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Simple Summary: Lung cancer remains the most commonly diagnosed cancer in the United States,
only behind sex-specific cancers such as breast and prostate cancer. While not a sex-specific cancer,
lung cancer exhibits sex-specific trends. Males are generally at a higher lifetime risk of developing
lung cancer and have a higher mortality than females. There are also differences in therapeutic
response between the sexes. As lung cancer is a complex disease, this difference is likely a combination
of environmental factors, such as environmental exposures, diet, and smoking status, with inherent
biological differences, such as the contribution of sex hormones and differences in immune responses.
This narrative review focuses specifically on these biological differences and their contributions to
this difference. Gaining a better understanding of the biological reasons behind this sex difference
could lead to better treatment and screening decisions in the clinic that take the biological sex of the
patient into consideration.

Abstract: Sex disparities in the incidence and mortality of lung cancer have been observed since
cancer statistics have been recorded. Social and economic differences contribute to sex disparities in
lung cancer incidence and mortality, but evidence suggests that there are also underlying biological
differences that contribute to the disparity. This review summarizes biological differences which
could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor
cell genetic differences, and differences in the immune system and its response to lung cancer are
highlighted. How some of these differences contribute to disparities in the response to therapies,
including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a
discussion of our perceived future directions to identify the key biological differences which could
contribute to sex disparities in lung cancer and how these differences could be therapeutically
leveraged to personalize lung cancer treatment to the individual sexes.

Keywords: non-small cell lung cancer; estrogen; androgen; progesterone; smoking; cancer immunology;
sex difference

1. Introduction

Despite significant progress in the diagnosis and therapeutic management of cancers,
significant disparities exist, with males suffering from a higher incidence and mortality
compared to females worldwide [1,2]. This long-standing disparity in outcomes [3] may
be driven by both social determinants and fundamental biological characteristics of the
disease. Outside cancers of the reproductive system, there are several cancers including
lung, melanoma, urinary tract, and glioblastoma that demonstrate great sex-specific trends
in clinical presentation, progression, and mortality. These sex differences, and their im-
plications for cancer treatment strategies, have been a focus of a European Society for
Medical Oncology multi-disciplinary workshop highlighting their importance to the cancer
community [4]. Lung cancer is the leading cause of cancer death [1]; thus, there is an urgent
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need to elucidate the underpinnings of disease initiation and progression. As such, a better
understanding of the contributing clinical, biological, epigenetic, and genetic drivers of sex
differences in lung cancer has the potential to inform risk stratification and screening for
early disease as well as treatment strategies that take sex into consideration. In this review,
we will describe potential biological bases for the observed sex differences in lung cancer
and how such biology could be leveraged to tailor treatment of subjects with lung cancer.

Sex Differences in Lung Cancer—A Clinical Perspective

In the past, males were disproportionally diagnosed with lung cancer, though this
gap has been closing and reversing in certain populations in recent years [5–7]. Later
diagnoses with more advanced stages of disease are more likely to occur in males [5].
This results in a worse prognosis in males with lung cancer and higher mortality than
women despite advances in therapy development, and declining mortality for all cancers
(https://www.cdc.gov/cancer/, accessed on 1 May 2023). Sex differences in the survival
and mortality of early stage lung cancer are reduced with low-dose computed tomography
(LDCT) screening [8,9]; however, current eligibility criteria for screening do not include sex;
rather, these are focused on age and smoking history [10]. Lung cancer is a complex disease,
and as such, the drivers of the observed sex differences are likely to be multifactorial,
including a combination of multiple environmental and biological factors. These factors
can include sex-differences in behavior towards the healthcare system and environmental
exposures, smoking, diet, sex hormone contributions, and differences in immune responses.
Controlling for environmental contributions, age, and smoking history, men remain more
susceptible to lung cancer, suggesting that underlying fundamental biological character-
istics across sex may be contributing to disease [11]. Despite the confirmation of this sex
difference, the biological drivers of this difference remain largely unknown.

2. Sex Hormones

Sex hormones and their signaling pathways have long been implicated in the patho-
genesis of cancers [12]. Sex hormones with known roles in cancer include prolactin (PRL),
luteinizing hormone (LH), follicle-stimulating hormone (FSH), gonadotropin-releasing
hormone (GNRH), estrogen (E2), progesterone (P) and testosterone (T) [13]. Many of
these hormones have well-documented roles in the cancer biology of reproductive organs
including ovaries, endometrium, prostate, and breast cancer [14]. Several sex hormones
are produced by lung cancers ectopically [15,16], which contribute to the clinical spectrum
of disease (Table 1) [17]. Of these hormones, only exogenous E2, P and T have been docu-
mented to regulate lung cancer biology, and their role in the disease remains controversial
in the literature.

Table 1. Table describing sex hormones and their effects on lung cancer growth. Sex hormones and
bioactive molecules have known functions in regulating several aspects of lung cancer biology. These
include the cell autonomous effects of lung cancer such as cell proliferation, cell death responses to
therapy, and the ability of cancer cells to metastasize. These molecules have significant effects on
the immune system, including modulating T cell activity, immunoglobulin production, and innate
immune cell responses (cytokine release).

Hormone Higher in . . . Role in Lung Cancer Effects on Immune System

Estrogen Females

• Can be produced by NSCLC cells [18]
• Can induce proliferation [18]
• Through HRT, may increase risk in women [19–21]
• May also exhibit a protective effect depending on

age, smoking status [22]

• Modulates NK cell cytotoxicity [23,24]
• Affects T helper responses [25]
• Increases production of peripheral blood

mononuclear cell immunoglobulins via IL-10 [26]
• Promotes B cell survival and proliferation [27]
• Affects T regulatory cell populations [28]
• Can stimulate CD4+ T cell responses [28]
• Affects dendritic cell differentiation and

activation [29]
• Can interact with estrogen response elements in T

cells [30,31]
• Can modulate PD-L1 expression [32]

https://www.cdc.gov/cancer/
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Table 1. Cont.

Hormone Higher in . . . Role in Lung Cancer Effects on Immune System

Progesterone Females

• Can inhibit growth of lung cancer in vivo [33]
• PR+ lung cancer may be associated with greater

overall survival [33]

• Can decrease IFNγ production in NK cells [34,35]
• Can decrease inducible nitric oxide synthase in

macrophages [36]
• Overall anti-inflammatory [34–36]

Testosterone Males

• Elevated levels have been associated with
increased risk [37,38]

• May potentiate cancer promoting effects of
estrogen [39]

• Can reduce immunoglobulin production [40]
• Overall suppression of immune responses [41,42]

Follicular
Stimulating
Hormone

Females
• Unknown, though plays important roles in

ovarian and breast cancer
• Can stimulate TNF production from bone marrow

granulocytes and macrophages [43]

Leptin Females
• May be associated with poor prognosis in lung

adenocarcinoma and squamous cell carcinoma,
though more research is needed [44]

• Affects survival and activation of B and T cells [45]
• Can drive IL-2 and IFNγ production [45]

Prolactin Females
• May be an early predictive factor in patients with

metastases [46]

• Promotes CD4+ and CD8+ T cell
differentiation [47]

• Promotes release of IFNγ by NK Cells [47]
• Can activate macrophages via prolactin receptor

activity [47]

2.1. Estrogen

Estradiol (E2) is the active form of estrogen that has been shown in vitro to induce
proliferation of lung cancer cells [48,49]. ERα and ERβ are encoded by the ESR1 and ESR2
genes, respectively, and expressed as full-length proteins with several potential transcript
variants [50]. ERβ is normally expressed in lung epithelium and lung fibroblasts, and is
present in lung cancer cells. Conversely, ERα is typically not found, or expressed at very
low levels, in lung tissues. ERα expression is known to be regulated epigenetically in lung
cancer through CpG methylation [51]. One study showed significant methylation in lung
cancer tissue in contrast to no methylation in normal tissue [52]. CpG methylation has also
been observed in lung cancer cell lines and mouse models of lung cancer [52]. The role of
ERα is somewhat controversial; despite overall lower levels of expression in some lung
cancers, some studies have shown cytoplasmic ERα in non-small cell lung cancer (NSCLC),
potentially due to a transcript variant [53,54].

Signaling through these receptors is initiated through E2 binding to the ER. Studies
have shown that, in addition to circulating estrogen and exogenous estrogen from hor-
mone replacement therapy (HRT), E2 can be produced by NSCLC cells via aromatase
activity [18]. One study demonstrated that aromatase activity was significantly higher in
adenocarcinoma, adenosquamous carcinomas, and bronchoalveolar carcinomas than in
normal lung tissues [48]. An additional study demonstrated that lower levels of aromatase
expression predicted a better overall survival (OS) in women over 65, as well as in younger
women with no smoking history [55]. In addition to their own signaling pathways, ERs can
also interact with other cell-surface receptors including epithelial growth factor receptor
(EGFR), caveolin, and flotillin [18]. Interaction with these receptors can also promote cell
proliferation. ERβ expression has, in general, not been associated with any specific grade
of cancer, but has been associated with improved OS. In contrast, ERα expression in the
cytoplasm is associated with a higher tumor grade and poorer OS [56,57].

Both ERs and aromatase have been identified as potential therapeutic targets in lung
cancer. Fulvestrant, an ER competitive inhibitor, significantly reduced tumor volume of
NCI-H23 NSCLC cells in a flank model of ovariectomized nude mice [57]. Erlotinib and
gefitinib, both EGFR tyrosine kinase inhibitors, were incapable of controlling tumor growth;
however, when combined with fulvestrant, these were superior in controlling tumor growth
compared to fulvestrant alone [18]. Aromatase inhibitors such as anastrozole and exemes-
tane alone or in combination with traditional chemotherapies also show significant tumor
growth control in lung cancer [48,58].
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The role of the estrogen signaling pathway in lung cancer biology is controversial, and
as a result, its role in lung cancer remains unclear. Estrogens play important physiological
roles in both males and females, though their overall abundance is higher in females [59].
Outside of their role in reproductive signaling, estrogens facilitate a variety of biological
processes, from protein and lipid synthesis to modulating immune cell populations [60].
In the context of cancer, the involvement of estrogens is tied to estrogen receptor (ER)
status. For example, breast cancers are often ER-positive, and frequently depend on signals
from estrogens to grow [61,62]. Likewise, there are suggestions that lung cancers with
cytoplasmic, in comparison to nuclear, localization of ER may have a worse prognosis;
however, this was not observed universally in all studies [63].

It is unclear if estrogens promote or hinder lung cancer. Several studies have shown a
higher risk of lung cancer in women taking HRT [19–21], but just as many studies show
HRT or oral contraceptives having no effect on overall risk [22,64,65]. Additional studies
investigating the interplay between estrogen levels and smoking show a higher risk for
developing lung cancer among smokers on HRT [66,67]. Another retrospective study
showed that survival was higher in women who were not on HRT at the time of diagnosis,
especially in women who had a prior history of smoking [22]. Consistent with estrogens
promoting lung cancer, there was a measurable increase in lung cancers in males given
estrogens to treat heart disease leading to the termination of the clinical trial [68]. Estrogens
can also modulate the effects of other cancer-causing factors, such as genetic mutations
due to smoking [69]. The cancer-promoting effects of estrogens are further supported by
common ER expression in lung cancers, the ability of estrogen to directly, or indirectly
through aromatase expression, stimulate lung cancer growth cell culture studies [49]. These
studies strongly suggest that estrogen promotes lung cancer growth in clinical practice and
in experimental models.

In contrast, there have been several studies suggesting that there is a protective
benefit against lung cancer in women who have not had an oophorectomy. A study of
nearly 1000 women demonstrated that women who had a non-natural menopause (i.e.,
an oophorectomy for medical reasons) were at a much higher risk for developing lung
cancer than those who went through a natural menopause [70]. Similarly, the same study
also showed that women who entered menopause at a younger age than 45 were at a
higher risk of developing lung cancer than their older counterparts [70]. Additionally, a
study analyzing patients from the Surveillance, Epidemiology, and End Results (SEER)
database showed that women with lung cancer who were premenopausal typically had a
more advanced disease at the time of diagnosis and had a higher rate of adenocarcinoma
than their postmenopausal counterparts [71]. The same study showed that premenopausal
women had similar mortality rates to males in the same age range with lung cancer, but
that older postmenopausal women had lower mortality rates than their age-matched
males. In addition to estrogens, premenopausal ovaries are known to regulate a variety
of bioactive molecules, such as progesterone, testosterone, follicular stimulating hormone
(FSH), luteinizing hormone (LH), inhibin b, and anti-mullerian hormone (AMH) [72]. In
addition to these, leptin, a dual hormone and cytokine, may be associated with poor
outcomes in lung adenocarcinoma and squamous cell carcinoma, though more research
needs to be carried out into its potential role [44]. The contrasting effects of ectopic estrogen
treatments (i.e., HRT) which generally promote lung cancer, and the effects of sex hormone
loss resulting from pre-menopause or ovariectomy, which increase the lung cancer risk of
women, could be explained by changes in sex hormones or other bioactive molecules other
than estrogen such as progesterone.

2.2. Progesterone

Progesterone, while traditionally described as a female sex hormone, is present in
both males and females as an important precursor molecule for other endogenous steroids.
Progesterone and its role in lung cancer has been less extensively studied compared to
estrogen. As with estrogen and ERs, progesterone can be produced by NSCLC and the
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progesterone receptors (PRs) are expressed in NSCLC [33,73–75]. Analysis of PR expression
in the patients’ tumor samples did not show any correlation with age, menopausal state,
ER positivity, or p53 positivity; however, it was more often found in females with early
stage disease and in poorly differentiated NSCLC [33]. Additionally, patients with PR-
positive lung cancer had a better OS than those with PR-negative lung cancer [76]. In
animal studies, progesterone was able to inhibit the growth of lung cancer cells in a flank
model in nude mice, and this inhibition was associated with decreased expression of
proliferation marker Ki-67, cell cycle regulators cyclin A and E, as well as an increase in
cell cycle [33] (pp. 21, 27). However, studies by other groups show no correlation between
PR expression and OS [33,75]. Estrogens and progesterone can also work together, as ER
signaling can upregulate PR expression [77]. Despite the disagreement in the literature,
studies examining the role of progesterone and PR signaling are ongoing and could provide
important information and insights into the role of hormones in lung cancer.

2.3. Testosterone

In males, androgen testosterone is the primary sex hormone, and research into its
role in cancer has been primarily limited to prostate cancer. Elevated testosterone has
been associated with increased lung cancer risk in males in some studies [37,38]. However,
other studies did not corroborate a correlation between testosterone and lung cancer risk
in men [78]. One study in a mutant Kras/TP53 mouse showed that males that received
E2 required a much lower dose of Adeno-Cre in order to form tumors, suggesting that
androgens might potentiate the cancer-promoting effects of estrogen or progesterone [39].
In women, the ovaries and adrenal glands metabolize progesterone into testosterone,
leading to the possibility that the high levels of testosterone in men, and in women on HRT,
could contribute to the observed sex difference in tumor development and progression [65].

3. Genetic Factors

Key genetic differences have been identified in lung cancers from men and women.
Women more frequently have lung cancers with a driver mutation such as EGFR, ALK, or
KRAS [79–81]. Additionally, multiple studies have demonstrated differences in key DNA
damage repair pathways in the lung cancers from men compared to women. For example,
lung cancers in women often have mutations in p53 and female-associated polymorphisms
in the cytochrome P450 gene that affect DNA damage repair efficiency [82]. Female smokers
have a significantly higher level of aromatic/hydrophobic DNA adducts in non-tumor
lung tissue and have higher expression of CYP1A1 in lung tissue compared to their male
counterparts [83]. Higher levels of CYP1A1 in females lead to a greater metabolism of
polycyclic aromatic hydrocarbons (PAHs) from cigarette smoke into carcinogenic inter-
mediates [83]. Higher levels of polycyclic aromatic hydrocarbon DNA adducts were also
found in female smokers compared to male smokers, despite there being lower levels of
tobacco carcinogens found in females than males [83]. The increased sensitivity of female
smokers to DNA damage could be due, in part, to estrogen signaling and its role in cell
proliferation [52]. Additionally, males and females metabolize nicotine and other tobacco
carcinogens differently [84]. In general, females have more efficient nicotine clearance
due to greater CYP2A6 activity, which can be attributable to higher estrogen levels [85].
Additional studies have focused on the differences between males and females in the
expression of the X-linked gastrin-releasing peptide receptor (GRPR), which can encourage
cell proliferation. One study found that GRPR was more highly expressed in female than
male non-smokers, and that in smokers, it was found at lower levels of tobacco exposure in
women than in men, suggesting that female smokers’ two copies of GRPR could contribute
to lung cancer susceptibility [86,87].

A detailed meta-analysis of the TCGA datasets concluded that lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) have an extensive sex disparity in
gene signatures (expression, methylation status and copy number changes) [88]. Sex
disparity in mutations in LUAD include a female bias for mutations in MED12, F8, DMD,
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FAM47A, ABCB5 and male bias for mutations in RBM10, COL21A1, ZNF521, CNTN5,
SMG1 and STK11. The significance of these findings is unknown because the products
of these genes have a variety of functions, including, but not limited to, transcription
regulation, clotting, muscle function, membrane transport. Several significant somatic copy
number amplification disparities were observed in LUSC, including 17q11.2, 4q22.1 and
a deletion bias at 15q12 to females. Males have several amplifications, including 6q12,
8p11.23, 12p13.33, 17q25.1, 20q11.21, 20q11.21 and Xq28, and a deletion bias at 18q23.
Gene set enrichment analysis (GSEA) in LUAD discovers gene sets annotated as androgen
response, E2F targets, fatty acid metabolism, G2M checkpoint, glycolysis, Myc targets,
and the unfolded protein response as being significantly enriched in females over males.
LUSC observes similar enrichments in females for E2F targets, G2M checkpoint and Myc
targets. The methylation status of genes in LUSC and LUAD shows a female bias and
includes categories annotated as interferon alpha response, TGFβ and TNFα signaling,
and apoptosis.

4. Environmental Factors and Exposures
4.1. Smoking

Cigarette smoking is one of the greatest risk factors for the development of lung cancer.
In the past, males were more likely to be smokers than women, though this has decreased
in recent years, which is coincident with reductions in smoking rates overall [89,90]. Within
the smoking population, males are more likely to develop lung cancer than women, though
some studies have suggested that the disease development is different in male smokers
compared to female smokers [90,91]. Other studies have shown tobacco exposure as having
no effect on risk differences between males and females, possibly due to differences in
population sampling and how tobacco exposure is characterized (i.e., inhalation depth,
type of cigarette, and tar content) [92]. Concurrent with smoking is secondhand smoke
exposure, although there is great difficulty in measuring and characterizing secondhand
smoke exposure. One meta-analysis showed that women with smoking spouses had an
increased risk of developing lung cancer [93]. However, another study from the UK Million
Women Study did not find a link between secondhand smoke exposure and lung cancer
development [94].

4.2. Additional Environmental Factors

Asbestos, while commonly associated with mesothelioma, also contributes to lung
cancer development. Occupational exposures leading to carcinogenesis are more often seen
in men, but one study has suggested that non-occupational exposures can put women at
a higher risk than men [95]. Many of the studies involving asbestos exposure primarily
focus on males. Infections are another source of risk for the development of lung cancer.
One study showed that, in a non-smoking population, women were more likely to have
HPV-positive lung cancer than men, with follow-up studies showing that women with a
history of HPV have increased odds for developing lung cancer as compared to men [96,97].

5. Immune Responses

The immune response to lung cancer varies between men and women. A meta-analysis
of several publicly available lung cancer gene expression datasets shows that women have
increased gene signatures consistent with an acute inflammatory response compared to
men [98]. Additional studies of similar datasets showed elevated levels of T-cell dysfunc-
tion, inhibitory immune checkpoint molecules, and immune-suppressive cells (MDSCs,
Treg) in NSCLC tumors in women compared to men [99]. Single-cell sequencing analysis
has shown that tumor-associated macrophages (TAMs) have elevated immunogenicity
(elevated IFNγ-producing and antigen-presenting) and are assumed to have greater antitu-
mor activity in cells from tumors of female patients [100]. In male-derived tumor samples,
TAMs had gene signatures consistent with being more immunosuppressive.
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Sex differences in lung cancer, and many other cancers with a sex bias, could be in part
because males and females show marked differences in their immune systems. For example,
females have been shown to have immune gene set enrichments as compared to males
in the context of lung cancer [101]. The underlying drivers for these differences remain
largely unknown. In general, females tend to have an overall more robust innate and
adaptive immune response than males [32]. Females also typically harbor higher CD4+ T
cell counts and produce higher amounts of IFNγ than males in response to infections [102].
While this greater response allows for quicker clearance of infections and development
of immunity, it also places females at a greater lifetime risk for the development of au-
toimmune diseases [103]. In addition to differences in immune responses, there are also
differences in circulating immune cell populations between males and females, including
greater populations of CD4+ T cells and B cells in females, and these differences can shift
based on age and race [104,105]. One potential explanation for this difference is the location
of multiple genes related to immune function on the X chromosome [106]. Genes that
encode for the IL-2 receptor gamma subunit (IL2Rγ), Toll-like receptor (TLR)-7, TLR-8,
CD40L, and the forkhead box P3 (FoxP3) are all located on the X chromosome. Because
of the higher immune system activity in females, cancer cells in females are often more
efficient at evading the immune system and have undergone a stringent immunoediting
process to avoid detection by the immune system [107].

Sex hormones are known to have effects on immune responses and cell populations.
Estrogen has been shown to have a wide range of effects, from increasing NK cell cyto-
toxicity in vitro but decreasing the secretion of granzyme B by NK cells in vivo [23,24], to
inducing changes in T helper 1/2 (TH1/TH2) responses [25]. E2 increases the production of
human peripheral blood mononuclear cell immunoglobulins via the release of IL-10 [26].
Estrogen has been shown to increase the expression of CD22, SHP-1, and Bcl-2, all of which
are important for B cell survival and proliferation [27]. Estrogen levels also have direct
effects on the T regulatory population size, which, in turn, can affect T cell activity and
proliferation [28]. The CC chemokine receptors CCR5 and CCR1 on CD4+ T cells can be
stimulated by estrogen [28]. Estrogen can also impact the differentiation and activation of
dendritic cells via IFN regulatory factor (IRF)-4 production in myeloid progenitor cells [29].

Estrogen signaling is important in a variety of immune cells, with non-classical ER
signaling interacting with the estrogen response elements (EREs) transcription factors
NFkB, SP-1, and AP-1 [30,31]. A significant portion of activated genes in female T cells
have EREs in their promoters, underlining the important role of estrogen in T cell re-
sponses [31]. PD-L1 expression can be modulated by estrogen and by several X-linked
microRNAs [32]. Progesterone’s effects on the immune system are less convoluted than
estrogen’s; progesterone has an overall anti-inflammatory effect, with decreases in IFNy
production in NK cells and inducible nitric oxide synthase (iNOS) in macrophages [34–36].
Androgens, such as testosterone, also work to suppress immune cell activity and are
anti-inflammatory [108,109]. Testosterone has been shown to reduce immunoglobulin
production and reduces the production of IL-6, as well as generally suppressing immune
responses [40–42]. FSH has been shown to stimulate TNF production in bone marrow
granulocytes and macrophages [43]. Leptin, which is generally higher in females, can affect
the survival and activation of B and T cells, and it can drive IL-2 and IFNγ production [45].
Prolactin also has effects on the immune system; it has been shown to promote CD4+ and
CD8+ T cell differentiation, the release of IFNγ from NK cells, and macrophage activation
via prolactin receptor activity [47]. Studies have been performed to characterize the role
of the immune system in lung cancer. Lung tumors have been shown to have very low
antigen presentation and low co-stimulatory molecule expression, allowing them to escape
detection by the immune system [110,111].

Smoking can have significant effects on the immune system. Cigarette smoke can
induce MAPK signaling, which can affect NFkB pathway activation [112]. Smoking can
reduce the activity of neutrophils and the efficiency of APCs, overall T cell activity, and
the amount of circulating immunoglobulins [113,114]. However, studies into sex-specific
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effects of smoking on the immune system have yet to be performed. These studies could
provide key insights into immune cell populations that may contribute to the observed sex
differences in lung cancer development and progression.

6. Differences in Response to Therapy
6.1. Immunotherapies

Immunotherapies, such as immune checkpoint blockade (ICB) therapies, are now the
standard of care for a subset of subjects with lung cancer. However, the effects of sex on
these therapies in lung cancer patients is an ongoing question in the cancer community.
Multiple meta-analyses have been performed on clinical trial data for ICBs, which included
lung cancer cohorts; however, many of these analyses fail to take into consideration study
heterogeneity and different cancer types. One meta-analysis performed by Botticelli and
Coll, which focused on anti-CTLA-4, anti-PD-1, and anti-PD-L1 therapies, showed no
significant benefit with immunotherapies regarding OS or progression-free survival (PFS)
in males vs. females, including those with lung cancer; however, this study did not account
for heterogeneity between trials. This study did not demonstrate any benefits to PDL1
immunotherapy across sex in lung cancer [115]. Wu and Coll investigated the efficacy of
CTLA-4 and PD-1 inhibitors vs. other therapies and demonstrated a better PFS and OS in
males vs. females; however, these findings were not significant in the NSCLC cohort of
the analysis [107]. A third meta-analysis focusing only on NSCLC patients with anti-PD-1
inhibitors (pembrolizumab or nivolumab) vs. chemotherapy showed a clear benefit of
anti-PD1 inhibitors (pembrolizumab) in males over females [116]. In the NSCLC cohort of
another meta-analysis carried out by Grassadonia et al., PFS was higher in immunotherapy-
treated males than in females, and anti-CTLA-4 treatment was associated with longer
OS in males [117]. Similar results were also observed Laing et al. in a more recent meta-
analysis [118]. In contrast, a meta-analysis carried out by Conforti et al. showed longer OS
in women than in men treated with ICBs; however, this study excluded a large number of
female patients from their final analysis, making interpretation of the results difficult [119].
Multiple other meta-analyses show no benefit of ICBs as monotherapies or as combinational
therapies in males vs. females with lung cancer [120,121]. The lack of agreement on the
effects of immunotherapies on males vs. females suggests a need for continued research
into this issue and better powered studies to elucidate potential sex differences. Gaining an
understanding of which therapies might be more beneficial to a certain sex has implications
for clinical practice and choosing adequate therapies for each patient.

6.2. Chemotherapies

Some studies have shown that males and females have different responses to
chemotherapies, whereas other have not documented any differences [122]. In general,
women have more adverse events to therapy than men [123]. In addition, there are
well-documented differences in drug kinetics, clearance, and toxicity between men
and women [124]. Relevant to lung cancer, platinum-based chemotherapy clinical
trials in NSCLC found that women responded better to these chemotherapies than
males and had a significantly better OS [125]. However, several studies did not observe
these differences with platinum-based compounds [126,127]. In addition, several
meta-analyses found that chemotherapy effectiveness in the adjuvant and neoadjuvant
setting did not find any sex-difference in the final outcomes [128,129], nor any sex
difference in concurrent platinum-based therapy compared to radiotherapy in lung
cancer patients [130]. Female patients with lung carcinoma who received paclitaxel
combined with carboplatin showed longer PFS than males, which could be potentially
explained by a lower activity of DNA damage repair mechanisms in tumors found in
females compared to those found in males [131]. Additional studies on combinational
therapies with cisplatin have all shown significantly better responses in females over
males with NSCLC [132,133]. As such, further investigating sex disparities in lung
cancer therapeutic responses could close our knowledge gap as to why they occur and
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help develop sex-specific treatment strategies to mitigate the detrimental effects of
these differences.

6.3. Targeted Therapies

Previously, women were shown to have better responses to EGFR inhibitors than
males [134]. A recent trial showed a trend of females receiving osimertinib (a third-
generation epidermal growth factor receptor tyrosine kinase inhibitor) having improved
survival over males; however, this result was not statistically significant [135]. A similar
result was observed in a trial studying the use of ALK inhibitors alectinib over crizotinib
in patients harboring ALK-mutated NSCLC. Women trended towards improved survival
over males, but the finding was not statistically significant [136]. VEGF blockade by be-
vacizumab showed a higher OS rate in females as compared to males with NSCLC [137].
This result underlines the need for further studies that consider sex as a variable to better
understand the different responses to targeted cancer therapies between males and females.

7. Models to Study a Sex Difference in Lung Cancer

Model systems will aid in the study of mechanisms driving sex differences in cancer
incidence and mortality in the clinic. Invertebrate models including D. melanogaster and
C. elegans may not be useful for this purpose since, to our knowledge, no reports have
been published describing a cancer sex difference in these models. In contrast, there are
several vertebrate model systems with an observed sex difference in cancer incidence or
mortality. In D. reno, both Myc and KRasV12 oncogenes preferentially induce liver cancer in
males over females, with additional studies showing that androgens promote and estrogens
inhibit cancer cell growth [138,139]. Studies in dogs and cats observed a similar sex bias
to those observed in humans. Male dogs have an increase in cancers from several origins,
including lymphatic, skin, genital, soft tissue, and respiratory system, whereas female dogs
have an increase in mammary tumors [140,141]. In general, sprayed and neutered dogs
show an increase in some non-reproductive tumors including the heart, prostate, urinary
tract, lymphatic and bone cancers [142], suggesting, similarly to humans, that sex hormones
influence cancer incidence rates.

A significant body of literature describes sex differences in cancer incidence in mice,
including several commonly used inbred strains [143]. The spontaneous cancers in mice are
predominantly lymphoma, with a lung cancer incidence at ~5% of mice necropsied at death
from old age—[143]. However, in some F1 hybrid strains, it can be as high as 30% with a
male bias [144]. Because of this low incidence (~5%), and long latency time (~2 years) a
variety of syngeneic, chemical-induced, and genetic models have been developed to study
lung cancer. In each of these induced models, a sex difference is observed that mirrors what
is observed for humans.

A common syngeneic mouse lung cancer model utilized is the syngeneic Lewis lung
carcinoma (LLC) model [145,146]. The use of a subcutaneous model of LLC shows no differ-
ence in growth between the sexes in some studies [147,148] or an increased growth in males
over females when fed a high fat diet [149]. Ovariectomy causes subcutaneous LLC tumors
to grow more quickly in female mice [150,151]. LLC orthotopic tumors grow more quickly
in females than in males [152]. The urethane model is a widely used and well-characterized
mouse model of carcinogen-induced lung cancer [153]. The urethane model shows a clear
difference between male and female mice from several inbred backgrounds, with tumors
appearing earlier in male mice than in female mice [154,155]. Ovariectomized, but not
castrated, mice develop urethane-induced lung tumors more quickly than their intact
counterparts, suggesting that female sex hormones suppress lung cancer growth [156].

Genetically engineered mouse models (GEMMs) have also played a significant role in
lung cancer research. A sex difference has been observed in the Kras, p53 (KP model) with
some studies showing gender differences in survival [157]. Ovariectomy of KP mice causes
tumors to form more quickly and grow more aggressively than their intact counterparts,
but administration of exogenous estrogen can also cause greater tumor formation [39].
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Administration of estrogen to male KP mice resulted in higher-grade tumor formation than
that observed for their vehicle counterparts, indicating an important role for estrogen in
this specific model.

8. Discussion

While the literature largely agrees that there is an observed sex difference in lung
cancer, the underlying mechanisms and drivers have yet to be fully elucidated. The
consensus is that men have a higher tumor grade at diagnosis and an increased mortality
from lung cancer compared to women. Interestingly, women tend to respond better to
cytotoxic and targeted therapies, whereas men have a better response to immunotherapies.
It is also clear that there are key differences in the immune systems between men and
women, with women having an enhanced innate and adaptive immune response compared
to men (Figure 1A). In addition to considerations of sex, racial and ethnic differences must
also be taken into account. Data from both the SEER program and from the CDC clearly
show higher rates of lung cancer in African Americans than in whites, and those of Hispanic
ethnicity had a lower incidence of lung cancer than non-Hispanics [158]. In addition to
this, African American patients have lower survival rates than white patients, and African
American patients are less likely to receive surgical resection and/or timely treatment
compared to white patients [46,159]. Racial and ethnic differences in smoking rates, as
well as the impact of other socioeconomic factors, can also have impacts on incidence and
survival [160]. In addition to socioeconomic factors, there are also genomic and epigenomic
differences between racial and ethnic groups that can influence lung cancer incidence.
In one example, a recent analysis of the TCGA datasets identified key gene expression,
protein expression, and pathway differences which corelate with differences in LUAD
survival between ethnic groups (https://doi.org/10.3390/cancers15102695 (accessed on
1 June 2023)). In other studies, patients of East Asian descent are more likely to have
EGFR mutations, for example, which could affect treatment and screening decisions for
this population in addition to any adjustments for sex [161]. Outside of EGFR, there
are few studies that consider specific racial and ethnic differences in oncogene mutation
frequencies; more work needs to be carried out in this area to identify potential differences
that could influence treatment decisions. How these differences could contribute to the
clinical differences in lung cancer between men and women is an area of active research.

Key areas need to be the focus of further investigations. Further work needs to be
carried out to elucidate the role that estrogen and hormone replacement therapy plays in
lung cancer risk in women, as well as to study the roles that progesterone and testosterone
may play. The potential effects that hormone replacement therapy may have on the trans-
gender population’s risk for lung cancer must also be considered. Transgender adults in the
United States have a higher smoking rate than cisgender adults, putting them at higher risk
for smoking-related diseases, and one study showed a high incidence of lung cancer in a
population of transgender women after gender affirmation therapy in Amsterdam [162,163].
While research that includes and that is dedicated to the transgender population is still
uncommon, more work must be carried out to include this population (Figure 1B). Future
studies that consider menopausal status, not just age, and measurements of sex hormone
abundance may help clarify the exact functions for menopause/sex hormones in lung
cancer. Estrogen’s effects on immune cell function are an area that could be particularly
important, as this could not only explain differences in cancer initiation and progression,
but also immunotherapy response and potential combinations of immunotherapies with
other therapies, potentially aromatase inhibitors that would prevent estrogen production.
These categories also need to be considered in therapeutic clinical trials, as estrogen and/or
progesterone status may affect therapeutic effectiveness in female patients; for example,
sex hormones can affect PD-1 pathway activity, though the effect this may have on im-
munotherapy response has not been clearly defined (Figure 1B) [164]. In regard to hormone
replacement therapy, studies need to be performed on both pre- and post-menopausal
individuals that take HRT to assess the potential contribution that it may have to lung
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cancer development. The potential influences that HRT may have during treatment on both
the cancer itself and immune cell behavior need to be studied to potentially develop recom-
mendations for either continuing HRT during treatment or ceasing use. Less frequently
discussed hormones such as activins, follicular-stimulating hormone (FSH), and prolactin
have all been implicated in other cancer types; however, little work has been carried out
as regards lung cancer (Table 1). Activin-A has been shown to be particularly important
in melanoma, where it can affect metastatic potential through evasion of the immune
system [165], and one study has shown that prolactin may be a possible early predictive
factor in lung cancer patients with metastases [166]. It is important to also focus studies
on males, not just females. As an example, the male hormone androgen has been recently
identified as a key regulator of CD8 T cell exhaustion in models of bladder, melanoma, and
colon cancer, but not of lung cancer [167,168]. Ultimately, it will be important to recognize
that sex hormones influence a wide variety of processes in both the tumor cells and in
the body. Thus, they could be playing both pro-tumor (direct effects of estrogens on lung
cancer growth), and antitumor effects through an enhanced antitumor immune response
(Figure 1C). Gaining a solid understanding of a mechanistic role they may play in lung
cancer development and progression, immune responses to lung cancer, and therapeutic
response is necessary for patient wellbeing and the development of new treatments.

While it is clear that the immune system plays an important role in lung cancer
development and progression, further studies must be carried out to characterize specific
differences in immune responses to lung cancer between males and females. Regarding the
immune system, exploring specific pathways that could have different activity between
males and females, such as apoptosis-inducing pathways, or checkpoint regulators such as
PD-L1, could be a novel avenue to explore for a sex difference. As new immunotherapies
continue to be developed and brought into clinical practice, knowing specific pathways
that behave differently between males and females can inform not only therapy design
but also novel combinations, whether with traditional chemotherapies or newer targeted
therapies. Recent work using a TRAIL agonist shows promise in multiple tumor types,
though the studies were only performed in female mice, and more studies would need
to be performed to study their effectiveness in males [169]. Additionally, androgens have
been previously shown to regulate tumor cell checkpoint expression [170,171]. Identifying
specific differences in immune cell function and activity between the sexes would open
up possibilities for targeted therapies that could take advantage of a pathway with greater
activity towards tumor cells from one sex to improve outcomes, or that could try to activate
pathways in one sex to improve the antitumor immune response. A better understanding
of these differences in the immune system could, in turn, help explain the differences in the
response to immunotherapies and traditional chemotherapies.

Studies on the beneficial effects of immunotherapies need to be performed with a
potential sex difference in mind; study populations need to intentionally include both
sexes and control for menopause in female patents—not just age—in recruitment and
analysis. Several analyses have been performed to date with inconclusive and conflicting
results, suggesting that not all the variables that affect immunotherapy outcomes have
been defined [172]. As new immunotherapies continue to be developed, intentional work
needs to be carried out prior to entering the clinic to determine any possible sex differences
in response by including both sexes in any animal work and in phase 1 trials. Gaining a
better understanding of what therapies are most beneficial for each sex could help guide
decision making in clinical practice and ensure each patient receives the best possible
treatment, whether that is an immunotherapy, a conventional chemotherapy regimen, a
targeted therapy, or a combination. This is especially important as women are often more
likely to experience greater toxicity from many traditional cancer treatments [124]. The
development and administration of treatments must be equitable between the sexes and
must therefore be based on research that considers these factors.
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Figure 1. Sex differences in lung cancer growth and treatment. (A) There are distinct differences
in lung cancer biology between men and women. Men have an overall increase in mortality from
lung cancer and an increase in tumor grade at diagnosis compared to women. Due to increases in
mutations in the EGFR pathway, women have a better response to EGFR inhibitors than men. Women
also have a better response to chemotherapies compared to men, while men have a better response
to immunotherapies compared to women. Some of these differences could be due to sex hormones.
Estrogens can improve some aspects of the immune response to cancer; however, they can also
promote tumor growth. Conversely, androgens suppress the T cell response, possibly contributing to
lung cancer in men. (B) Several sex-relevant considerations must be accounted for when completing
lung cancer clinical trials. These sex-relevant variables can impact treatment outcomes as described
in this review. These include a sex-specific mutation status for tumors from men vs. women, the
hormone status of both males and females, the inherent differences in therapy outcomes due to sex
hormones, and any impacts which could result from gender affirmation therapies. (C) Estrogen is the
best characterized sex hormone. It has several roles in both promoting and inhibiting lung cancer.
Estrogens are a mitogen which promote (red arrow) the cell autonomous proliferation of lung cancer
cells, a pro-cancer effect. Estrogens also enhance (green arrow) the cell autonomous response of
cancer cells to cytotoxic chemotherapies. Lastly, there is significant literature that shows that the
anti-tumor immune response is modulated by estrogen (green arrow), which could explain why
women have a lower incidence and mortality for many cancers, not just lung cancer. Figure was
created using Biorender.
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Studies into genetic factors have provided potential targets for therapy; however, more
research is needed to continue to study the differences between males and females in DNA
damage response pathways and how those can be influenced by smoking. Even though
tobacco smoking rates continue to decline worldwide, newer smoking-related activities
such as vaping require similar studies into their potential for causing lung cancer and
whether there may be a genetic basis for any sex differences. Because vaping is such a new
technology, determining its effects will take time. However, there is reason for concern; the
analysis of vaping fluids shows high levels of known and probable carcinogens, and the
United States may face a significant health burden as the effects of vaping fluid consumption
become apparent in the future [173]. In addition to the effects of tobacco consumption and
vaping, more studies into other environmental factors and the role they may play in DNA
damage and epigenetic changes need to be performed.

Additionally, research needs to be carried out to characterize the contributions that
the patient’s microbiome makes to lung cancer development and progression and how this
could impact any observed sex differences. The microbiome has well-characterized roles in
human cancer [174] and therapy effectiveness, including immunotherapies [175]. The gut
microbiome regulates hormone-dependent immune cell activity, suggesting that the micro-
biome could be a contributing factor for sex differences in the cancer antitumor immune
response [176]. In addition to the gut microbiome, lung cancer can be influenced by the lung
microbiome [177]. One study has already shown that aberrations in the lung microbiome
can increase the risk of malignancy, and another study has shown that treatment with
antibiotics during immunotherapy can actually lower progression-free survival—though
neither of these studies examined a sex difference [178,179]. The microbiome is rarely, if
ever, controlled for in clinical studies and could be a significant variable in outcomes in
studies investigating sex disparities. Further research in this area could contribute to a
greater understanding of basic sex differences in lung cancer development and progression,
as well as differences in immune responses and responses to therapies.

9. Conclusions

Lung cancer shows a clear difference in presentation and therapeutic response between
the sexes, though specific biological mechanisms that would explain this phenomenon
have yet to be described. This difference is likely a combination of environmental factors
and innate biological factors working together in the disease process. Further work needs
to be carried out to study the role of sex hormones and the role of the immune system in
facilitating this difference, as well as to study differences in the therapeutic response and
the potential biological reasons behind this difference. Gaining a deeper understanding
of the biological reasons behind the sex difference may open the door to new therapeu-
tic combinations or novel therapies based on differing biological mechanisms between
the sexes.
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