(Aixplorer), and Samsung
Medison (RS80A), Siemens
ACUSON Sequoia C512
system

N/A Correct localization
(CorLoc) measure 84.50%

49. Almajalid et al. [53] 2018 Breast lesion
segmentation B mode 221 VIVID 7 (GE, Horten,

Norway)
5–14 MHz linear
probe Dice coefficient 82.52%

50. Xiao et al. [69] 2018 Breast masses
discrimination B mode 2058 (1422) N/A N/A

Accuracy of Transferred
InceptionV3, ResNet50,
transferred Xception, and
CNN3 were 85.13%,
84.94%,84.06%, 74.44%,
and 70.55%, respectively

51. Qi et al. [117] 2018 Diagnosis of breast
masses B mode 8000 (2047)

Philips iU22,
ATL3.HDI5000 and GE
LOGIQ E9

N/A

Accuracy of Mt-Net
BASIC, MIP AND REM
are 93.52%, 93.89%,
94.48% and Sn-Net
BASIC, MIP, and REM are
87.34%, 87.78%, 90.13%,
respectively.

52. Segni et al. [118] 2018 Classification of breast
lesions B mode, SWE 68 (61) UGEO RS80A machinery 3–16 MHz or 3–12

MHz linear

Sensitivity > 90%,
specificity 70.8%, ROC
0.81

53. Zhou et al. [119] 2018 Breast tumor
classification B mode, SWE 540 (205) Supersonic Aixplorer

system 9–12 MHz linear
Accuracy 95.8%,
sensitivity 96.2%, and
specificity 95.7%

54 Kumar et al. [54] 2018 Segmentation of breast
mass B mode 433 (258)

LOGIQ E9 (General Electric;
Boston, MA, USA) and IU22
(Philips; Amsterdam, The
Netherlands)

N/A Dice coefficient 84%

55. Cho et al. [91] 2017
to improve the
specificity, PPV, and
accuracy of breast US

B mode, SWE
and color
doppler

126 (123) Prestige; Samsung Medison,
Co, Ltd. 3–12-MHz linear

Specificity 90.8%, positive
predictive value PPV
86.7%, accuracy 82.4,
AUC 0.815
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No. Study Year Purpose US Mode No. of Images
(No. of Patients) Machine Used Transducer Performance Metrics

56. Han et al. [120] 2017 Classification of breast
tumors B mode 7408 (5151)

iU22 system (Philips, Inc.),
RS80A (Samsung Medison,
Inc.)

N/A Accuracy 0.9, sensitivity
0.86, specificity 0.96.

57. Kim et al. [121] 2017 Diagnosis of breast
masses B mode 192 (175)

RS80A with Prestige,
Samsung Medison, Co. Ltd.,
Seoul, Republic of Korea

3–12-MHz linear Accuracy 70.8%

58. Yap et al. [64] 2017 Detection of breast
lesions B mode Dataset A: 306,

Dataset B: 163

B&K Medical Panther 2002
and B&K Medical Hawk
2102 US systems, Siemens
ACUSON Sequoia C512
system

8–12 MHz
linear,17L5 HD
linear (8.5 MHz)

Transfer Learning
FCN-AlexNet performed
best, True Positive
Fraction 0.98 for dataset
A, 0.92 for dataset B

59. Antropova et al. [122] 2017 Characterization of
breast lesions N/A (1125) Philips HDI5000 scanner N/A AUC = 0.90

Table 2. This table shows deep learning models used in the studies stated in Table 1 (2017–February 2023), hyperparameters, loss function, activation function,
limitations, and performance metrics.

No. Study Purpose Deep Learning
Models Hyperparameters Loss Function Activation

Function Limitations Performance
Metrics

1. Ma et al. [105]
Segmentation
of
breast mass

ATFE-Net

Weights of ResNet-34, 80 epochs,
batch size 8, the weight decay and
momentum are set to 10−8 and 0.9,
respectively. The initial learning rate
is 0.0001. Adam optimizer is adopted,
Image input size = 256 × 256 pixels

Binary
cross-entropy
and Dice
(hybrid)

Softmax and
Rectified
Linear Units
(ReLUs)

1. When the pixel intensity of
the target region is close to
mass, there is
missegmentation 2. Results
not relevant to classification 3.
Relies on adequate manually
labeled data, which are scarce

Dice coefficient:
82.46% (BUSI) and
86.78% (UDIAT)

2. Yang et al. [106]
Breast lesion
segmenta-
tion

CSwin-PNet

Swin Transformer, channel attention
mechanism, gating mechanism,
boundary detection (BD) module was
used, the learning rate 0.0001, batch
size 4 and maximum epoch number
200, image input size 224 × 224,
adam optimizer, GEUL, ReLU and
sigmoid activation function

Hybrid loss
(Binary
cross-entropy
and Dice)

ReLU and
sigmoid
activation
function

Fails to segment accurately
when the lesion margin is not
clear, and the intensity of the
region is heterogenous.

Dice coefficient
(%) 83.68 ± 1.14
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Table 2. Cont.

No. Study Purpose Deep Learning
Models Hyperparameters Loss Function Activation

Function Limitations Performance
Metrics

3. Cui et al. [59]
Breast image
segmenta-
tion

SegNet with the
LNDF ACM

MiniBatch Size 32, Initial Learn Rate
0.001, Max Epochs 50, Validation
Frequency 20, image input size
128 × 128

Not specified ReLU and
Softmax

Large-scale US dataset
unavailability makes it
difficult to predict boundaries
of blurred area accurately,
loss of spatial information
during downsampling

Dice coefficient
0.9695 ± 0.0156

4. Lyu et al. [107]
Breast lesion
segmenta-
tion

Pyramid Attention
Network
combining
Attention
mechanism and
Multi-Scale
features
(AMS-PAN)

Image input size = 256 × 256 pixels,
the optimizers include the first-order
momentum-based SGD iterator, the
second-order momentum-based
RMSprop iterator, and the Adam
iterator, Epoch 50
Learning rate 0.01,
Batch 16,
Gradient decay policy:
ReduceLROnPlateau,
Patience epoch 3
Decay factor 0.2

Not specified
ReLU
activation
function

The segmentation results are
different from the ground
truth in some cases, more
time consuming compared to
other models.

Accuracy and Dice
coefficient for
BUSI: 97.13, and
80.71 and for
OASBUD: 97.97,
and 79.62
respectively.

5. Chen et al. [60]
Breast lesion
segmenta-
tion

SegNet with deep
supervision
module, missed
detection residual
network and false
detection residual
network

Epoch size 50, batch size 12, initial
learning rate 0.001, Optimizer: Adam
optimizer

Binary-cross
entropy (BCE)
and mean
square error
(MSE)

Activation
function:
sigmoid
activation and
linear
activation
layers

Missed detection, false
detection in individual
images, more computational
cost

Dice coefficient
80.40 ± 2.31

6. Yao et al. [71]

Differentiation
of benign
and
malignant
breast
tumors

Generative
adversarial
network

The max training epoch is 200, batch
size of 1, Optimizer: Adam optimizer,
learning
rate 2 × 10−4, convolution kernels
4 × 4, Image input size = 256 × 256

MAE and
Cross entropy

a Tanh
activation
layer, a
Leaky-ReLU
activation
layer

Limitation of imaging
hardware, due to limited cost
and size. Portable US
scanner’s function is limited
in resource-limited settings

AUC = 0.755
(junior radiologist
group),
AUC = 0.781
(senior radiologist
group)
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Table 2. Cont.

No. Study Purpose Deep Learning
Models Hyperparameters Loss Function Activation

Function Limitations Performance
Metrics

7. Jabeen et al. [108]
Classification
of breast
mass

DarkNet53

Learning rate 0.001, mini batch size
16, epochs 200, the learning method
is the stochastic gradient descent,
optimization method is Adam,
reformed deferential evolution (RDE)
and reformed gray wolf (RGW)
optimization algorithms; image
input size 256-by-256

Multiclass
cross entropy
loss

Sigmoid
activation

The computational time is
13.599 (s), limitations not
specified

Accuracy: 99.1%

8. Yan et al. [58]
Breast mass
segmenta-
tion

Attention
Enhanced U-net
with hybrid
dilated
convolution (AE
U-net with HDC)

Due to the limitation of the GPU,
HDC was unable to replace all
upsampling and pooling operations

AE U-Net
model is
composed of a
contraction
path on the
left, an
expansion
path on the
right, and four
AGS in the
middle, batch
size 5, epoch
60, Train-
ing_Decay was
1 × 10−8,
initial learning
rate 1 × 10−4,
input image
size 500 × 400
pixels

Binary
cross-entropy ReLU and Sigmoid Accuracy 95.81%

9. Ashokkumar et al.
[79]

Predict
axillary LN
metastasis
from
primary
breast cancer
features

ANN based on
feed forward,
radial basis
function, and
Kohonen
self-organizing

Batch size 32, optimizer: Adam,
primary learning rate 0.0002, image
input size 250 by 350 pixels,

Not specified Not specified Limitation not specified
95% sensitivity,
96% specificity,
and 98% accuracy
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Table 2. Cont.

No. Study Purpose Deep Learning
Models Hyperparameters Loss Function Activation

Function Limitations Performance
Metrics

10. Xiao et al. [109]
Classification
of breast
tumors

Deep Neural
Network model Batch size 24 Cross entropy

Linear
regression and
sigmoid
activation

1. Small sample size, 2. The
clinical trial was conducted in
a single region or a small area
of multicenter, large-sample
hospitals, 3. compared to
light scattering imaging,
sensitivity not statistically
significant.

Specificity 82.1%,
accuracy 83.8%

11. Taleghamar et al.
[81]

Predict breast
cancer
response to
neo-adjuvant
chemotherapy
(NAC) at
pretreatment

ResNet, RAN56

Image input size 512 × 512 pixel,
learning rate = 0.0001, dropout rate =
0.5, cost weight = 5, batch size = 8,
Adam optimizer was used,

Cross entropy ReLU
Relatively small dataset,
resulting in overfitting and
lack of generalizability

Accuracy of 88%,
AUC curve of
0.86

12. Ala et al. [82]

Analysis of the
expression and
efficacy of
breast
hormone
receptors in
breast cancer
patients before
and after
chemothera-
peutic
treatment

the VGG19FCN
algorithm Not specified Not specified Not specified

Sample not enough, in the
follow-up, the sample
number needs to be
expanded to further assess
different indicators

Accuracy 79.7%
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13. Jiang et al. [110]

Classification
of breast
tumors,
breast cancer
grading,
early
diagnosis of
breast cancer

Residual block
and Google’s
Inception
module

The optimization algorithm:
Adam, the maximum
number of iterations: 10,000
for detection, 6000 for
classification, the initial
learning rate: 0.0001,
weight randomly initialized,
and bias initialized to 0,
batch size 8

Multiclass
cross entropy Softmax

Small sample size, so the results can be biased,
patient sample should be expanded in follow
up studies, multicenter and large-scale study
should be conducted.

accuracy of
breast lump
detection 94.76%,
differentiation
into benign and
malignant mass
98.22%, and
breast grading
93.65%

14. Zhao et al. [57]
Breast tumor
segmenta-
tion

U-Net and
attention
mechanism

Learning rate = 0.00015,
Adam optimizer was used

Binary cross
entropy
(BCE), Dice
loss,
combination
of both

ReLU Only studies the shape feature constraints of
masses Dice index 0.921

15. Althobaiti et al.
[68]

Breast lesion
segmenta-
tion, feature
extraction
and
classification

LEDNet,
ResNet-18,
Optimal RNN,
SEO

Not specified Not specified Softmax Not specified

Accuracy 0.9949
(for
training:test—
50:50)

16. Ozaki et al. [80]

Differentiation
of benign
and
metastatic
axillary
lymph nodes

Xception

Image input size:
128 × 128-pixel, optimizer
algorithm = Adam,
Epoch: 100,

Categorical
cross entropy Softmax

1. The study was held at a single hospital,
collecting images at multiple institutions are
needed. 2. training and test data randomly
contained US images with different focus,
gain, and scale, affecting the training and
subsequently diagnostic performance of the
DL. 3. trimming process may have lost some
information, influencing the performance of
the model. 4. some of the ultrasound images
can be overlapped. The model might have
remembered same images or have diagnosed
on the basis of surrounding tissues, rather
than on the lymph node itself.

Sensitivity 94%,
specificity 88%,
and AUC 0.966
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17. Zhang et al. [111]

Segmentation
during breast
conserving
surgery of breast
cancer patients, to
improve the AC of
tumor resection
and negative
margins

Deep LDL
model Not specified Cross entropy Softmax

Small number of patients, not
generalizable to all tumors,
especially complicated tumor edge
characteristics

Accuracy 0.924,
Jaccard 0.712

18. Zhang et al. [112]

Lesion
segmentation,
prediction of
axillary LN
metastasis

Back prop-
agation
neural
network

Not specified Not specified Not specified
Study samples were small, lacks
comparison with DL algorithms, low
representativeness

Accuracy
90.31%, 94.88%,
95.48%, 95.44%,
and 97.65%

19. Shen et al. [83]

Reducing
false-positive
findings in the
interpretation of
breast ultrasound
exams

ResNet-18

Optimizer: Adam, epoch: 50,
image input size 256 × 256 pixels,
learning rate η ∈ 10[−5.5, −4],
weight decay λ ∈ 10[−6, −3.5] on
a logarithmic scale,

Binary
cross-entropy

Sigmoid
nonlinearity

1. Not multimodal imaging, 2. did
not provide assessment on patient
cohorts stratified by various other
risk factors such as family history of
breast cancer and BRCA status.

area under the
receiver
operating
characteristic
curve (AUROC)
of 0.976

20. Qian et al. [83]
Prediction of
breast malignancy
risk

ResNet-18
combined
with the
SENet
backbone

Batch size 20, initial learning rate
0.0001, 50 epochs, a decay factor
of 0.5, maximum iteration
13,000 steps, ADAM optimizer
was used, image size 300 × 300

Cross entropy Softmax and
ReLU

1. Can only be applied to Asian
populations, 2. excluded variable
images from US systems other than
Aixplorer, 3. not representative of the
natural distribution of cancer
patients, dataset only included
biopsy-confirmed lesions, not those
who underwent followup
procedures, 4. did not include
patients’ medical histories, 5.
intersubject variability of US
scanning such as TGC, dynamic
range compression, artifacts, etc.

Bimodal AUC:
0.922,
multimodal
AUC: 0.955
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21. Gao et al. [66]

Classification
of benign
and
malignant
breast
nodules

Faster R-CNN and
VGG16, SSL

Faster R-CNN: Learning rate (0.01,
0.001, 0.0005), batch size (16, 64, 128),
and L2 decay (0.001, 0.0005, 0.000),
optimizer: gradient descent, iterations:
70,000, image input size: 128 × 128
pixels, gradient descent optimizer was
used, momentum 0.9, iterations 70,000,
SL-1 and SL-2: Learning rate (0.005,
0.003, 0.001), batch size (64.0, 128.0),
iteration number (40,000.0, 100,000.0),
ramp-up length (5000.0, 25,000.0,
40,000.0), ramp-down length (5000.0,
25,000.0, 40,000.0), the smoothing
coefficient was 0.99, dropout
probability 0.5, optimizer: Adam

Cross entropy ReLU Not specified

Accuracy:
0.88 ± 0.03 and
0.86 ± 0.02,
respectively on
two testing sets

22. Ilesanmi et al. [55]
Breast tumor
segmenta-
tion

VEU-Net

Adam optimizer, the learning rate
0.0001, 96 epochs, batch size 6,
iterations 144, image input size
256 × 256 pixels

Binary
cross-entropy

ReLU and
sigmoid Not specified

Dice measure
89.73% for
malignant and
89.62% for
benign BUSs

23. Wan et al. [113] Breast lesion
classification

Traditional
machine learning
algorithms,
convolutional
neural network
and AutoML

Input image size: 288 × 288 Binary cross
entropy

Rectified
Linear Units
(ReLUs)

1. Images were not in DICOM
format, so patient data were
not available. 2. small sample
size, so could not assess
different classifiers in
handling huge data, 3. no
image preprocessing,
relatively simple model, 4.
relationship between image
information and performance
of different models are to be
investigated.

Random Forest
accuracy: 90%,
CNN accuracy:
91%, AutoML
Vision (accuracy:
86%
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24. Zhang et al. [72]

BI-RADS
classification of
breast tumors and
prediction of
molecular subtype

Xception Cannot be accessed Not specified Not specified

1. Training set came from the same
hospital and did not summarize
information on patients and
tumors, 2. small sample size, 3.
retrospective, all patients
undergone surgery, although some
women choose observation.

Accuracy,
sensitivity, and
specificity of 89.7,
91.3, and 86.9% for
BI-RADS
categorization.
For the prediction
of molecular
subtypes, AUC of
triple negative:
0.864, HER2(+):
0.811, and HR(+):
0.837

25. Lee et al. [73]

Prediction of the
ALN status in
patients with
early-stage breast
cancer

Mask
R–CNN,
DenseNet-
121

Mask R-CNN: Backbone: ResNet-101,
scales of RPN anchor: (16, 32, 64, 128,
256), optimizer: SGD, initial learning
rate: 10−3, momentum: 0.9, weight
decay: 0.01, epoch: 180, batch size: 3;
DenseNet-121: optimizer: Adam,
initial learning rate: 2 × 10−5,
momentum: 0.9, epoch: 150, batch
size: 16

Binary cross-
entropy Not specified

1. Small dataset, 2. More
handcrafted features are to be
analyzed to increase the prediction
ability

Accuracy, 81.05%,
sensitivity 81.36%,
specificity 80.85%,
and AUC 0.8054

26. Kim et al. [65]
Differential
diagnosis of breast
masses

U-Net,
VGG16,
ResNet34,
and
GoogLeNet
(weakly su-
pervised)

L2 regularization, batch size 64,
optimizer: Adam, with learning rate
0.001, image input size
224 × 224 pixels, a class activation
map is generated using a global
average pooling layer.

Not specified Softmax

1. Not trained with a large dataset,
2. time- and labor-efficiency not
directly assessed because of the
complexity of data organizing
process.

AUC of internal
validation sets:
0.92–0.96, AUC of
external validation
sets: 0.86–0.90,
accuracy 96–100%
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27. Zheng et al. [77] Predict axillary
LN metastasis Resnet

Learning rate to 1 × 104, Adam
optimizer, Batch size 32, Maximum
iteration step 5000, SVM as the
classifier, image input size
224 × 224 pixels

Cross-
entropy

Not
specified

1. Single-center study, 2.
Multifocal and bilateral breast
lesions are excluded, because
of difficulty in determining
ALN metastatic potential, so
only the potential of patients
with a single lesion can be
predicted, 3. Patients cannot
be stratified based on their
BRCA status.

AUC: 0.902, accuracy
of differentiation
among three lymph
node status: 0.805

28. Sun et al. [74]

To investigate
the value of both
intratumoral
and peritumoral
regions in ALN
metastasis
prediction.

DenseNet
Adam optimizer, a learning rate of
0.0001, batch size 16, and
regularization weight 0.0001

Cross-
entropy ReLU

1. Change of depth of mass
leads to misinterpretation of
lesion detection, 2. Did not
preprocess the image.

The AUCs of CNNs in
training and testing
cohorts were 0.957
and 0.912 for the
combined region,
0.944 and 0.775 for the
peritumoral region,
and 0.937 and 0.748
for the intratumoral
region respectively,
accuracy: 89.3%

29. Guo et al. [75]

Identification of
the metastatic
risk in SLN and
NSLN (axillary)
in primary
breast cancer

DenseNet
Input image size 224× 224,
optimizer: Adadelta algorithm,
learning rate (1 × 10−5), 30 epochs

Cross-
entropy ReLU

1. Retrospective, 2. A limited
number of hospitals, 3.
Patients with incomplete data
were excluded, leading to
bias, 3. Not multimodal, 4.
analyzed a single image at a
time, could not capture the
correlation between images, 5.
lacks a small number of
masses which is not seen in
US methods.

SLNs
(sensitivity = 98.4%,
95% CI 96.6–100),
accuracy in test set:
74.9% and NSLNs
(sensitivity = 98.4%,
95% CI 95.6–99.9),
accuracy in test set:
80.2%
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30. Liang et al.
[92]

Classification of breast
tumors

GooLeNet and
CaffeNet

Base learning rate 0.001, epoch 200,
image input size 315 × 315 pixels Not specified Not specified

1. More parameter and data
adjustments are needed, 2.
Not a large sample size, not
multicenter 3. Manually
drawing the outline should
be drawn by senior
physicians which was often
not possible, 4. lacks
comparison with other
models.

Sensitivity 84.9%,
specificity 69.0%,
accuracy 75.0%,
area under the
curve (AUC) 0.769

31. Chiao et al.
[61]

Automatic
segmentation,
detection and
classification of breast
mass

Mask R-CNN

Used region proposal network (RPN)
to extract features, and to classify,
mini-batch size 2, a balancing
parameter of 10

Binary cross-
entropy
loss

Not specified Not specified Precision 0.75,
accuracy 85%

32. Tadayyon et al.
[114]

Pre-treatment
prediction of response
and 5-year
recurrence-free
survival of LABC
patients receiving
neoadjuvant
chemotherapy

Artificial neural
network (ANN) Single hidden layer model Not specified Not specified Not specified

Accuracy 96 ± 6%,
and an area under
the receiver
operating
characteristic
curve (AUC)
0.96 ± 0.08

33. Khoshdel et al.
[56]

Improvement of
detectability of tumors U-Net

Weights were initialized by Gaussian
random distribution using Xavier’s
method, batch size 10, 75 epochs,
image input size 256 × 256 pixels

Not specified Not specified

When certain breast model
type is missing, AUC
decreases, wide-diversity of
breast types are needed.

U-Net A AUC:
0.991, U-Net B
AUC: 0.975, CSI
AUC: 0.894

34. Al-Dhabyani
et al. [62]

Data Augmentation
and classification of
Breast Masses

CNN (AlexNet)
and TL (VGG16,
ResNet,
Inception, and
NASNet),
Generative
Adversarial
Networks

AlexNet: Adam optimizer, the
learning rate 0.0001, 60 epochs,
dropout rate 0.30, Transfer learning:
Adam optimizer, the learning rate
0.001, epochs 10

Multinomial
logistic loss

Leaky ReLU
and softmax

1. Time-consuming training
process and needs high
computer resources,
2. Not enough real images
have been collected, 3.
Cannot synthesize
high-resolution images using
a generative model

Accuracy 99%
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35. Zhou et al. [76]

Prediction of
clinically
negative axillary
lymph node
metastasis from
primary breast
cancer US
images.

Inception V3,
Inception-ResNet
V2, and
ResNet-101

Adam optimizer, batch size 32,
end-to-end supervised learning,
initial learning rate 0.0001 and
decayed by a factor of 10, epoch 300,
dropout probability 0.5, augmented
image size 200 × 300 pixels

Not
specified

Not
specified

1. Retrospective and limited
size data, 2. Variations in the
quality of images due to
examinations being
performed by multiple
physicians, 3. The accuracy of
LN metastasis status is
dependent on the time of
breast surgery, some of the
patients with negative LN, if
followed up for a long time,
may progress to positive LNs

AUC of 0.89, 85%
sensitivity, and 73%
specificity,
accuracy:82.5%

36. Xiao et al. [84]

To increase the
accuracy of
classification of
breast lesions
with different
histological
types.

S-Detect Not specified Not
specified

Not
specified

1. Not enough cases of some
rare types of breast lesions,
diagnostic accuracy in these
rare types needs further
analyses, 2. The quality of
images is better since they are
obtained by an experienced
radiologist, but the diagnostic
performance of the DL model
needs further verification.

Accuracy: benign
lesions: fibroadenoma
88.1%, adenosis 71.4%,
intraductal papillary
tumors 51.9%,
inflammation 50%,
and sclerosing
adenosis 50%,
malignant lesions:
invasive ductal
carcinomas 89.9%,
DCIS 72.4%, and
invasive lobular
carcinomas 85.7%
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37. Cao et al. [63]

Comparison of
the
performances of
deep learning
models for
breast lesion
detection and
classification
methods

AlexNet, ZFNet,
VGG, ResNet,
GoogLeNet,
DenseNet, Fast
Region-based
convolutional
neural networks
(R-CNN), Faster
R-CNN, Spatial
Pyramid Pooling
Net, You Only
Look Once
(YOLO), YOLO
version 3
(YOLOv3), and
Single Shot
MultiBox Detector
(SSD)

Image input size was different which
was resized to 256 × 256 pixels,
epoch: 2000

Not
specified

Softmax,
bounding-
box
regression

1. SSD300 + ZFNet is better
than SSD300 + VGG16 under
the benign, but worse under
the malignant lesions, due to
model complexity, 2. VGG16
reaches overfitting for benign
lesions, 3. AlexNet, ZFNet,
and VGG16 perform poorly
for full images and LROI,
while learning from scratch,
due to the dimensionality
problem, leading to
over-fitting.

Transfer learning from
the modified
ImageNet produces
higher accuracy than
random initialization,
and DenseNet
provides the best
result.

38. Huang et al. [115]

Classification of
breast tumors
into BI-RADS
categories

ROI-CNN,
G-CNN

The minibatch size: 16 images,
Optimizer: SGD (stochastic gradient
descent), a learning rate of 0.0001, a
momentum of 0.9, input image size
288 × 288

Dice loss,
multi-class
cross
entropy

ReLU,
softmax Not specified

Accuracy of 0.998 for
Category “3”, 0.940
for Category “4A”,
0.734 for Category
“4B”, 0.922 for
Category “4C”, and
0.876 for Category
“5”.

39.
Coronado-
Gutierrez et al.
[78]

Detection of
ALN metastasis
from primary
breast cancer

VGG-M

A variation of Fisher Vector (FV) was
used for feature extraction and
sparse partial least squares (PLS)
were used for classification.

Not
specified

Not
specified

1. Because of ambiguity in
diagnosis, many interesting
lymph node images had to be
discarded, 2. did not measure
the intra-operator variability,
3. small size of the dataset,
was needed to confirm these
results in a large multicenter
area.

Accuracy 86.4%,
sensitivity 84.9% and
specificity 87.7%
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40. Ciritsis et al. [85] Classification of
breast lesions Deep CNN Epoch 51, input image size: 301 ×

301 pixels
Not
specified Softmax

1. Final decision depends on
more information than image
data, such as family history,
age, and comorbidities,
decided by radiologists in a
clinical setting, which were
not possible in this study, 2.
relatively small data

Accuracy for BI-RADS
3–5: 87.1%, BI-RADS
2–3 vs. BI-RADS 4–5
93.1% (external
95.3%), AUC 83.8
(external 96.7)

41. Tanaka et al. [67] Classification of
breast mass

VGG19,
ResNet152, an
ensemble network

The learning rate 0.00001 and weight
decay 0.0005, epoch 50, input image
size 224 × 224 pixels, batch size 64,
optimizer: adaptive moment
estimation (Adam), dropout 0.5

Not
specified

Not
specified

1. Test set was very small, 2.
They targeted only women
with masses found in second
look, so malignant masses
were there than benign ones,
so this model cannot be
applied to women with initial
screening, 3. mass was
evaluated only by one doctor,
all test patches were not used
for calculation.

Sensitivity of 90.9%,
specificity of 87.0%,
AUC of 0.951,
accuracy of ensemble
network, VGG19, and
ResNet were 89%,
85.7%, and 88.3%,
respectively

42. Hijab et al. [116] breast mass
classification VGG16 CNN

Optimizer: stochastic gradient
descent (SGD), 50 epochs, batch size
20, learning rate 0.001

Not
specified ReLU

1. Dataset relatively small, 2.
lack of demographic variety
in race and ethnicity in the
training data can impact the
detection and survival
outcomes negatively for
underrepresented patient
population.

Accuracy 0.97, AUC
0.98
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43. Fujioka et al. [86]

Distinction
between benign
and malignant
breast tumors

GoogLeNet Batch size 32, 50 epochs, image input
size 256 × 256 pixels

Not
specified

Not
specified

1. Retrospective study at a
single institution, so more
extensive, multicenter studies
are needed to validate the
findings, 2. recurrent lesions
were diagnosed using
histopathology or cytology, 3.
Image processing resulted in
a loss of information,
influencing the performance,
4. there can be an issue in
adaptability of learning
outcome in testing because of
using other US systems.

Sensitivity of 0.958,
specificity of 0.925,
and accuracy of 0.925

44. Choi et al. [87]

Differentiation
between benign
and malignant
breast masses

GoogLeNet CNN
(S-DetectTM for
Breast)

Not specified Not
specified

Not
specified

1. Interobserver variability
may be seen in CAD results
due to variation in
the observed features among
the representative images, 2.
Not applicable to diagnosis of
non-mass lesions (e.g.,
calcifications, architectural
distortion) because they were
excluded from analysis due to
having not clearly
distinguishable margin, 3.
They included benign or
potentially benign masses
that were not biopsied, which
were stable or diminished in
size during follow-up.

Specificity 82.1–93.1%,
accuracy 86.2–90.9%,
PPV 70.4–85.2%
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45. Becker et al. [88] Classification of
breast lesions

Deep neural
network Not specified Not

specified
Not
specified

1. Large portion of patients was
excluded due to strict inclusion criteria,
resulting in possibility of falsely low or
high performance, 2. single-center study
and large portion of benign lesions were
scars, may be misdiagnosed as
cancerous, 3. Retrospective, inherent
selection bias, a high proportion of
referred patients had a previous history
of cancer or surgery, 4. small sample size.

The training set
AUC = 0.96,
validation set
AUC = 0.84,
specificity and
sensitivity were 80.4
and 84.2%,
respectively

46. Stoffel et al. [89]

The distinction
between
phyllodes tumor
and
fibroadenoma
from breast
ultrasound
images

Deep networks in
ViDi Suite Not specified Not

specified
Not
specified

1. They only trained to distinguish
between PT and FA, so it cannot
diagnose other lesions, such as scars or
invasive cancers, 2. it would accurately
identify unaffected patients, rather than
patients requiring treatment, 3. small
sample size, 4. retrospective design in a
stringent experimental setting, 5. since
high prevalence of PT were in the
training cohort, despite the fact FA is
more common, it has potential to
overestimate the occurrence of PT, 6. The
cost-effectiveness of this method
application has not yet been addressed.

AUC 0.73

47. Byra et al. [90] Breast mass
classification VGG19

The learning rate was
initially 0.001 and was
decreased by 0.00001 per
epoch up to 0.00001. The
momentum was 0.9, the
batch size was 40,
optimizer: stochastic
gradient descent, epoch
16, dropout 80%

Binary
cross-
entropy

Sigmoid
and ReLU

Radiologist has to identify the mass and
select the region of interest AUC 0.890
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48. Shin et al. [70]

Breast mass
localization
and
classification

Faster R-CNN,
VGG-16 net,
ResNet-34,
ResNet-50, and
ResNet-101

Optimizer: SGD, Adam optimizer,
learning rate 0.0005, weight decay of
0.0005, batch size 1 and 2,

Classification
(cross
entropy)
and
regression
losses

Not
specified

1. Failed to train a mass
detector due to poor image
quality, unclear boundary,
insufficient, confused and
complex features, such as
irregular margin and a
nonparallel orientation is
more likely to be seen as
malignant, 2. due to limited
data, why deep residual
network performed worse
than VGG16, could not be
identified, 3.

Correct localization
(CorLoc) measure
84.50%

49. Almajalid et al.
[53]

Breast lesion
segmenta-
tion

U-Net
Two 3 × 3 convolution layers, 2 × 2 max
pooling operation containing stride 2,
batch size 8, epoch 300, learning rate 10−5

Minus dice ReLU

1. Shortage of adequately
labeled data, 2. kept only the
largest false-positive regions,
3. failure case when no
reasonable margin is
detected.

Dice coefficient
82.52%

50. Xiao et al. [69]
Breast
masses dis-
crimination

InceptionV3,
ResNet50, and
Xception, CNN3,
traditional
machine
learning-based
model

The input image sizes were 224 × 224, 299
× 299, and 299 × 299, respectively for
ResNet50, Xception, and InceptionV3
models, Adam optimizer, batch size 16

Categorical
cross-
entropy

ReLU,
softmax

1. When depth of fine-tuned
convolutional blocks exceeds
a certain target, overfitting
occurs due to training a
small-scale image samples, 2.
Memory-consuming, cannot
be applicable to embedded
devices

Accuracy of
Transferred
InceptionV3,
ResNet50, transferred
Xception, and CNN3
were 85.13%,
84.94%,84.06%,
74.44%, and
70.55%,respectively

51. Qi et al. [117]
Diagnosis of
breast
masses

Mt-Net, Sn-Net

Mini batch size 10, optimizer: ADADELTA,
dropout 0.2, L2 regularization with λ of
10−4, input image size 299 × 299 pixels,
used class activation map as additional
inputs to form a region enhance
mechanism, 1536 feature maps of
8 × 8 size in the Mt-Net, 2048 feature
maps of 8 × 8 size in the Sn-Net

Cross-
entropy ReLU Limitations not specified

Accuracy of Mt-Net
BASIC, MIP AND
REM are 93.52%,
93.89%, 94.48% and
Sn-Net BASIC, MIP,
and REM are 87.34%,
87.78%, 90.13%,
respectively.
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52. Segni et al. [118]
Classification
of breast
lesions

S-detect Not specified Not
specified

Not
specified

1. Limited sample size, 2. High
prevalence of malignancies, 3.
Retrospective

Sensitivity > 90%,
specificity 70.8%, ROC
0.81

53. Zhou et al. [119] Breast tumor
classification CNN

16 weight layers (13 convolution layers
and 3 fully connected layers), 4
max-pooling layers, convolution kernel
size was set 3 × 3, the numbers of
convolution kernel for different blocks
were 64, 128, 256, 512
and 512, the max-pooling
size and strides were 2 × 2, Adam
optimizer was used, batch size 8, maximal
number of iterations 6400, initial learning
rate 0.0001

Not
specified

ReLU
and
Softmax

Not specified
Accuracy 95.8%,
sensitivity 96.2%, and
specificity 95.7%

54 Kumar et al. [54]
Breast mass
segmenta-
tion

Multi
U-Net

Dropout 0.6, optimizer: RMSprop,
learning rate 5 × 10−6, convolution size
3 × 3 (stride 1), max-pooling size 2 × 2
(stride 2), input image size 208 × 208

Negative
Dice
coefficient

Leaky
ReLU

1. The algorithm was trained using
mostly BIRADS 4 lesions, limiting the
model’s ability to learn the typical
features of benign or malignant lesions,
2. limited training size, 3. Varying angle,
precompression levels and orientation of
the images limit the ability to better
identify the boundaries of the masses.
Different cross-sections’ information
could not be combined.

Dice coefficient 84%

55. Cho et al. [91]

To improve
the
specificity,
PPV, and
accuracy of
breast US

S-Detect Not specified Not
specified

Not
specified

1. Small dataset, 2. Calcifications were
not included in the study due to limited
ability of the model to detect
microcalcifications, nonmass lesions
were also excluded, 3. Variation exists in
selection of representative images, 4.
50.4% of the breast masses in this study
were diagnosed by only core needle
biopsy.

Specificity 90.8%,
positive predictive
value PPV 86.7%,
accuracy 82.4, AUC
0.815
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Table 2. Cont.

No. Study Purpose Deep Learning
Models Hyperparameters Loss

Function
Activation
Function Limitations Performance

Metrics

56. Han et al.
[120]

Classification
of breast
tumors

GoogLeNet
Momentum 0.9, weight decay 0.0002, a poly
learning policy with base learning rate 0.0001,
batch size is 32

Not
specified

Not
specified

1. More benign lesion than
malignant ones, more sensitive to
benign lesions, 2. ROIs should be
manually selected by radiologists

Accuracy 0.9,
sensitivity 0.86,
specificity 0.96.

57. Kim et al.
[121]

Diagnosis of
breast
masses

S-detect Not specified Not
specified

Not
specified

1. US features analysis was based
on the fourth edition of BI-RADS
lexicon, changes in details may
result in changes in results
despite little has changed
between 4th and 5th edition of
BI-RADS, 2. No analysis of
calcifications was performed
with S-Detect, 3. Non-mass
lesions were excluded, 4. One
radiologist selected a ROI and a
representative image, which
could have differed if another
radiologist was included.

Accuracy 70.8%

58. Yap et al.
[64]

Detection of
breast
lesions

A Patch-based
LeNet, a U-Net,
and a transfer
learning approach
with a pretrained
FCN-AlexNet.

Iteration time t was 50, input patches are sized at
28 × 28, Patch based LeNet: Root Mean Square
Propagation (RMSProp) was used, a learning rate
of 0.01, 60 epochs, the dropout rate of 0.33, U-Net:
Adam optimizer, a learning rate of 0.0001, 300
epochs, FCN-AlexNet: Stochastic gradient
descent, a learning rate of 0.001, 60 epochs, a
dropout rate of 33%

Patch-
based
LeNet:
Multino-
mial
logistic
loss

ReLU
and
Softmax

They need a time-consuming
training process and images that
are normal.

Transfer Learning
FCN-AlexNet
performed best,
True Positive
Fraction 0.98 for
dataset A, 0.92 for
dataset B

59. Antropova
et al. [122]

Characterization
of breast
lesions

VGG19 model,
deep residual
networks

Automatic contour optimization based on the
average radial, takes an image ROI as input, the
model is composed of five blocks, each of which
contains 2 or 4 convolutional layers, 4096 features
were extracted from 5 max pooling layers, average
pooled across the third channel dimension, and
normalized with L2 norm, then the features which
are normalized are concatenated to form the
feature vector

Not
specified

Not
specified

1. The depth and complexity of
deep learning layers for
moderate sized dataset makes
investigating their potential out
of the scope of this experiment, 2.
Single-center study

AUC = 0.90
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Table 3. The descriptive comparative analysis across deep learning model performances among
various stages of breast lesion management.

Purpose Performance Metrics
(No. of Studies)

Performance Mean
± Standard Error Range Maximum Achieved (Model)

Segmentation

Dice coefficient (9) 85.71 ± 1.55 (%) 79.62–96.95 (%) 96.96% (SegNet with the LNDF ACM)

Accuracy (7) 94.69 ± 1.13 (%) 85–99.49 (%) 99.49% (LEDNet, ResNet-18, Optimal
RNN, SEO)

Classification
Accuracy (20) 86.34 ± 1.69 (%) 50–100 (%) 100% (VGG16, ResNet34, and

GoogLeNet)

AUC (14) 0.87 ± 0.02 0.755–0.98 0.98 (VGG16 CNN)

Prediction of ALN
status

Accuracy (8) 84.12 ± 2.50 (%) 74.9–98 (%)
98% (Feed forward, radial basis
function, and Kohonen
self-organizing)

AUC (4) 0.88 ± 0.02 0.748–0.966
0.966 (Feed forward, radial basis
function, and Kohonen
self-organizing)

Prediction of response
to chemotherapy

Accuracy (3) 87.9 ± 4.70 (%) 79.7–96 (%) 96% (ANN)

AUC (2) 0.91 ± 0.05 0.86–0.96 0.96 (ANN)

8. Conclusions

Despite all these limitations, these deep learning models can save time and money in
diagnosing a medical condition, which will reduce the workload of physicians so that they
can spend quality time with patients. This has the potential to improve the quality of care
and identify early management for the patients by automatically segmenting and classifying
breast lesions into benign and malignant, or BI-RADS categories, to facilitate early management,
monitoring response to chemotherapy, and progression of the disease, including lymph node
metastasis with improved accuracy compared to radiologists and time efficiency. Moreover,
in resource-limited areas, including low- and middle-income countries where breast cancer-
related mortality is high due to a lack of physicians and radiology experts and, in some places,
only ultrasound operators are making decisions, applying these deep learning models can
considerably impact those scenarios [123–125]. The application of these models to real-world
settings and the availability of these models and knowledge of deep learning to physicians are
now a necessity.
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