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Simple Summary: Tumor evasion of immune surveillance is a hallmark of cancer posing challenges
to effective cancer treatment. Herein we review the contributions of prostaglandins in shaping
tumor microenvironments to modulate immune responses and cancer progression. Opportunities
to target prostaglandins and their signaling receptors in improving cancer therapy, particularly
immunotherapy, are explored.

Abstract: Prostaglandins, the bioactive lipids generated from the metabolism of arachidonic acid
through cyclooxygenases, have potent effects on many constituents of tumor microenvironments.
In this review, we will describe the formation and activities of prostaglandins in the context of the
tumor microenvironment. We will discuss the regulation of cancer-associated fibroblasts and immune
constituents by prostaglandins and their roles in immune escapes during tumor progression. The
review concludes with future perspectives on improving the efficacy of immunotherapy through
repurposing non-steroid anti-inflammatory drugs and other prostaglandin modulators.
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1. Prostaglandins: An Overview

Prostaglandins are bioactive eicosanoids involved in a number of homeostatic bi-
ological functions and inflammation [1]. They are formed through the metabolism of
arachidonic acid through cyclooxygenase (COX), followed by different isomerases. Under
normal conditions, this ω-6-unsaturated 20-carbon fatty acid is covalently linked to the
sn-2 position of glycerophospholipids as a component of cellular membranes. Its release is
under tight metabolic and physiologic regulation. During cellular responses to a number
of cytokines, growth factors, or other hormones, arachidonic acid can be released from
the plasma membrane through secretory, cytoplasmic, or both types of phospholipase A2
(sPLA2, cPLA2) [2], and then subsequently converted to various bioactive lipids, termed
eicosanoids. These eicosanoids can function as the second messenger or through their
cognate receptors, evoking various cellular responses.

Arachidonic acid can be utilized by cyclooxygenase (COX), lipoxygenase (LOX), or
P-450 epoxygenase pathways to form various eicosanoids (Figure 1). The COX pathway
of arachidonic acid metabolism can form five primary prostanoids: prostaglandin D2,
prostaglandin E2, prostaglandin F2α, prostaglandin I2, and thromboxane A2. The for-
mation of prostanoids requires the formation of prostaglandin endoperoxide H2 (PGH2)
through oxygenation by COX (also known as prostaglandin H2 synthases, PGHS); and
the subsequent conversion of PGH2 to five primary prostanoids via specific synthases (or
isomerases) [3–8]. All five primary prostanoids, PGD2, PGE2, PGF2, PGI2 (prostacyclin),
and TxA2 (thromboxane A2), have potent biological activities, regulating immune functions
such as gastric mucosa protection, kidney development and homeostasis, reproductive
biology including embryo implantation, labor and uterine functions, and gastrointestinal
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integrity. They, particularly TXA2, can also modulate platelet aggregation, the sleep–wake
cycle, and body temperature regulation [9]. There are two COX isoforms, with COX1
constitutively expressed in most cells and COX2 expression stimulated by various stimuli.
Deregulated expression of COX2 has been extensively documented in various cancers. In
one of our published studies, thromboxane synthase is frequently upregulated in prostate
cancer, with its arachidonate product, thromboxane A2, involved in regulating tumor
cytoskeleton reorganization and cell motility [10].

Cancers 2023, 15, x FOR PEER REVIEW  2  of  13 
 

 

including embryo  implantation, labor and uterine functions, and gastrointestinal  integ-

rity. They, particularly TXA2, can also modulate platelet aggregation, the sleep–wake cy-

cle, and body temperature regulation [9]. There are two COX isoforms, with COX1 con-

stitutively expressed  in most cells and COX2 expression stimulated by various stimuli. 

Deregulated expression of COX2 has been extensively documented in various cancers. In 

one of our published studies, thromboxane synthase is frequently upregulated in prostate 

cancer, with its arachidonate product, thromboxane A2, involved in regulating tumor cy-

toskeleton reorganization and cell motility [10]. 

 

Figure 1. Formation of prostanoids and other eicosanoids (red boxes) by arachidonic acid metabo-

lism, their cognate receptors (blue boxes), and their potential activities in tumor microenvironments 

(gray boxes).For example, PGE2, together with its two receptors, EP2/EP4 (underlined), can modu-

late cancer-associated fibroblasts  (CAFs)  [11],  suppress cytotoxic  immune  responses  [12,13], and 

help tumors to evade immune surveillance [14]. 

Besides the COX pathway, bioactive eicosanoids can be generated through lipoxy-

genase and epoxygenase pathways. Lipoxygenases are a  family of non-heme  iron-con-

taining enzymes that oxygenate polyunsaturated fatty acids containing the 1-cis-4-cis-pen-

tadiene moiety to form bioactive lipids. Metabolism of arachidonic acid by lipoxygenases 

can form regioisomeric cis/trans conjugated hydroxyeicosatetraenoic acids (HETEs), leu-

kotrienes, lipoxins, and hepoxilins. Based on the predominant position of the incorporated 

of hydroperoxy group into arachidonic acid, lipoxygenases are classified as 5-, 8-, 12-, and 

15-lipoxygenases  (LOXs), with  their respective main products as 5(S)-, 8(S)-, 12(S), and 

15(S)-HETE. Arachidonic acid 5-lipoxygenation by 5-LOX is the rate-limiting step in the 

Phospholipids

Arachidonic Acid

PGH2

PGD2 PGE2 PGF2 PGI2TXA2

Cyclooxygenases

HETEs, Leukotrienes... 

EETs

EP1
EP2
EP3
EP4

FP IPDP1
DP2

TP

Specific 
Isomerases

1. Modulation of CAFs
2. Promotion of acute 
inflammation
3. Suppression of 
cytotoxic immune 
responses
4. Evasion of immune 
surveillance 

1. Suppression of 
cytotoxic 
immune 
responses

2. Promoting Treg

Promotion of 
neutrophil 
chemotaxis

Reducing DCs‐T 
cell interactions

Modulation of 
Th2 responses 
through DP2 
(CRTH2)

Figure 1. Formation of prostanoids and other eicosanoids (red boxes) by arachidonic acid metabolism,
their cognate receptors (blue boxes), and their potential activities in tumor microenvironments (gray
boxes).For example, PGE2, together with its two receptors, EP2/EP4 (underlined), can modulate
cancer-associated fibroblasts (CAFs) [11], suppress cytotoxic immune responses [12,13], and help
tumors to evade immune surveillance [14].

Besides the COX pathway, bioactive eicosanoids can be generated through lipoxyge-
nase and epoxygenase pathways. Lipoxygenases are a family of non-heme iron-containing
enzymes that oxygenate polyunsaturated fatty acids containing the 1-cis-4-cis-pentadiene
moiety to form bioactive lipids. Metabolism of arachidonic acid by lipoxygenases can form
regioisomeric cis/trans conjugated hydroxyeicosatetraenoic acids (HETEs), leukotrienes,
lipoxins, and hepoxilins. Based on the predominant position of the incorporated of hy-
droperoxy group into arachidonic acid, lipoxygenases are classified as 5-, 8-, 12-, and
15-lipoxygenases (LOXs), with their respective main products as 5(S)-, 8(S)-, 12(S), and
15(S)-HETE. Arachidonic acid 5-lipoxygenation by 5-LOX is the rate-limiting step in the
biosynthesis of leukotrienes and lipoxins, important mediators of many inflammatory pro-
cesses. 15-LOX-2 uses arachidonic acid to form 15(S)-HETE [15] and a number of studies,
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including our own, have identified 15-LOX-2 suppresses tumor formation and growth by
inducing tumor dormancy and cell cycle arrest [16].

2. Tumor Microenvironment in Carcinogenesis

Carcinogenesis is a multi-step, complex process leading to the development of a
mass of malignant cells, or a tumor. By undergoing carcinogenesis, a tumor acquires
the characteristics of most, if not all, of the hallmarks of cancer: sustained proliferative
signaling, evasion of growth suppressors, replicative immortality, invasive ability and
metastasis, induced angiogenesis, resistance to cell death, deregulation of cellular energetics,
genomic instability and mutation, avoidance of immune destruction, and tumor-promoting
inflammation [17]. In the past several decades, numerous studies have established the role
of genetic alterations in a neoplasm’s acquisition of these major characteristics of cancer. The
discovery of oncogenes and tumor suppressor genes, their respective signaling pathways,
and mechanisms of pro-oncogenic genetic alterations, has provided direct explanations for
the unregulated growth of a neoplasm and possible targets for anticancer therapies. Yet,
despite knowing many of the critical genetic factors that drive a neoplasm’s development,
many anticancer drugs for most forms of human cancers only provide transient relief of
the disease [18]. This observation suggests that cancer genetics form only part of the whole
picture of tumorigenesis and captures the motivation for further investigation into the
surrounding stroma, which constitutes the tumor microenvironment (TME).

The TME is a highly dynamic, complex environment that evolves together with the
multi-step tumorigenesis process. It is a joining of neoplastic cells, non-neoplastic cells
including fibroblasts, immune cells, vascular endothelial cells, and non-cellular elements
such as extracellular matrix (ECM) [19–21]. Individually, non-neoplastic components of
the TME have multiple functions that may not appear as clearly pro-oncogenic as an
oncogene. In fact, many of these functions are anti-oncogenic. However, during the process
of multi-step tumorigenesis, these TME components provide functions that can collaborate
with the oncogenic genetic changes. The TME may train a tumor into one of several
possible molecular evolution pathways by signals originating in native and/or modified
microenvironmental factors [22]. Traversing these collaborative pathways results in the
neoplasm’s acquisition of the major characteristics of cancer. Simply put, tumorigenesis
involves both alterations in gene expression and development of TME, as well as complex
interactions between the two through complex and overlapping signaling pathways.

Herein we will describe the roles of prostaglandins, a class of bioactive lipids, in the
formation and modulation of TMEs, with particular emphasis on their immune compo-
nents, during tumorigenesis and the implications for cancer prevention and treatment.
For prostaglandins in other aspects of cancer biology, there are several excellent reviews
available [23].

3. Prostaglandin Regulation of Cancer-Associated Fibroblasts

One of the critical members of the TME is the fibroblast. A fibroblast is a mesenchymal
cell mainly responsible for the maintenance and remodeling of the ECM, stimulation and
regulation of inflammation, regulation of epithelial differentiation and proliferation, and
wound repair [24,25]. In non-cancerous tissue, fibroblasts hold the tissues together and
control their functions to maintain tissue homeostasis, especially after tissue damage [26].
Normally when tissue injury occurs, the damage triggers an inflammatory response. Many
molecules involved in this response, such as growth factors and cellular adhesion molecules,
trigger the activation of fibroblasts [27]. These activated fibroblasts, or myofibroblasts,
produce ECM matrix components and matrix-modifying proteins, such as type I collagen
and matrix metalloproteinases (MMPs), to remodel and repair the damaged tissue [27,28].
Additionally, these myofibroblasts secrete growth factors and cytokines themselves, such as
hepatocyte growth factor (HGF), transforming growth factor-β (TGF-β), and interleukin-1
(IL-1), that modulate the inflammatory-immune response and the proliferation of epithelial
cells [29,30]. The net effect of these secretions, in conjunction with the generation of
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contractile forces by the myofibroblast to close the wound, resolves the injury, which
ends the inflammatory response, ceases fibroblast activation, and restores normal tissue
function [28]. Thus, tissue homeostasis is maintained, preventing pathological conditions,
such as infections and cancers, from developing.

However, in a setting with accumulated cellular stresses, such as chronic inflammation,
the insult to the tissue is never fully resolved, leading to pathological, sustained activation of
fibroblasts. In the context of cancer, the same fibroblasts that normally act to protect against
tumorigenesis and invasion can be reprogrammed to promote tumorigenesis [21]. When
a fibroblast undergoes such a reprogramming, it becomes known as a cancer-associated
fibroblast (CAF). CAFs function in a similar manner to myofibroblasts in wound healing,
secreting molecules to control and change the constitution of the tissue [20]. However, the net
effect of the CAF’s actions creates a TME favorable for tumor growth, endowing a tumor with
many of the major characteristics of cancer. Some pro-tumorigenic actions of CAFs include
remodeling of the ECM, induction of angiogenesis, recruitment of inflammatory cells, secretion
of immunosuppressive cytokines, secretion of growth factors, provision of metabolic support
for cancer cells, and control of epithelial cell interactions with stroma [18,21,27,31]. Several
studies have shown that activated fibroblasts can help in the initiation and promotion of
tumors through modulating the TME [32–34].

It has been reported that COX2 expression in tumor epithelial cells was stimulated in
response to inflammatory or stromal fibroblasts during the progression of ductal carcinoma
in situ (DCIS) to invasive breast carcinomas in a tumor xenograft model [11]. In a co-
culture model, inflammatory fibroblasts enhanced the motility and invasion of DCIS
epithelial cells, with the NF-κB pathway identified as one of the mediators of stromal
fibroblast-derived signals regulating COX2 expression in tumor epithelial cells. Inhibition
of NF-κB and thus COX2 activity reduced the invasion-promoting effects of fibroblasts by
ultimately downregulating the MMP-9. These findings support a role for COX2 produced
by inflammatory or stromal fibroblasts in the TME in the progression of DCIS to invasive
breast carcinomas [11].

In the TME of colon cancers, receptors of PGE2 (EPs), specifically EP2 and EP4, were
identified as key targets for PGE2 to amplify inflammation and promote tumorigenesis.
One study found that EP2 signaling elevates the expression of inflammation- and growth-
related genes, such as TNFα, IL6, CXCL1, and Wnt5A. This elevation was significantly
suppressed in EP2-deficient mice [35]. Other studies have demonstrated elevated EP4
levels in colorectal cancer, as well as tumor anchorage-independent growth [36] and drug
resistance [37] via PGE2-EP4 signaling.

In another study, a population of COX2 expressing adventitial fibroblasts was found
to remodel the lung immune microenvironment in the formation of the pre-metastatic
niche [38]. The fibroblasts produced PGE2 to drive dysfunctional dendritic cells (DCs) and
suppressive monocytes. The immune suppressive phenotypes of myeloid cells in the lung
can be reversed through ablating of COX2 in the fibroblasts, which, similar to inhibiting
the PGE2 receptors EP2 and EP4, can reduce lung metastasis in several breast cancer
models [38]. This study suggests that fibroblasts can reprogram the microenvironment in
the lung through a COX2/PGE2/EP2-EP4 pathway to facilitate cancer metastasis [38].

More studies are needed to define whether inhibition of the PGE2-EP2/EP4 signaling
loop can be a valid approach to block tumorigenesis or treat pre-existing tumors, as well as
whether EP2/EP4 play different functional roles in CAFs or infiltrating neutrophils.

4. Prostaglandin Regulation of Immune Constituents within the TME
4.1. Overview of Immune Phenotypes of the TME

The cells of the immune system are dynamic components of the TME. The immune cells
are chiefly responsible for defense against foreign organisms and clearing away damaged
tissue. Normally, these functions are tightly controlled by both feedforward and feedback
control mechanisms to keep them in check, a process essential for tissue homeostasis. In
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TMEs, immune cells are important constituents of the tumor stroma and are active participants
in the formation and evolution of TMEs during multi-step tumorigenesis.

Both innate and adaptive immune cells have been found in TMEs. Innate immune cells
found in TMEs include macrophages, neutrophils, DCs, innate lymphoid cells, myeloid-
derived suppressor cells (MDSCs), and natural killer (NK) cells, with most of them impli-
cated in modulating tumor progression. Usually, the number of specific innate immune
cells, such as M1-polarized macrophages and Batf3-dependent CD103+ sub-type DCs,
is associated with favorable clinical outcomes [39,40]. In contrast, monocytes and M2-
polarized macrophages within tumors promote the formation of an immunosuppressive
environment and contribute to tumor growth, progression, and metastasis, leading to poor
clinical outcomes [41].

The adaptive immune cells (T cells and B cells) within the TME can have huge impacts
on tumor progression and response to treatments, particularly immunotherapies. Both
cytotoxic T cells and helper T cells are found within tumor tissues. The cytotoxic T cells
have been a target of immense interest due to their cytotoxic capabilities, which can be
harnessed to kill tumor cells [42]. However, within tumor TMEs, those cytotoxic T cells are
often anergic due to checkpoint controls. Current immunotherapies such as the inhibition
of PD1-PDL1 immune checkpoints are intended to reactivate the anergic cytotoxic T cells
to kill tumor cells [42,43].

In tumor tissues, several types of helper T cells, mainly Th1, Th2, Th9, Th17, and Th22
cells, have been found on the basis of their cytokine profiles. The differentiation of T cells is
often referred to in a model called the “Th1/Th2 paradigm” [44], where Th1 cells drive a
pro-inflammatory phenotype and Th2 cells contribute to tumor immune escape [45]. High
levels of Th1 cells in the TME is associated with poor prognosis for patients with non-small
cell lung cancer (NSCLC) [46]. Meta-analyses using The Cancer Genome Atlas (TCGA)
data revealed that increased Th17 cells are generally associated with improved overall
survival, but that Th1 cells are actually associated with worse OS across most immune
subtypes of cancers [47]. Other helper T cells are implicated in tumor progression or in
tumor responses to treatment, but more studies are needed to define their roles in TMEs.

Through immunogenomic analysis of over 10,000 tumors from 33 cancer types avail-
able from TCGA, one group identified six major subtypes of the immune landscape of
cancer: Wound healing (C1), IFN-γ dominant (C2), inflammatory (C3), lymphocyte de-
pleted (C4), immunologically quiet (C5), and TGF-β dominant (C6) [47]. The six immune
subtypes are characterized by the differences in macrophage or lymphocyte signatures,
Th1:Th2 cell ratio, extent of intra-tumoral heterogeneity, neoantigen load, aneuploidy,
overall cell proliferation, expression of immunomodulatory genes, and prognosis [47].

It should be noted that the composition of immune cells within TMEs is regulated
by the crosstalk between cancer cells, immune cells, and others, such as CAFs. Moreover,
the composition of cells evolves during tumor growth and progression or in response to
various treatments [44]. Prostaglandins, particularly PGE2, produced by tumor cells, as
well as resident cells in the TMEs, can significantly impact the composition and function of
immune cells within TMEs.

4.2. Prostaglandin Regulation of Immune Components in TMEs
4.2.1. Prostaglandin E2

Known as a bioactive lipid for more than six decades, PGE2 generally promotes tumor
growth and progression [12], particularly in gastrointestinal cancers [48,49]. Through
its four cognate receptors, EP1, EP2, EP3, and EP4 [50] (Figure 1), PGE2 exerts multiple,
often seemingly conflicting effects on different immune cells and many other cells [12,13].
While PGE2 supports local acute inflammation and phagocyte-mediated immunity, it can
suppress both innate and antigen-specific immunity, such as the cytotoxic T lymphocytes
and Th1- and NK cell-mediated immunity. PGE2 can suppress cytotoxic functions and
IFN-γ production of NK cells by reducing IL-2, IL-12, and IL-15 activities [51,52]. In a
rat model for lung metastasis by MADB106 syngeneic tumor cells, PGE2 suppressed NK
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activity in a dose-dependent manner and increased tumor cell retention in the lung [53].
High doses of PGE2 could increase lung metastasis fourfold, which can be abrogated by the
selective depletion of NK cells [53]. Besides NK cells, the activities of other innate immunity
components, such as macrophages, granulocytes, and mast cells, are also regulated by PGE2.

For the adaptive immune response, PGE2 can affect the functions of DCs, DC-T
cell interaction, and T cell activation, depending upon the doses and engagement of the
different EP receptors. PGE2 can suppress the differentiation of Th1-inducting DCs at an
early stage, leading to their dysfunctions in cancer [54,55]. PGE2 can further drive them to
myeloid-derived suppressor cells [56], which in turn suppress the functions of cytotoxic
T cells. Interestingly, PGE2 has stimulatory effects on fully developed DCs cells in their
homing to lymph nodes and priming of naive T cells. But the DCs matured by PGE2
preferentially produced Th2 responses and exhibited impaired capacity to induce the CTL-
or NK cell-mediated type 1 immunity [57].

PGE2 inhibits the production of Th1 cytokines but not those associated with Th2 [58].
PGE2 can selectively reduce the levels of IFN-γ, a Th1 cytokine, while having minimal effects
on the productions of IL4 and IL5, two Th2 cytokines, in CD4+ T helper cells [58,59]. Further,
PGE2 can also dampen Th1 responses by reducing the production of or responsiveness to
IL-12 [60,61], a cytokine essential in the induction of the Th1 response and reversal of the
Th2 response [62]. Therefore, increased PGE2 can dampen the Th1 response and tilt the
balance toward the Th2 responses or other forms of immune response.

Among the four cognate receptors for PGE2, EP2 and EP4 signaling cause immuno-
suppression through the recruitment and activation of regulatory T (Treg) cells, while
concurrently promoting local inflammation through activating NF-kB in myeloid cells [63].
In general, PGE2 promotes acute local inflammatory responses and phagocyte-mediated
immunity in response to the presence of pathogens. However, PGE2, especially at elevated
doses, suppresses the cytotoxic immune responses of CTL, Th1, and NK cells. Therefore,
enhanced PGE2 levels in tumor tissues can lead to an immunosuppressive TME.

4.2.2. Prostaglandin I2

The role of PGI2 in modulating inflammation and the immune response has been
indicated by the increased inflammation in mice with deficiency in the PGI2 receptor (IP).
Mice with deficient IP exhibited increased severity, with increased production of the Th1
cytokine IFN-γ in the lung after a viral infection [64]. In common with PGE2, PGI2 and its
analogs can inhibit the proliferation and activation of T and B lymphocytes. Dentritic cells
treated with iloprost, a PGI2 analog, promote Treg differentiation in mice and suppress the
DC-mediated airway inflammation [65]. In an in silico analysis using multiple datasets
from Oncomine, it was found that the expression of PGI2 synthase (PTGIS) was associated
with the infiltration of tumor-associated macrophages and Treg cells [66]. However, more
studies are needed to determine its precise role in overall tumor progression, as well as its
particular role in modulating immune responses and the TME.

4.2.3. Prostaglandin D2

Converted from PGH2 by PGD synthase (PGDS), PGD2 is pro-inflammatory and
implicated in allergic disease. Through its cognate receptors DP1 and DP2 (also known
as CRTH2), PGD2 can modulate cytokine production in DCs. With DP2 preferentially
expressed in Th2 lymphocytes and other immune cells, PGD2 can regulate chemotaxis and
type 2 cytokine production in the inflammatory response [67,68].

4.2.4. Thromboxane A2

A strong activator of platelets, TXA2 exerts its biological activities through its cognate
receptor TP. TXA2 is produced by thromboxane A2 synthase (TBXAS1) using the substrate
PGH2. Activated platelets, DCs, and macrophages are major cellular sources of TXA2.
Our previous study found that prostate cancer cells express thromboxane A2 synthase and
produce TXA2 to modulate tumor cell motility [10]. Inhibitors of both COX1 and COX2
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are needed to abolish TXA2 production in prostate tumor cells [10]. One study found that
TXA2 negatively regulated interactions between DCs and T cells and modulated acquired
immunity [69]. Further, enhanced immune antigen responses were observed in TP-deficient
mice [69]. However, further studies are needed to determine whether TXA2 plays a role in
the formation or modulation of immunosuppressive TMEs.

4.2.5. Prostaglandin F2α

PGF2α is produced by PGF2α synthase (PGFS) utilizing PGH2 as the substrate. Its cog-
nate receptor, the FP receptor, can also bind other prostaglandins in addition to PGF2α [70].
PGF2α-FP plays important roles in many physiological and pathological situations, such
as ovulation, parturition [71], renal function, myocardial dysfunction, and pain [72]. FP
agonists are used to reduce the intraocular pressure of glaucoma [73]. Injection of PGF2α
into animals can cause acute inflammation, which is correlated with the formation of reac-
tive radicals such as isoprostanes [74]. In endometrial adenocarcinoma, PGF2α-FP receptor
signaling promotes neutrophil chemotaxis via regulating CXCL1 [75]. Interestingly, in
an HCl-induced mouse model for acute lung injury and respiratory distress syndrome,
the inhibition of FP receptors increased neutrophil migration into the lungs, leading to
increased lung inflammation [76]. Further studies are needed to determine the role of
PGF2α-FP in the tumor inflammatory microenvironment.

5. Role of Cyclooxygenases and Prostaglandins in Tumor Evasion of Immune Surveillance

Evasion of immune surveillance is one of the hallmarks of cancers [17]. There are
many mechanisms for tumors to escape immune surveillance, including, but not limited to,
upregulation of CD4+ Treg cells, MDSCs, M2 macrophages, immunosuppressive mediators,
as well as immune editing, tolerance, and deviation [77]. For example, the Treg cells can
suppress cytotoxic effector cells, NK cells, and DCs to restore immune homeostasis after
inflammation. In tumors, Treg cells can be recruited by tumor cells or tumor-associated
macrophages (TAM, mainly M2 macrophages) and become part of the TME to mold
its response to immune surveillance. The suppression of the T cell-mediated immune
responses by Treg cells can be achieved through the secretion of immunosuppressive
cytokines such as IL-10, IL-35 and TGF-β. Another pathway to suppress effector T cells by
Tregs is through metabolic disruption, such as the sequestration of IL-2 by IL-2α/CD25 on
the surface of Tregs, leading to the apoptosis of T cells.

In a seminal study, it was demonstrated that cyclooxygenases play an important
role in tumor evasion of immune surveillance by producing prostaglandins, particularly
PGE2 [14]. First, they found that the conditioned media from Braf(V600E) mouse melanoma
cells have immunomodulatory effects on myeloid cells and then identified prostaglandins,
particularly PGE2, as the major immunomodulatory factor from the Braf(V600E) mouse
melanoma tumor on myeloid cells [14]. Next, through the genetic ablation of cyclooxyge-
nases (COX) in Braf(V600E) mouse melanoma cells or in N-Ras(G12D) melanoma or in
breast or colorectal cancer cells, they demonstrated that those cells, with COX expression
deleted and hence the biosynthesis of prostaglandins abolished, could not grow well in
the immune-competent mice but that they grow equally well in the immunocompromised
mice [14]. Among the prostaglandins involved, the PGE2 pathway was demonstrated
as the facilitator of immune evasion because genetic ablation of PGE synthase rendered
Braf(V600E) mouse melanoma cells susceptible to immune controls in a manner similar to
COX ablation [14]. These findings suggest that COX and prostaglandins, particularly PGE2,
help tumors to escape from immune surveillance.

The engagement of programmed cell death protein 1 (PD-1) by its ligand PD-L1 plays
a major role in the anergy of activated T cells during tumor escape from immune surveil-
lance. The expression of PD-1 and PD-L1 can be influenced by many factors [78], including
tumor-associated macrophages [79] and multiple cytokines with different signaling path-
ways involved [80]. While PD-L1 can be expressed by tumor cells, one group found an
increased expression of PD-L1 in murine bone marrow cells when cocultured with bladder
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cancer cells [81]. Tumor-induced PD-L1 expression was found in F4/80+ macrophages
and Ly-6C+ myeloid-derived suppressor cells [81]. Tumor infiltrating PD-L1 expressing
cells isolated from tumor bearing mice had high expression levels of COX2 and microso-
mal PGE2 synthase 1, and inhibition of COX2/mPGES1/PGE2 pathway reduced PD-L1
expression [81]. The studies suggest that this PGE2 pathway is involved in the regulation of
PD-L1 expression in tumor infiltrating myeloid cells, contributing to immune suppressive
TME and tumor evasion of immune surveillance.

A recent study confirmed the role of the COX2/PGE2/EP4 signaling loop in tumor
evasion of immune surveillance in colorectal adenoma [82]. In this study, exogenously
added PGE2 stimulated PD1 expression in mouse splenic cytotoxic T cells and THP-1
derived macrophages [82]. Inhibition of COX2 with Celecoxib or EP4 with Ono-AE3–208 in
APCmin/+ mice reduced the PD1 expression in intestinal macrophages and cytotoxic T cells,
and stimulated cytotoxic T cell activation and macrophage phagocytosis [82].

With the availability of TCGA cancer genomics databases, together with RNAseq
data, we examined the potential association of COX-prostaglandin signaling with gene
signatures that might have an impact on the immune components of TME, such as PD-L1
(CD274). As shown in Table 1, in human lung adenocarcinoma (TCGA, PanCancer Atlas,
510 patients/samples), CD274 mRNA levels are positively correlated with COX1 (PTGS1),
EP2 (PTGER2), EP4 (PTGER4), and DP (PTGDR) with Spearman’s or Pearson’s coefficients
over 0.3 and the coefficient of determination (R2) over 0.1. Interestingly, EP2 and EP4 levels
were found to be correlated with PD-1 levels in infiltrating CD8+ T cells in lung cancer [83].

Table 1. Association of CD274 (PD-L1) expression with COX-prostaglandin signaling pathway in
human lung adenocarcinoma (TCGA, PanCancer Atlas, 510 patients/samples).

Gene Name R2 with CD274 (Log Scale) Spearman Coefficient Pearson Coefficient

COX1 PTGS1 0.17 0.43, p = 8.41 × 10−24 0.41, p = 1.75 × 10−22

COX2 PTGS2 0 −0.04, p = 0.313 −0.02, p = 0.679

PGE2 pathway

mPGES1 PTGES 0 0, p = 0.966 −0.01, p = 0.741

PTGES2 PTGES2 0.01 −0.13, p = 3.79 × 10−3 −0.11, p = 0.0112

PTGES3 PTGES3 0 0.02, p = 0.578 0.04, p = 0.423

EP1 PTGER1 0 0.01, p = 0.842 0.01, p = 0.755

EP2 PTGER2 0.1 0.34, p = 2.80 × 10−15 0.31, p = 7.61 × 10−13

EP3 PTGER3 0 −0.00, p = 0.977 −0.03, p = 0.467

EP4 PTGER4 0.22 0.49, p = 1.83 × 10−32 0.47, p = 9.52 × 10−29

PGD2 pathway

PTGDS PTGDS 0.03 0.21, p = 1.053 × 10−6 0.19, p = 2.551 × 10−5

DP PTGDR 0.11 0.37, p = 9.28 × 10−18 0.33, p = 7.73 × 10−15

DP2 PTGDR2 0.01 −0.10, p = 0.0261 −0.12, p = 6.516 × 10−3

TXA2 pathway

TBXAS1 TBXAS1 0.05 0.23, p = 2.20 × 10−7 0.23, p = 2.44 × 10−7

TP TBXA2R 0.04 0.17, p = 1.070 × 10−4 0.19, p = 1.580 × 10−5

PGI2 pathway

PGI2 synthase PTGIS 0.02 0.19, p = 1.220 × 10−5 0.15, p = 9.574 × 10−4

IP PTGIR 0.03 0.19, p = 2.412 × 10−5 0.16, p = 3.604 × 10−4
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Table 1. Cont.

Gene Name R2 with CD274 (Log Scale) Spearman Coefficient Pearson Coefficient

PGF2a pathway

PGF synthase (predicted) PRXL2B 0 −0.05, p = 0.216 −0.04, p = 0.419

FP PTGFR 0.03 0.20, p = 4.658 × 10−6 0.17, p = 9.216 × 10−5

In contrast to PGE2/EP2/EP4, other prostaglandins and their receptors have not been
studied in detail for their potential roles in tumor immune evasion.

6. Translational Potential and Perspective

Prostaglandins have complex and sometimes paradoxical effects on inflammation
and immune responses. The same prostanoid formed by COX1 or COX2 may promote
or suppress inflammation, depending upon their different spatial and temporal contexts.
Several studies suggest that the COX2-PGE2 pathway contributes to the formation of
immunosuppressive TMEs. While more studies are needed to delineate the precise roles
of prostaglandins in the TME of different cancers, the biggest question is whether we
can overcome or reverse the immune suppression of TMEs and enhance the efficacy of
immunotherapy through targeting prostaglandins and their signaling effectors. Indeed,
inhibition of COX2 or EP4 can lead to the restoration of NK functions to reduce the
metastatic burden of breast cancers [84], inhibit M2 macrophage differentiation, enhance
CTL-mediated cytotoxicity, and drive TME to favor the Th1 immune responses [85,86].

It should be noted that NSAIDs, including aspirin and COX2 specific inhibitors, are
among the most consumed drugs. Further, there are many analogues of PGE2, PGF2α and
PGI2, TP antagonists, as well as antagonists of DP1, DP2 and EP4, undergoing clinical
evaluations for various indications. More studies are needed to determine whether and
how these drugs can be repurposed to reduce tumor evasion of immune surveillance and
to enhance the efficacy of immunotherapy of various cancers.
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