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Simple Summary: Lung cancer is the leading cause of cancer-related deaths. Immunotherapy
activates the patient’s immune system to identify and kill cancer cells. Moreover, memory immune
cells are formed that prevent the recurrence of cancer, leading to durable responses. However, only
20% of patients benefit from immunotherapy because the tumor-derived factors suppress the immune
response. Herein, we tested if Withaferin A (a herbal compound) can make immunotherapy more
effective in lung cancer patients. We found that Withaferin A induces the production of molecules
from lung cancer cells that increase the infiltration of immune cells but are not able to kill cancer
cells. Notably, in an immunocompetent mouse model of lung cancer, treatment with a combination
of Withaferin A and an immunotherapy regimen showed more effectiveness than immunotherapy
alone in activating immune cells and reducing tumor growth. This study presents a novel approach
that can be tested clinically to improve lung cancer immunotherapy.

Abstract: Treatment of late-stage lung cancers remains challenging with a five-year survival rate
of 8%. Immune checkpoint blockers (ICBs) revolutionized the treatment of non-small cell lung
cancer (NSCLC) by reactivating anti-tumor immunity. Despite achieving durable responses, ICBs
are effective in only 20% of patients due to immune resistance. Therefore, synergistic combinatorial
approaches that overcome immune resistance are currently under investigation. Herein, we studied
the immunomodulatory role of Withaferin A (WFA)—a herbal compound—and its effectiveness in
combination with an ICB for the treatment of NSCLC. Our in vitro results show that WFA induces
immunogenic cell death (ICD) in NSCLC cell lines and increases expression of the programmed
death ligand-1 (PD-L1). The administration of N-acetyl cysteine (NAC), a reactive oxygen species
(ROS) scavenger, abrogated WFA-induced ICD and PD-L1 upregulation, suggesting the involvement
of ROS in this process. Further, we found that a combination of WFA and α-PD-L1 significantly
reduced tumor growth in an immunocompetent tumor model. Our results showed that WFA
increases CD-8 T-cells and reduces immunosuppressive cells infiltrating the tumor microenvironment.
Administration of NAC partially inhibited the anti-tumor response of the combination regimen. In
conclusion, our results demonstrate that WFA sensitizes NSCLC to α-PD-L1 in part via activation
of ROS.

Keywords: PD-L1; immune checkpoint blockers; immunotherapy; Withaferin A; combination
therapy; lung cancer

1. Introduction

Lung cancer is the leading cause of cancer deaths with 127,070 estimated deaths in 2023
in the USA [1]. Despite the abundance of anti-cancer treatments, the five-year survival rate
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can be as low as 8% in late-stage lung cancer [2]. The role of the immune system in cancer
prevention by immunosurveillance was harnessed for the development of immunother-
apies including immune checkpoint blockers (ICBs) [3]. Cancer immunosurveillance is
achieved when antigen presenting cells (APCs) process and present tumor-associated anti-
gens to elicit a cytotoxic T-cell (CTL) response [4]. Consequently, two signals are required
for T-cell activation: an antigen-major histocompatibility complex-I (MHC-I) and T-cell
receptor (TCR) interaction, and a second-the T-cell co-stimulatory molecule CD-28 and its
tumor-expressed cognate ligand B7-1. Following activation, CTLs release apoptotic media-
tors (e.g., perforin, granzyme B), inducing tumor cell death. To evade immune detection,
tumors upregulate the expression of inhibitory immune checkpoint (IC) molecules to coun-
teract T-cell co-stimulatory signals, therefore inactivating CTLs [5]. For example, cytotoxic
T-lymphocyte protein 4 (CTLA4) is an inhibitory IC molecule that competitively binds
B7-1 and therefore inhibits its interaction with CD28. Another IC molecule of significance
is the programmed death protein-1 (PD-1) which inhibits T-cell signaling and activation
by interacting with its ligand PD-L1 expressed on tumor cells. ICBs are monoclonal anti-
bodies that inhibit the interaction of IC molecules and their ligands, thus restoring T-cell
activation. Based on several clinical trials comparing the effectiveness of ICBs to first- or
second-line chemotherapies, ICBs were FDA-approved and have been used for lung cancer
treatment since 2015 [6]. One advantage of ICBs over other therapies is their ability to
activate immunologic memory leading to a long-lasting response by eliminating recurring
tumor cells [7]. However, only 17–20% of treated patients attain a durable response due to
tumor-induced immunosuppression [8].

Tumor immunoresistance/immunosuppression can be broadly classified into tumor-
intrinsic (tumor cell mediated) or tumor extrinsic resistance (host factors, microbiome,
tumor microenvironment (TME)) [9]. Tumor intrinsic resistance involves poor immuno-
genicity, defective interferon signaling, and the upregulation of inhibitory IC molecules,
while tumor-extrinsic resistance includes lack of immune infiltration or immunosuppres-
sive cell infiltration (e.g., regulatory T-cells (T-regs) and myeloid-derived suppressor cells
(MDSCs)) [10]. Therefore, certain factors/biomarkers are associated with a better response
to ICB therapy [11]. For instance, non-small cell lung cancer (NSCLC) patients having
a higher expression of the IC molecule programmed death ligand 1 (PD-L1) show a re-
sponse to ICBs [12]. Furthermore, patients with higher tumor-infiltrating lymphocytes
(immunologically hot) have a better response than tumors that lack immune cell infiltration
(immunologically cold) [13]. Other predictors of patient response include microsatellite
instability and tumor mutational burden [14]. Therefore, biomarkers such as higher PD-L1
expression levels and tumor immune infiltration are associated with better response and
are used to assess whether a patient is a good candidate for ICB therapy.

To overcome the immune resistance and improve patient response to ICBs, current
trials attempt to combine ICBs with drugs/radiation that target the immunosuppressive
mechanisms in the TME [15]. For example, anthracyclines and oncolytic viruses induce
immunogenic cell death (ICD) in which dying tumor cells release or express danger-
associated molecular patterns (DAMPs) such as calreticulin (CRT), High Mobility Group
Box-1 (HMGB-1), and heat shock proteins (HSP-70 and HSP-90) [16]. Consequently, APCs
detect DAMPs as ‘eat-me signals’ and engulf dying tumor cells, to activate an anti-tumor
CTL response. As a result, ICD can convert an immunologically cold into an immunologi-
cally hot TME [17]. Furthermore, radiotherapy and some chemotherapeutics (e.g., mito-
mycin C and cisplatin) that increase PD-L1 expression on tumor cells sensitize lung cancer
to α-PD-L1 therapy [15,18,19]. However, many of these combinations are not clinically
applicable due to the additive side effects of the individual agents including cardiotoxi-
city [20,21]. Therefore, there is still an unsolved quest to find therapies that expand the
use of ICBs to a wider patient population by overcoming immune resistance without
additive toxicity.

Withaferin A (WFA) is a broad-spectrum anticancer steroidal lactone isolated from
the leaves and roots of Withania Somnifera (WS) [22]. Mechanistically, WFA induces
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apoptotic and ferroptotic cell death, and inhibits angiogenesis, metastasis, and cancer
stemness [23–25]. Additionally, WFA exerts its anti-cancer effects by targeting several
downstream molecules. For instance, WFA was found to activate Liver-x-receptor signal-
ing and inhibit NF-κB, VEGF, MMPs, cyclins, CDKs, and EGFR [26–29]. One important
mechanism of WFA-induced cytotoxicity in cancer cells is mitochondrial dysfunction and
subsequent increased oxidative stress and reactive oxygen species (ROS) production [30].
Specifically, WFA was shown to inhibit complex III function and disturb the electron trans-
port chain leading to increased ROS production [31]. Although WFA is toxic to cancer
cells, studies show that it can protect normal non-cancerous tissues including lung fibrob-
lasts, neurons, and cardiomyocytes from injury. For instance, WFA was found to protect
cardiomyocyte cells from oxidative damage by activating several antioxidant pathways
including SOD-2 and SOD-3 [32]. Moreover, normal cell such as WI-38 lung fibroblasts and
PBMCs remain viable at WFA concentrations that were toxic to A549 NSCLC cells [33]. This
indicates that WFA can play a dual role as a pro-oxidant or an antioxidant agent based on
the cellular context. Although WS was found to be an immunostimulant, only a few studies
show the effect of WFA on anti-tumor immunity. In BALB/c mice, WS increases B- and
T-cell proliferation as well as T-helper 1 response [34]. Moreover, a clinical study shows that
WS extract increases TBNK and IgG levels in healthy subjects [35]. In a breast cancer im-
munocompetent mouse model, WFA was shown to target the immunosuppressive MDSC
population by reducing their tumor infiltration and immunosuppressive function [36].

Despite being well studied, the immunomodulatory properties of WFA and its role in
modulating the effectiveness of ICB in NSCLC remain unexplored. We reasoned that WFA
treatment can overcome tumor immune resistance and sensitize NSCLC to ICB therapy. To
test this idea, we first investigated whether WFA could activate anti-tumor immunity by
inducing ICD or/and altering IC molecule expression. We then tested the effectiveness of
the combination treatment of WFA and α-PD-L1 as an ICB in an NSCLC immunocompetent
mouse model. Our in vitro findings show that WFA-induced apoptotic ICD is associated
with the DAMPs from the dying cells. Additionally, WFA altered the expression of IC
molecules in NSCLC cell lines which sensitizes cancer cells to α-PD-L1 therapy. Importantly,
we show for the first time that WFA sensitized an ICB-resistant tumor mouse model to
α-PD-L1 therapy and restored anti-tumor immunity by altering tumor-immune infiltration
and ROS levels in the TME in vivo.

2. Materials and Methods
2.1. Chemotherapeutic Drugs and Antibodies

WFA powder (5119-48-2) was purchased from ChromaDex Standards (Los Angeles,
CA, USA) and reconstituted using Dimethyl Sulfoxide (DMSO) (Sigma-Aldrich, Burlington,
MA, USA) to form 100 and 10 mM stock solutions, and stored at −20 ◦C in a freezer before
use. For in vitro cell treatments, WFA stock solutions were diluted using complete culture
media at the desired concentration (ranging from 10 µM to 0.4 µM). For in vivo treatments,
WFA was diluted using Glyceryl Trioctanoate ((Sigma-Aldrich, Burlington, MA, USA) at
the desired dose (4 mg/kg). In vivo mouse α-PD-L1 antibody (clone 10F.9G2) and rat IgG2b
isotype control (clone LTF-2) were purchased from BioXcell (Lebanon, NH, USA). N-acetyl
cysteine (NAC) was purchased from Sigma-Aldrich (Burlington, MA, USA) (A9165-25G)
and L-Glutathione was purchased from Spectrum mfg. Corp (Gardena, CA, USA) (39G505).
NAC or Glutathione were solubilized in PBS to make a 0.5 M solution and freshly prepared
before each experiment. STATTIC (STAT3 inhibitor), PX-478 (HIF1α inhibitor), and Brusatol
(NRF-2 inhibitor) were all purchased from Selleck Chemicals (Houston, TX, USA) and
solubilized in DMSO to create 10 mM stocks.

2.2. Cell Lines

Human cell lines H1650, A549, HCT-116, MDA-MB-231 and mouse cell lines Lewis
Lung Carcinoma (LLC) and 4T1 were purchased from the American Type Culture Collection
(ATCC). The murine cell line MC-38 was provided by Dr. Shari Pilon-Thomas (Moffitt



Cancers 2023, 15, 3089 4 of 20

Cancer Center). H1650, A549, 4T1, and MDA-MB-231 cells were cultured in Roswell Park
Memorial Institute (RPMI) media (Cytiva HyClone, Logan, UT, USA) supplemented with
10% heat inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA,
USA, 900-108) and 1% anti-bacterial/anti-mycotic solution (Cytiva HyClone, Logan, UT,
USA, SV3007901). LLC cells were cultured in Dulbecco’s Modified Eagle Medium media
(Gibco, Grand Island, NY, USA) supplemented with 10% heat inactivated FBS and 1% anti-
bacterial/anti-mycotic solution. The colorectal cancer cell line MC-38 was cultured in RPMI
media supplemented with 2 mM L-glutamine (Gibco, Grand Island, NY, USA), 0.1 mM
nonessential amino acids (Gibco, Grand Island, NY, USA), 1 mM sodium pyruvate (Gibco,
Grand Island, NY, USA), 100 U/mL penicillin, 100 mg/mL streptomycin, and 10% heat
inactivated FBS. The human colorectal cancer cell line HCT-116 was cultured in McCoy’s 5A
medium (Gibco, Grand Island, NY, USA) supplemented with 10% heat inactivated FBS and
1% anti-bacterial/anti-mycotic solution. Bone marrow-derived dendritic cells were cultured
in complete RPMI media supplemented with 2 mM Glutamax (Gibco, Grand Island, NY,
USA)), 50 µM β-mercaptoethanol, (Fisher Scientific, Waltham, MA, USA), and 20 ng of
granulocyte monocyte colony stimulating factor (GM-CSF) (Pepro Tech, Cranbury, NJ, USA,
315-03) per ml. All cell lines were incubated at 37 ◦C in a humidified 5% CO2 incubator.

2.3. Cell Titer-Glo® Assay

LLC, H1650, or A549 was plated in 96-well plates and treated with WFA (serial
dilutions 10–0.078 µM) in triplicates. DMSO control was used to ensure that the observed
cell death is due to WFA treatment only. Forty-eight hours after treatment, cell viability
was determined using Cell Titer-Glo® assay (Promega®, Madison, WI, USA) according to
the manufacturer’s instructions. Luminescence was measured using a white well plate in
a Bio-Tek Synergy H4 plate reader (Bio Tek, Winooski, VT, USA). Average luminescence
normalized to untreated control cells was graphed against log WFA concentration and
non-linear regression was performed to determine the inhibitory concentration 50 (IC50)
value of WFA in each cell line.

2.4. Annexin V Assay

NSCLC cell lines were treated with different concentrations of WFA for forty-eight
hours then collected using Accutase® cell detachment solution (Innovative Cell Technolo-
gies, San Diego, CA, USA). Apoptotic cell death was measured by flow cytometry using
Propidium iodide or 4′,6-diamidino-2-phenylindole (DAPI) viability dye and eBioscience™
Annexin V Apoptosis Detection Kit Allophycocyanin (APC) (Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol.

2.5. Flow Cytometry

In vitro WFA-treated or control cells were collected using Accutase® cell detachment
solution and stained with FACS-diluted (PBS, 10% FBS, 2 mM EDTA) pre-titrated fluorophore-
conjugated or primary unconjugated antibody solutions (Supplemental Table S1) for 30 min
on ice in the dark. In case of fluorophore-conjugated antibodies, samples are washed
and immediately acquired after adding DAPI viability dye, while samples stained with
unconjugated antibodies are incubated with the proper secondary fluorophore-conjugated
antibody for 30 min before washing and acquisition. For in vivo experiments, the processed
tumor or spleen single cell suspensions were used for surface staining with the pre-titrated
antibodies (Supplemental Table S1) for 30 min on ice in the dark. To exclude the dead cells
from the analysis, a fixable live/dead Zombie Aqua viability kit (Biolegend, San Diego,
CA, USA) was used according to the manufacturer’s protocol. Samples were then fixed
using 2% PFA for 15 min then washed and stored at 4 ◦C before acquisition. Samples were
acquired using a Becton Dickenson Biosciences (BD, Franklin Lakes, NJ, USA) FACS Canto
II or LSR II system at the University of South Florida COM Fred Wright Jr Flow Cytometry
Core. Analysis was performed using FlowJo 8.7 software (BD, Franklin Lakes, NJ, USA).
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2.6. HMGB-1 Assay

LLC cells were plated and treated with WFA or doxorubicin (ICD inducer) for 48 h.
Supernatants were collected and centrifuged at 1000 RPM for 10 min. The levels of se-
creted HMGB-1 were measured using the HMGB-1 detection ELISA kit (Chondrex, 6010,
Woodinville, WA, USA) according to the manufacturer’s protocol.

2.7. Ex Vivo Dendritic Cell Activation Assay

Myeloid progenitor cells were isolated from the femurs of C57BL/6 mice as described
previously [37]. The isolated cells were cultured in RMPI media supplemented with GM-
CSF and refed as necessary. On day 8, the differentiated DCs (loosely attached) were
collected, counted, and added to WFA-pretreated LLCs or untreated control LLCs at a ratio
of 5:1 of DC: LLC cells. Twenty-four hours post co-culture, the DC were collected and
stained with anti-CD11c, anti-CD80, anti-CD86, and anti-MHCII antibodies (BioLegend,
San Diego, CA, USA). Then the samples were acquired using a BD LSR II flow cytometer
and the data were analyzed using FlowJo 8.7 software (BD, Franklin Lakes, NJ, USA).

2.8. Reverse Transcription and Quantitative PCR

Total cellular RNA was isolated from collected cell pellets using TRIzol reagent (Invitro-
gen, Waltham, MA, USA) and then quantified using the 2000 Nanodrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). cDNA synthesis was performed using the
Verso cDNA synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA). qPCR was then
performed using Forget-Me-Not™ EvaGreen® qPCR Master Mix (Biotium, Fremont, CA,
USA) in a Bio-Rad CFX384 thermocycler according to the manufacturer’s instructions. The
CFX Maestro software version 2.3 (Bio-Rad, Hercules, CA, USA) was used to calculate the
∆Ct and ∆∆Ct values and gene expression was normalized to housekeeping genes glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) or β-actin. The sequences of PCR primers
used are listed in Supplemental Table S2 (Integrated DNA Technologies, Inc, Coralville,
IA, USA).

2.9. Protein Extraction and Western Blot

Total protein was isolated using Radioimmunoprecipitation Assay (RIPA) buffer
(Thermo Fisher Scientific, Waltham, MA, USA) and sonication of cell pellets using Bran-
son digital sonifier 450. The lysates were centrifuged at 16,000 rpm for 20 min and the
supernatants containing total cellular proteins were collected. Then, protein levels were
quantified using a Pierce Coomassie Protein assay kit (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s instruction and the absorbance values at 595 nm
were measured using a plate reader (Bio Tek, Winooski, VT, USA) and used to calculate
protein concentrations. Fifty micrograms of protein were resolved by SDS-polyacrylamide
gel electrophoresis (Bio-Rad, Hercules, CA, USA) and transferred to a 0.2 µm nitrocellulose
membrane (Bio-Rad, Hercules, CA, USA) at 80 V for 2 h. Blots were blocked using 5%
milk in TBS-T or 5% bovine albumin serum in the case of phosphoproteins for 1 h at room
temperature. Blots were then incubated with the primary antibody (concentration 1:1000)
in the blocking solution at 4 ◦C overnight with gentle agitation. Blots were washed with
TBS-T three times and incubated with the secondary HRP-conjugated antibodies for an
hour at room temperature. Primary and secondary antibodies used for western blotting are
listed in the Supplemental Table S3. Protein bands were detected using SuperSignal™ West
Pico PLUS Chemiluminescent Substrate or West Femto Maximum Sensitivity Substrate
(Thermo Fisher Scientific, Waltham, MA, USA) and imaged using the ChemiDoc XRS ™
imaging system (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions.
Band density was measured using Image J software version 1.54d and was normalized to
housekeeping proteins (β-actin or Vinculin). Protein levels in the treatment groups were
normalized to the untreated control and an average of 2 independent experiments ± SEM
are shown in the bar graphs.
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2.10. Ingenuity Pathway Analysis (IPA)

To identify the downstream regulators that contribute to WFA-induced PD-L1 upregu-
lation, we constructed a gene interaction network between the PD-L1 signaling pathway
and ROS (nitric oxide, oxygen radical, hydrogen peroxide, and lipoxygenase) signal-
ing using the known molecular connections obtained from the IPA database (Qiagen,
Redwood City, CA, USA). Fold change data from MCF-7 breast cancer cells treated with
WFA (700 nM for 72 h) were obtained from the NCBI Gene Omnibus Expression (GEO)
database (Series GSE53049) and overlaid onto the network to yield predictions of activa-
tion/inhibition in the IPA software version 90348151 (Qiagen, Redwood City, CA, USA).

2.11. SiRNA Transfection

Cells were transfected using the TransIT-TKO® transfection kit (Mirus Bio, Madison,
WI, USA) according to the manufacturer’s instructions. Briefly, LLC or H1650 cells were
seeded in 24-well plates and incubated for 24 h. The transfection reagent was prepared by
mixing NRF-2 or non-targeting siRNA with TransIT-X2® reagent in antibiotic-free, serum-
free Opti-MEM® (Gibco, Grand Island, NY, USA) medium to reach a final concentration
of 25 nM. The mixture was added to the cells for twenty-four hours to allow transfection.
Subsequently, the cells were treated with WFA and incubated for twenty-four hours before
collection. Non-targeting siRNA, mouse and human NRF-2 siRNA SMART pools were
purchased from Dharmacon™ Reagents (Lafayette, CO, USA, D-001810-01-20, L-003755-00-
0010 and L-040766-00-0010).

2.12. Animal Studies

C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA)
and acclimated for a week in the University of South Florida comparative medicine facility
at the Morsani College of Medicine. To establish the LLC syngeneic tumors, C57BL/6 mice
were injected with a half million cells on the right flank and monitored until tumors were
first palpable (2–3 mm diameter). Mice were then randomized into treatment groups
(n = 5 per group), to receive either vehicle (10% DMSO, 90% Glyceryl Trioctanoate), WFA
(4 mg/kg), α-PD-L1(200 µg/mouse), isotype antibody (200 µg/mouse), NAC (100 mg/kg),
a combination of α-PD-L1 and WFA, or a combination of WFA+ α-PD-L1 and NAC in-
traperitonially. Treatments were administered every other day with a total of five treatments
and mice body weights and tumor volumes were monitored using a caliper (Fisher Scien-
tific, Waltham, MA, USA, 15-077-957). Tumor volumes (mm3) were calculated using the
equation (length2 × width/2), where the length is defined as the bigger tumor dimension.
When the control tumors reached 10 mm x10 mm, mice were euthanized using CO2 eu-
thanasia; then, tumors and spleen were collected for downstream analyses. Briefly, spleens
and tumors were collected and dissociated mechanically or using the Miltenyi Biotec mouse
tumor dissociation kit (130-096-730) and filtered through 70 µm strains (Thermo Fisher
Scientific, Waltham, MA, USA). Red blood cells were lysed using the ACK lysing buffer
(Thermo Fisher Scientific, Waltham, MA, USA). Single cell suspensions were then used
for flow cytometry. All protocols were approved by USF institutional animal care and
use committee.

2.13. Statistical Analysis

Each experiment was repeated at least twice, and the results are represented as mean
± the standard error of the mean, SEM. To calculate statistical significance, an unpaired Stu-
dent’s t-test was used when comparing two groups, while Analysis of Variance (ANOVA)
was used when comparing multiple groups. The Fisher LSD post hoc test was performed
to compare the means of the treatment groups to that of the control group. Analyses were
carried out and graphs were plotted using GraphPad Prism 8.0.1. * or # p < 0.05, ** or
## p < 0.01, *** or ### p < 0.001, **** p < 0.0001.
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3. Results
3.1. WFA Induces ER-Stress Mediated Apoptosis in NSCLC

Despite being originally considered non-immunogenic, recent findings show that
certain apoptotic triggers can induce ICD. For example, stressors that induce prolonged ER
stress and unfolded protein response can lead to immunogenic apoptotic cell death [38].
Previously, WFA was shown to induce apoptotic cell death in NSCLC cell lines [33]. How-
ever, it is unclear whether it can activate the ER stress pathway and ICD. To confirm the
mechanism by which WFA targets NSCLC, we treated the cell lines (LLC, H1650 and A549)
with different concentrations of WFA for forty-eight hours. Cell Titer-Glo assay showed that
WFA was toxic in these cell lines with IC50 values ranging from 0.5 to 1.5 µM (Figure 1A).
Consequently, we performed an annexin V assay that showed a significant increase in early
and late apoptotic cell populations in WFA-treated cells compared to their untreated coun-
terparts (Figure 1B). To investigate the molecular mechanisms of WFA-induced apoptosis,
we measured the changes in both pro and anti-apoptotic marker transcripts using qRT-PCR
and Western blotting. Our PCR studies revealed that WFA increased the transcription
of the pro-apoptotic Bax protein transcripts (Figure 1C), Bak-1 (Figure S1A), and BAD
(Figure S1D). Moreover, WFA treatment reduced the transcripts of the anti-apoptotic pro-
teins Bcl-2 (Figure 1D), Xiap, and Survivin (Figure S1B,C,E,F). Moreover, western blotting
showed that WFA increased PARP cleavage in LLC and H1650 cells and reduced the levels
of BCL-XL in H1650 cells (Figure S1G,H). We then investigated whether WFA induces ER
stress in NSCLC cell lines by quantifying the levels of ER stress markers using western
blotting. We found that WFA increases the levels of C/EBP homologous protein (CHOP)
and the phosphorylation of the eukaryotic initiation factor eIF-2 (Figure 1E,F). In summary,
we identified that WFA induces ER-stress mediated apoptosis in NSCLC cell lines.

3.2. WFA Induces ICD in NSCLC Cell Lines

ICD is characterized by the expression or release of DAMPs such as CRT and HMGB-1
that act as a (eat me) signal to activate APCs [39]. Consequently, active APC can present
tumor antigens along with the stimulatory signals essential to produce an anti-tumor
T-cell response [40]. To determine if WFA can induce ICD in lung cancer, we treated LLC,
H1650 and A549 cells with WFA and then collected the cells or supernatants to measure
the levels of cell surface expressed CRT (ecto-CRT) or secreted HMGB-1, respectively.
We found that WFA treatment increased ecto-CRT expression in LLC, H1650 cells and
A549 cells (Figure 2A–C) by flow cytometry analysis. These findings prompted us to
test if WFA can also induce ICD in other types of cancer (e.g., colorectal cancer). To test
this hypothesis, we treated the murine MC38 and human HCT-116 colorectal cancer cell
lines with WFA and then measured the change in ecto-CRT levels using flow cytometry.
Interestingly, WFA increased the levels of ecto-CRT in both MC38 and HCT-116 cell lines
(Figure S2A,B). To measure the levels of secreted HMGB-1, we collected the supernatants of
WFA-treated LLC cells and centrifuged them to remove any dead cells or debris. Using the
HMGB-1 ELISA kit, we found that WFA treatment increased the HMGB-1 levels secreted
in the supernatants of WFA-treated LLC cells (Figure 2D). To confirm that the release of
DAMPs by WFA treated cells can activate APCs, we isolated bone marrow-derived myeloid
progenitors from C57BL/6 mice and allowed their differentiation into DCs (day 8). We
then collected the bone marrow-derived DCs and co-cultured them with WFA-pretreated
LLC for twenty-four hours. Subsequently, DCs were collected and their expression of
the activation markers CD80, CD86, and MHC-II was measured using flow cytometry
(Figure S3). Our results indicate that DCs co-cultured with WFA-treated cells expressed
higher levels of the activation markers CD80, CD86, and MHC-II than those cultured
with untreated controls (Figure 2E). Moreover, qRT-PCR shows that WFA increased IFN-α,
characteristic of ICD in LLC and H1650 cells [41] (Figure S4A,B). Our findings confirm
that WFA can induce ICD in NSCLC cells and colorectal cancer cells by promoting the
release/expression of DAMPs which consequently activate APC.
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hours, then collected to measure apoptotic cell death using Annexin V assay in LLC cells, H1650 

Figure 1. WFA induces ER stress-mediated apoptosis in NSCLC cell lines. (A) NSCLC cells were
plated on 96-well plates and treated with different concentrations of WFA (10–0.1 µM) in triplicates.
Forty-eight hours post-treatment, cell viability was determined using Cell Titer-Glo assay. Lumines-
cence values were normalized to control untreated cells and IC50 values are represented as the mean
of two independent experiments ± SEM. (B) NSCLC cells were treated with WFA for forty-eight
hours, then collected to measure apoptotic cell death using Annexin V assay in LLC cells, H1650 cells,
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and A549 cells. Percentages of early (annexin+DAPI−) and late (annexin+DAPI+) apoptotic cells are
represented as means of two separate experiments ± SEM and statistical significance was calculated
using one-way ANOVA and a Fisher LSD post hoc test was used to compare the mean of each group
to that of the control group. (C,D) WFA treated cells were collected in Trizol and total RNA was
isolated to measure the levels of Bax (C) and Bcl2 (D) mRNA using qRT-PCR. PCR experiments were
repeated at least twice, and one representative experiment is shown as mean ± SEM of the technical
replicates. (E,F) Western blot of ER stress markers p-eIF-2 and CHOP was performed using total
lysates of WFA-treated LLC cells (E). The quantification of western blot band density for p-eIF-2 and
CHOP (F) performed using Image J software v.1.54d and normalized to housekeeping control protein
in LLC cells (β-actin) shown. The mean fold change in band density from the control is shown in
the bar graphs ±SEM and one-way ANOVA and a Fisher LSD post hoc test were used to calculate
statistical significance. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data were obtained from
two independent experiments. The original western blot figures could be found in File S1I.
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Figure 2. WFA induces ICD in NSCLC cell lines. Cells were treated with WFA for 48 h then collected
using Accutase cell detachment solution. (A–C) CRT levels were determined by flow cytometry in
LLC (A), H1650 (B), and A549 (C) cells. (D) The levels of secreted HMGB-1 in LLC cell treated with
0.6 µM WFA or 30 nM doxorubicin were measured by ELISA and the means of two independent
experiments ± SEM are represented in the bar graph. (E) Bone marrow-derived DC were co-cultured
with WFA-pretreated LLC cells (24 h) in a ratio 5:1 of DC:LLC cells for 24 h. DC activation markers
(CD80, CD86, and MHC-II) were examined by flow cytometry. The means of at least 2 independent
experiments± SEM is represented, and one-way ANOVA was used to calculate statistical significance.
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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3.3. WFA Increases PD-L1 Expression in NSCLC Cell Lines

Due to the important role of PD-L1 as a biomarker of response to ICB therapy, we
investigated the effect of WFA on PD-L1 expression in NSCLC cell lines. Towards this goal,
we collected WFA-treated NSCLC cell lines to measure PD-L1 surface expression using
flow cytometry. We found that WFA treatment consistently increased PD-L1 expression in
LLC, H1650, and A549 cell lines (Figure 3A,C,E). Consistently, qRT-PCR (Figure 3B,D,F)
and western blotting (Figure S2E–G) confirmed that WFA induced PD-L1 expression in
NSCLC cell lines. We then investigated whether WFA can also increase PD-L1 expression
in other types of cancers. Similarly, WFA increased PD-L1 expression in MC38, HCT116
colon cancer cell lines (Figure S2C,D). In conclusion, WFA upregulated PD-L1 expression
in NSCLC and colorectal cancer cell lines which can sensitize these tumors to ICBs.

3.4. WFA Mediates PD-L1 Upregulation and ICD by Increasing ROS Production

As our findings show that WFA induces PD-L1 upregulation and ICD in NSCLC,
and colon cancer cell lines, we investigated the mechanism responsible for WFA-mediated
PD-L1 expression changes. Others have shown that WFA induces cancer cell death mainly
through increased ROS production which can be abrogated by ROS scavengers (e.g., NAC
or Glutathione) [33,42]. Due to the central role of ROS in WFA-mediated cytotoxicity, we
investigated if ROS production plays a role in PD-L1 upregulation as well. To test our
hypothesis, we treated NSCLC cell lines with WFA, NAC, or a combination of both. To
confirm the changes in ROS levels with each treatment, we stained these cells with ROS indi-
cator CM-H2DCFDA and found that WFA increased ROS levels while NAC reduced them
(Figure 4A,D,G). Interestingly, NAC treatment completely reversed the WFA-mediated
PD-L1 increase as measured by both flow cytometry and qRT-PCR (Figure 4B,E,H). More-
over, NAC completely reversed ecto-CRT expression in NSCLC cell lines (Figure 4C,F,I). To
confirm, we used Glutathione (GSH) as a ROS scavenger and found that it abrogated PD-L1
expression as well (Figure S4C–E). In addition, we examined the effects of NAC in WFA
treated colorectal and breast cancer cell lines. Similar to NSCLC cell lines, we found that
NAC completely reversed PD-L1 upregulation in MC-38, HCT-116, 4T-1, and MDA-MB-231
cell lines (Figure S4F–I, respectively). To investigate the downstream regulators that may
be involved in ROS-mediated PD-L1 upregulation, we used IPA analysis of a publicly
available dataset of WFA-treated MCF-7 breast cancer cells (Series GSE53049). First, we
constructed a network showing the molecular connection between PD-L1 and ROS (nitric
oxide, oxygen radical, hydrogen peroxide, and lipoxygenase). Subsequently, we overlaid
the gene expression data obtained from the dataset onto the molecular network to predict
the pathways involved in WFA-mediated PD-L1 upregulation (Figure S5). IPA predictions
show that a complex network of multiple downstream regulators may be involved in
PD-L1 upregulation. To validate the IPA results, we treated NSCLC cells with WFA or a
combination of WFA and STATTIC (STAT-3 inhibitor), PX-478 (HIF1α inhibitor), or brusatol
(NRF-2 inhibitor). Flow cytometry showed that neither STATTIC nor PX-478 were able to
reverse WFA-induced PD-L1 upregulation (Figure S7A–C). However, adding brusatol—an
NRF-2 inhibitor—to WFA treated cells completely abrogated the upregulation of PD-L1
in LLC, H1650, and A549 cells (Figure S7D–F). To confirm the involvement of NRF-2, we
transfected LLC or H1650 with siRNA for NRF-2 or scramble and then treated these cells
with WFA. We used western blotting to confirm that NRF-2 siRNA indeed inhibits the
activation of NRF-2 (Figure S7I). Unlike our previous findings, we found that WFA still up-
regulated PD-L1 in NRF-2 knockdown cells similar to the scramble controls (Figure S7G,H).
Due to the discrepancy in our findings between brusatol and NRF-2 KO and the lack of
specificity of the pharmacologic inhibitors, we conclude that NRF-2 may not be essential in
WFA-induced PD-L1 upregulation. Further studies are needed to elucidate the downstream
regulators of WFA mediated PD-L1 upregulation. In summary, we conclude that WFA
mediates PD-L1 and ecto-CRT expression mainly by inducing ROS production in vitro.
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Figure 3. WFA upregulates PD-L1 surface expression in NSCLC cell lines. Cells were treated with
WFA for 48 h. (A,C,E) PD-L1 surface expression determined using flow cytometry LLC (A), H1650 (C),
and A549 (E). (B,D,F) PD-L1 expression was measured using qRT-PCR LLC (B), H1650 (D), A549 (F).
PCR experiments were repeated twice and the mean± SEM of the technical replicates are represented.
For the rest, the means of two independent experiments± SEM are shown, and statistical significance
was calculated using one-way ANOVA and a Fisher LSD post hoc test. * p < 0.05, ** p < 0.01, and
**** p < 0.0001.
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of two independent experiments ± SEM are shown, except for the PCR experiments that were repeated 
twice and for which one representative experiment is shown. Statistical significance was calculated 
using one-way ANOVA and a Fisher LSD post hoc test. * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001, and **** 
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While α-PD-L1 did not change the tumor size, WFA showed a non-significant reduction 
in tumor size (Figure 5B). Although the individual treatments did not change tumor size, 
the combination treatment significantly reduced tumor growth (Figure 5B). Moreover, we 
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ingly, we found that the combination treatment did not significantly alter the body weight 
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Figure 4. WFA-mediated ROS production is essential for PD-L1 upregulation and can be abrogated
using NAC. NSCLC cell lines were treated with WFA (0.6 µM in LLC, H1650 cells, 4 µM in A549
cells), or a combination of WFA+5 mM NAC for 24 h. (A,D,G) The change in ROS levels were
measured in LLC (A), H1650 (D), and A549 (G). (B,E,H) The change in PD-L1 levels was measured
in LLC (B), H1650 (E), and A549 (H) cell lines using flow cytometry and qRT-PCR. (C,F,I) Ecto-
CRT levels were measured in LLC (C), H1650 (F), and A549 (I) by flow cytometry. Means of two
independent experiments ± SEM are shown, except for the PCR experiments that were repeated
twice and for which one representative experiment is shown. Statistical significance was calculated
using one-way ANOVA and a Fisher LSD post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001,
and **** p < 0.0001.

3.5. WFA Sensitizes LLC Syngeneic Mouse Tumors to α-PD-L1 In Vivo

Since our in vitro data showed that WFA could sensitize NSCLC cells to α-PD-L1,
we tested the effectiveness of a WFA and α-PD-L1 combination therapy in a LLC syn-
geneic mouse model. C57BL/6 mice were injected with 5 × 105 LLC cells per flank
and the treatment started eight days after tumor initiation (when the tumors were first
palpable). Mice were randomized into vehicle control (10% DMSO, 90% Glyceryl Tri oc-
tanoate), isotype control (200 µg/mouse dose), WFA (4 mg/kg), α-PD-L1 (200 µg/mouse
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dose), or WFA+α-PD-L1 combination and treated every other day with a total of five
treatments (Figure 5A). While α-PD-L1 did not change the tumor size, WFA showed
a non-significant reduction in tumor size (Figure 5B). Although the individual treat-
ments did not change tumor size, the combination treatment significantly reduced tumor
growth (Figure 5B). Moreover, we measured the body weight of the mice as an indicator
of toxicity/disease burden. Interestingly, we found that the combination treatment did
not significantly alter the body weight from the control mice (Figures 5B and S6C). At
the endpoint, mice were euthanized for spleen and tumor collection and dissociation. To
investigate the mechanism by which WFA increased the effectiveness of α-PD-L1 in vivo,
we analyzed the changes in tumor-immune infiltration induced by different treatments,
including both effector cell and immunosuppressive cell populations (Figure S6A,B).
Similar to our in vitro findings, WFA increased the levels of ecto-CRT in vivo compared
to the control mice (Figure 5C). Moreover, Flow cytometry analysis shows that WFA
treatment skewed the TME towards a more anti-tumor phenotype by increasing CD8
T-cell infiltration (Figure 5D,E). However, only the combination treatment was observed
to significantly increase the expression of T-cell activation markers CD69 and 41BB
compared to vehicle control (Figure 5E). Additionally, WFA targets immunosuppressive
cell populations including CD11b+Gr1+MDSCs and CD25+CD4+T-regs, reducing their
presence in the tumor (Figure 5F,G). In summary, our in vivo results show that WFA sen-
sitizes LLC tumors to α-PD-L1 and elicits an anti-tumor immune response by increasing
CTL infiltration and targeting immunosuppressive cells.

3.6. ROS Plays a Role in Inducing the Effectiveness of WFA+α-PD-L1 Combination

Since ROS production was responsible for inducing PD-L1 expression in vitro, we
wanted to confirm whether WFA-mediated ROS production plays a role in tumor im-
munomodulation in vivo. To confirm the role of ROS, we treated LLC syngeneic mice
with WFA+α-PD-L1 or WFA+α-PD-L1+NAC (100 mg/kg) (Figure 6A). Similar to our
previous findings, we found that the WFA+anti-PD-L1 combination significantly reduced
tumor growth (Figure 6B). However, the mice that received the added NAC treatment
showed reduced effectiveness of the combination treatment. However, the change was
not statistically significant from the WFA+α-PD-L1 combination treatment. At the end-
point, tumors and spleens were collected to measure the effect of NAC on tumor immune
infiltration. Interestingly, we found that NAC treatment reduced CD8 T-cell infiltration
(Figure 6C) and increased the immunosuppressive cell populations when added to the
WFA+α-PD-L1 combination (Figure 6D,E). In summary, although NAC did not completely
reverse the effectiveness of the WFA+α-PD-L1 treatment, its partial rescue of the phenotype
demonstrates that ROS plays a role in WFA mediated anti-tumor immunomodulation
in vivo.
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Figure 5. WFA sensitizes flank tumors to α-PD-L1 therapy and targets immunosuppressive MDSCs
and T-regs. (A) Establishment of LLC flank tumors and treatment schedule. (B) Tumor volume mea-
surement in mm3 tumor weight, and percent change in body weight compared to the vehicle control
at the endpoint of the experiment. (C) Change in the levels of ecto-CRT in tumors was measured
using flow cytometry. (D–G) Flow cytometry was used to determine the change in immune cell
infiltration in collected tumors. WFA treatment increased CD3 (D) and CD8 T-cell (E) infiltration and
activation markers 4-1BB and CD69. Moreover, WFA reduced the immunosuppressive T regs (F) and
CD11b+ Gr1+ MDSC (G) populations. The means of two independent experiments± SEM are shown,
and the statistical significance was calculated using one-way ANOVA and a Fisher LSD post hoc
test. * and # represent p < 0.05 and ** and ## represent p < 0.01. * Symbols refer to the difference
between vehicle control and WFA, while # refers to comparisons between the vehicle control and
WFA+α-PD-L1 combination.
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4. Discussion 
A major finding of our study is that WFA induces ICD, increases the release of DAMPs, 

and increases PD-L1 expression in NSCLC, in addition to colorectal and breast cancer cells. 
We found that WFA-induced ICD in both murine and human NSCLC cell lines was charac-
terized by the increased surface expression of CRT and the release of HMGB-1. These mol-
ecules act as a ‘find me’ signal, attracting APC to the tumor site, and an ‘eat me’ signal that 
promotes DC activation and engulfment of tumor antigens [41]. Consequently, activated 

Figure 6. ROS partially contributes to WFA-mediated anti-cancer effectiveness and immunomodu-
lation in vivo. (A) Establishment of LLC flank tumors and treatment schedule. (B) Tumor volume
measurement in mm3 and tumor weight at the endpoint of the experiment. (C–E) Flow cytometry
was used to determine the change in immune cell infiltration in collected tumors. NAC treatment
reversed WFA mediated increase in CD8 T-cell (C) infiltration while increasing the immunosuppres-
sive CD11b+Gr1+MDSCs (D) and CD25+CD4+T-reg (E) populations. Statistical significance was
calculated using one-way ANOVA and each group was compared to the vehicle control using the
Fisher LSD post hoc test where # represents p < 0.05 and ## represents a p < 0.01.

4. Discussion

A major finding of our study is that WFA induces ICD, increases the release of DAMPs,
and increases PD-L1 expression in NSCLC, in addition to colorectal and breast cancer
cells. We found that WFA-induced ICD in both murine and human NSCLC cell lines
was characterized by the increased surface expression of CRT and the release of HMGB-1.
These molecules act as a ‘find me’ signal, attracting APC to the tumor site, and an ‘eat me’
signal that promotes DC activation and engulfment of tumor antigens [41]. Consequently,
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activated APC can present tumor antigens to prime an anti-tumor T-cell response [43,44].
We confirmed that WFA-induced DAMP release from treated LLC murine cell line leads to
the increased activation of APC represented by syngeneic bone marrow-derived DC.

Another major finding of our study is the role of ROS in inducing PD-L1 expression in
response to WFA in different types of cancer cell lines. Other studies showed that WFA
causes cancer cell apoptosis by inducing mitochondrial dysfunction by inhibiting complex
III of the electron transport chain, which in turn increases the intracellular levels of ROS [31].
Interestingly, this increase is not observed in non-cancerous cells, providing a potential
explanation of WFA’s selective toxicity [45,46]. We tested whether ROS plays a role in
WFA-mediated PD-L1 increase by treating the cells with WFA and a ROS scavenger (NAC
or GSH). Notably, we found that either NAC or GSH was able to completely reverse PD-L1
upregulation. Additionally, ROS scavengers inhibited WFA-induced increase in ecto-CRT.
These findings prove that ROS plays a key role in WFA-mediated immunomodulation
including ICD and PD-L1 upregulation. The literature shows that ROS can play either an
immunostimulatory or an immunoinhibitory effect in the TME based on the type of cells
from which it is produced and their specific location within the TME [47,48]. While ROS can
induce ICD, increase tumor antigenicity, and reprogram tumor-associated macrophages,
it also represents a major immunosuppressive mechanism when released by MDSCs or
T-regs [49–53]. However, WFA was found to inhibit MDSCs production of ROS in a 4T1
mouse model suggesting that WFA plays a dual role in ROS signaling based on the cellular
context [36].

Although the relationship between ROS and PD-L1 is complex, a few studies show that
ROS usually induces PD-L1 upregulation by activating certain downstream transcription
factors such as YAP-1, HIF-1α, and NF-κB [51,54,55]. However, there are ROS-inducing
drugs that reduce PD-L1 expression and vice versa [56,57]. We attempted to investigate the
downstream regulator responsible for ROS-mediated PD-L1 upregulation using the IPA.
By applying the mRNA expression fold change values from a publicly available dataset
of WFA-treated MCF-7 breast cancer cells to a signaling network including ROS-PD-L1
connections, we found that both ROS and PD-L1 are predicted to be increased by WFA
treatment. Additionally, IPA predictions show that multiple downstream regulators might
be involved in ROS-mediated PD-L1 upregulation including STAT-3, YAP-1, and HSF-1
(Figure S5). While testing all potential pathways is beyond the scope of this study, we
pragmatically selected a couple to examine the ROS-mediated-PD-L1 upregulation. First,
the combination of WFA with the pharmacologic inhibitors of STAT-3 or HIF1α did not alter
PD-L1 upregulation, suggesting that the pathways involving these transcription factors
are not involved. In contrast, the NRF-2 inhibitor brusatol reversed PD-L1 upregulation,
suggesting its role in WFA-induced PD-L1 upregulation, which is consistent with another
study [58]. However, siRNA for NRF-2 did not rescue PD-L1 upregulation, questioning the
role of NRF-2 in this process. Given the prediction of multiplicity of pathways involved in
ROS-mediated PD-L1 upregulation, we infer that WFA-induced PD-L1 upregulation may
involve more than a single pathway.

As our in vitro results show that WFA promotes ICD and PD-L1 upregulation, we
tested the effectiveness of WFA+α-PD-L1 combination therapy in an in vivo LLC immuno-
competent model. As others have shown, α-PD-L1 did not reduce tumor growth [59,60].
Although WFA-treated mice showed a reduction in tumor growth, the change was non-
significant. The combination treatment of WFA+α-PD-L1 significantly reduced tumor
growth. Moreover, flow cytometry analysis of tumor immune infiltration shows that WFA
increased T-cell infiltration and reduced the immunosuppressive cell populations. We
found that WFA increased CD8 T-cell infiltration and appeared to increase activation,
however, the change in T-cell activation was not significant. The combination treatment
showed a significant increase in CD8 T-cell percentages and activation markers CD69 and
4-1BB. We also found that both WFA and combination treatments reduced the levels of
immunosuppressive MDSCs and T-regs. Overall, WFA can change a cold TME into a hot
TME, increasing the effectiveness of α-PD-L1 in NSCLC [17,61]. Due to the opposing effects
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of ROS on anti-tumor immunity, we further investigated the role of ROS in WFA-mediated
immunomodulation in vivo. Treating the LLC mice with NAC partially reversed the tumor
growth inhibition observed with the WFA+α-PD-L1 combination treatment. Our flow cy-
tometry analysis shows that NAC also reversed the immune phenotype observed with the
combination treatment by reducing CD8 T-cell and increasing MDSC and T-reg infiltration.
However, the change of tumor growth was not statistically significant from the combination
treatment, which indicates that ROS only plays a partial role in WFA in vivo effectiveness.
That suggests the involvement of other pathways or factors in the TME that may not be
connected to ROS in WFA-mediated anti-cancer effectiveness. Further studies are required
to identify these pathways. Although we observed WFA-mediated immunomodulation
was ubiquitous in different types of cancer cells, further in vivo studies are needed to
confirm the effectiveness of WFA and α-PD-L1 combination therapy in colorectal and
breast cancer. Additionally, further studies are needed to investigate the effect of WFA on
additional IC molecules to identify other effective combinatorial approaches. The choice of
proper combinatorial therapy allows for personalized therapy. We monitored body weights
as an indicator of toxicity and found that the WFA+α-PD-L1 combination treatment did
not change the body weight compared to the vehicle treated controls. This suggests that
the combination of WFA+α-PD-L1 may be safe and tolerable, however, this needs to be
tested clinically.

5. Conclusions

To summarize, our results demonstrate that WFA induces ICD in NSCLC and colorec-
tal cancer cell lines and increases the release of DAMPs. Moreover, we found that WFA
treatment increases PD-L1 expression in NSCLC, colorectal, and breast cancer cell lines.
We investigated the underlying mechanism and found that these changes were mediated
by ROS and were reversed by ROS scavengers like NAC and GSH. Moreover, for the
first time, we showed that WFA sensitizes NSCLC to α-PD-L1 in an in vivo mouse model
without causing additional toxicity. Our results provide a new combinatorial approach
that can improve patient response to ICBs by converting an immunologically cold to an
immunologically hot TME and prompts testing its effectiveness in a clinical setting.
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