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Simple Summary: N6-methyladenosine (m6A) modification is among the most common and con-
servative RNA modifications in eukaryotes. The deposition of m6A on RNA is carried out by
methyltransferases. As a regulatory subunit of methyltransferase, WT1-associated protein (WTAP)
has gradually received attention in recent years. WTAP has been found to be expressed abnormally
in a large number of cancers and affects cancer progression and prognosis. In this review, we propose
a new perspective on the impact of WTAP on the occurrence and development of cancer, summarize
the functional classification of WTAP in cancer, and envision potential therapeutic prospects.

Abstract: Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll
increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in
eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects
of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyl-
transferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in
numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation,
cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer
may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for
cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic
regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and
drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP
in cancer, and explore the prospects of its application in clinical diagnosis and therapy.
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1. Introduction

Cancer, a worldwide public health problem, is among the main causes of death in every
country in the 21st century. An analysis of global cancer data from 1990 to 2019 showed that
23 million people had cancer in 2019, more than twice the number in 1990 [1]. Over the years,
it has been shown that multiple mechanisms could induce the occurrence of cancer, including
chromosome translocation, and gene deletion, amplification, and mutation [2,3]. Nevertheless,
there is increasing evidence that epigenetic transcription also plays an important role in the
occurrence and development of cancer [4–6]. Epitranscriptomics involves a wide range of
aspects, including chromatin remodeling, DNA methylation, histone modification, cancer
immunity, and non-coding RNA regulation, among which RNA methylation is crucial [7].
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Scientists have successively discovered various RNA methylation modifications, includ-
ing N6-methyladenosine (m1A) [8], 5-methylcytosine (m5C) [9], and N6-methyladenosine
(m6A) [10]. M6A modification is considered to be the most common internal modification in
eukaryotic messenger RNA (mRNA) [10]. Since it was first identified in 1974, m6A modifica-
tion has been proven to exist in the mRNAs of over 7000 genes and in over 300 non-coding
RNAs [11]. On average, there are 1–2 m6A residues per 1000 nucleotides, with these residues
being enriched in the 3’UTR and located within the consensus sequence RRACH (R = G or
A, H = A, C, or U) [12–14]. M6A modification could regulate the function and expression of
RNA by regulating various stages of the RNA cycle, such as RNA processing, transportation,
localization, or translation [15]. Similar to DNA methylation, m6A modification in mammalian
cells is reversible. Three classes of enzymes control the modification of m6A: writers, readers,
and erasers [16]. The writers include various m6A methyltransferase proteins (METTL3,
METTL14, WTAP, KIAA1429, VIRMA, RBM15, RBM15B, METTL16), which together form
the mRNA methyltransferase complex and are responsible for adding a methyl group to
specific adenines [17]. The readers recognize modified adenine and perform specific func-
tions, while the erasers perform demethylation. The m6A recognition proteins (YTHDF1,
YTHDF2, YTHDF3, YTHDC1, YTHDC2, elF3, HNRNPA2/B1, HNRNPC/G, IGFBPs) and the
demethylase proteins (FTO, ALKBH5) are the other two types of enzymes responsible for the
functional operation or remodeling of this epigenetic modification (Figure 1) [17,18].
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Figure 1. Molecular mechanism of m6A modification. The process of modifying m6A in RNA is
facilitated by three key players: writers, erasers, and readers. Writers, or methyltransferases, including
methyltransferase-like 3 (METTL3), METTL14, WT1-associated protein (WTAP), zinc finger CCCH-type
containing 13 (ZC3H13), METTL16, vir-like m6A methyltransferase-associated (VIRMA), RNA-binding
motif protein 15 (RBM15), and RBM15B, are responsible for the addition of m6A modifications onto
RNA. Conversely, demethylases, referred to as erasers, work to remove m6A modifications. Finally, m6A
recognition proteins, also known as readers, are tasked with recognizing m6A on RNA and subsequently
influencing its fate, including translation, splicing, export, decay, and stability.

WTAP is the regulatory subunit of methyltransferase. In the absence of WTAP, the
methyltransferase’s RNA binding capacity is markedly decreased [19]. It has been proven
that the removal of WTAP gene leads to embryonic lethality [20]. Moreover, an increasing
amount of evidence suggests that WTAP contributes to the aggressive characteristics of
numerous cancers. In this article, we will focus on the latest research on the biological
function and regulatory mechanism of WTAP in cancer, and explore the prospects and
possible future research directions of WTAP in clinical applications.
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2. M6A Methyltransferase

M6A methyltransferase catalyzes the modification of m6A methylation of mRNA and
consists of at least eight components, including METTL3, METTL14, WTAP, zinc finger
CCCH-type containing 13 (ZC3H13), METTL16, vir-like m6A methyltransferase-associated
(VIRMA), RNA-binding motif protein 15 (RBM15), and RNA-binding motif protein 15B
(RBM15B). METTL3, the first methyltransferase to be identified, holds a position of utmost
significance as a constituent member of the methyltransferase complex, as it displays
catalytic activity as an N6-methyltransferase [21]. METTL14 forms heterodimers with
METTL3 in a 1:1 ratio, playing a crucial role in substrate recognition [22]. Despite it lacking
catalytic activity, WTAP ensures the METTL3-METTL14 heterodimer is localized to nuclear
speckles, thereby facilitating its catalytic activity [22]. Meanwhile, ZC3H13 enhances
m6A modification by anchoring WTAP in the nucleus [23]. METTL16 could mediate m6A
methylation of precursor mRNA (pre mRNA), non-coding RNA, and U6 snRNA, while
VIRMA recruits METTL3 and METTL14 to regulate regioselective methylation, thereby
inducing mRNA splicing and RNA processing [24,25]. Furthermore, RBM15 combines with
RBM15B to bind the MTC and recruit it to specific sites in the transcript [26]. Moreover,
there exist additional m6A methyltransferases that have been identified, including METTL4,
METTL5, and zinc finger CCHC domain-containing protein 4 (ZCCHC4) [27–30].

3. Function and Role of WTAP

WTAP, as the partner of Wilms’ tumor 1 (WT1), was first isolated and identified through
a yeast two hybrid system in 2000 [31]. Dysregulation of WTAP was associated with certain
substantive cellular processes, such as X-chromosome inactivation [32], cell proliferation [19],
cell cycle regulation [20], and selective splicing [33]. In recent years, WTAP has received
increasing attention, and a large number of reports showed that WTAP played an important
role in various types of cancer, such as liver cancer, esophageal cancer, breast cancer, bladder
cancer, lung cancer, and lymphoma [34]. Recent studies have shown that abnormal expression
of WTAP is closely related to various pathophysiological events in cancer, including the
cell cycle, metabolic vulnerabilities, autophagy, immune response, ferroptosis, epithelial
mesenchymal transition (EMT), and drug resistance (Figure 2) (Table 1).

Table 1. Roles of WTAP in human cancers.

Function Cancers Regulators Targets Bioinformatics
Research Reference

Cell cycle and
proliferative arrest

nasopharyngeal carcinoma,
hepatocellular carcinoma,

renal cell carcinoma,
endometrial cancer

/
ETS1, p21/p27, CDK2,

CDK4, CDK6, CCND1, BAX,
PARP, Mcl-1

√
[35–41]

Metabolic
vulnerabilities

colon adenocarcinoma,
diffuse large B cell lymphoma,
gastric cancer, ovarian cancer,

esophageal carcinoma,
breast cancer

HIF-1α, Caprin-1,
ERK1, ERK2

FOXP3, SMARCE1, HK2,
microRNA-200, ENO1 / [42–47]

Autophagy hepatocellular carcinoma / LKB1, p-AMPK / [48]

Immune infiltration hepatocellular carcinoma,
esophageal cancer / /

√
[36,49]

Ferroptosis hepatocellular carcinoma,
bladder cancer / circCMTM3, NRF2 / [50,51]

EMT

colon cancer,
hepatocellular carcinoma,
non-small cell lung cancer,

ovarian cancer, glioblastoma

TTC22, miR-139-5p
SNAI1, N-cadherin, Slug,

E-cadherin, Vimentin,
EGFR, AKT

/ [52–55]

Drug resistance

endometrial cancer, NK/T cell
lymphoma, bladder cancer,

esophageal cancer, pancreatic
cancer, diffuse large B cell

lymphoma, breast cancer, acute
myeloid leukemia

Circ0008399, EMS,
miR-758-3p, Hsp90

Wnt/β-Catenin, DUSP6,
TNFAIP3, Fak,

DLGAP1-AS1, miR-299-3p
/ [39,41,56–61]



Cancers 2023, 15, 3053 4 of 13Cancers 2023, 15, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. The biological function of WTAP in cancer. WTAP participates in multiple pathophysio-
logical processes in cancer progression, including the cell cycle, metabolic vulnerabilities, autoph-
agy, immune response, ferroptosis, epithelial mesenchymal transition (EMT), and drug resistance. 

Table 1. Roles of WTAP in human cancers. 

Function Cancers Regulators Targets Bioinformatics 
Research 

Reference 

Cell cycle and 
proliferative ar-

rest 

nasopharyngeal carci-
noma, 

hepatocellular carcinoma, 
renal cell carcinoma, 
endometrial cancer 

/ 
ETS1, p21/p27, CDK2, 
CDK4, CDK6, CCND1, 

BAX, PARP, Mcl-1 
√ [35–41] 

Metabolic vul-
nerabilities 

colon adenocarcinoma, 
diffuse large B cell lym-

phoma, 
gastric cancer, ovarian can-
cer, esophageal carcinoma, 

breast cancer 

HIF-1α, Caprin-1, 
ERK1, ERK2 

FOXP3, SMARCE1, 
HK2, microRNA-200, 

ENO1 
/ [42–47] 

Autophagy hepatocellular carcinoma / LKB1, p-AMPK / [48] 
Immune infiltra-

tion 
hepatocellular carcinoma, 

esophageal cancer 
/ / √ [36,49] 

Ferroptosis hepatocellular carcinoma, 
bladder cancer 

/ circCMTM3, NRF2 / [50,51] 

EMT 

colon cancer,  
hepatocellular carcinoma, 
non-small cell lung cancer, 

ovarian cancer, glioblas-
toma 

TTC22, miR-139-
5p 

SNAI1, N-cadherin, 
Slug, E-cadherin, Vi-
mentin, EGFR, AKT 

/ [52–55] 

Figure 2. The biological function of WTAP in cancer. WTAP participates in multiple pathophysiolog-
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3.1. WTAP and the Cell Cycle

A disordered cell cycle is the basis for uncontrolled tumor cell proliferation character-
ized by malignant phenotypes [62]. Each pathway that limits the normal cell proliferation
response is interfered with in most cancers. Bioinformatics analysis found that WTAP
was associated with the cell cycle of hepatocellular carcinoma [36]. Specifically, WTAP
knockdown induced cell cycle arrest in the G2/M phase via upregulating the ETS1-P21/P27
axis [37]. It was reported that in nasopharyngeal carcinoma (NPC), decreased expression of
WTAP induced G1 phase cell cycle arrest and stimulated apoptosis [35]. In acute myeloid
leukemia (AML), downregulation of WTAP induced G1/S phase stagnancy, resulting in
decreased proliferation of tumor cells, and made cells more prone to apoptosis [41]. Inter-
estingly, in vitro experiments also found that WTAP knockdown cells were more fragile
than control cells after simultaneous treatment with daunorubicin, indicating that WTAP
knockdown caused a decrease in drug resistance [41]. Unlike cancer cells, in vascular
smooth muscle cells (SMCs), restrained WTAP increased SMC proliferation via promoting
DNA synthesis and G1/S phase transition, while reducing cell apoptosis [63].

The progression through the cell cycle is mainly regulated by cyclins and the cyclin
dependent kinase (CDK) family of serine/threonine kinases [64]. On one hand, quite a few
studies have found that WTAP had a positive effect on the cell cycle progression of normal
cells through the mediation of cyclins and the CDK family. In umbilical vein endothelial
cells, WTAP knockdown prevented G2/M phase transition via reducing the stability of
cyclin A2 mRNA [20]. In addition, cyclins B1, B2, and CDC20 also decreased to a certain
extent [20]. Previous studies have shown that WTAP promoted G2/M transformation of
keratinocytes, which may be related to cyclin A2 and CDK2, but the specific mechanism
needed further experiments [65]. Furthermore, WTAP actively regulated the process of
adipogenesis by controlling the cell cycle transition of mitotic clonal expansion (MCE),
which is also related to cyclin A2 [66]. On the other hand, in cancer cells, WTAP played a
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role in enhancing CDK2 protein expression by binding to the 3’-UTR of the CDK2 transcript
to stable the CDK2 transcript [38]. In renal cancer, downregulation of WTAP not only caused
downregulation of CDK2, but also downregulation of other G1/S transition regulators,
including CDK4, CDK6, and CCND1, leading to severe G1/S arrest [40]. In endometrial
cancer, WTAP deficiency led to increased expression of BCL2-associated X (BAX) and
cleave-PARP, decreased expression of Myeloid Leukemin-1 (Mcl-1), and induction of G2/M
phase arrest of the cell cycle [39].

3.2. WTAP and Metabolic Vulnerabilities

The rapid proliferation of cancer cells requires a large number of cellular catabolism
and anabolism to meet the structural and energy demands [67]. Changes in major metabolic
pathways [68], particularly those involving glucose and lipids [69], are among the most
significant metabolic characteristics spanning different cancer types [70]. In addition, it
is now clear that different carcinogenic drivers induce different metabolic phenotypic
alterations in cancer cells.

In contrast to normal differentiated cells that primarily rely on mitochondrial oxidative
phosphorylation, most cancer cells rely on aerobic glycolysis to generate the energy essential
for cellular processes (a phenomenon termed ‘the Warburg effect’) [71]. Hexokinase 2 (HK2)
plays a major role in intracellular glucose utilization. Induction of HK2 in most tumor cells
contributed to their metabolic predisposition to aerobic glycolysis. Additionally, its genetic
knockdown inhibited malignant growth in mouse models [72]. There was convincing
evidence that WTAP could widely affect the Warburg effect by targeting HK2 in various
tumor cells. In diffuse large B cell lymphoma (DLBCL), WTAP increases the expression of its
key target gene HK2 by elevating the level of HK2 m6A to promote DLBCL [43]. WTAP, an
oncogene, is overexpressed in gastric cancer cells [44]. In vitro experiments have shown that
WTAP promoted tumor cell proliferation and glycolysis (including glucose uptake, lactic
acid production, and extracellular acidification rate). Mechanistically, WTAP stabilized
HK2 mRNA, and enhanced glucose uptake of gastric cancer cells [44]. In ovarian cancer,
WTAP interacted with DGCR8, a key chip protein, to affect the expression of microRNA-
200 (miR-200) by regulating m6A. Then, miR-200 further regulated HK2 positively, and
significantly affected the Warburg effect [45]. In colon adenocarcinoma (COAD), Zhang
et al. found that knocking down WTAP can also inhibit glucose consumption and lactate
production, thereby inhibiting tumor progression [42]. Further analysis has shown that
WTAP mediated the stability of Forkhead Box P3 (FOXP3) in an m6A-dependent manner
to promote SMARCE1 transcriptional activation and ultimately enhance glycolysis in
colon adenocarcinoma [42]. In addition, WTAP was regulated by Caprin-1 in esophageal
cancer [46] and extracellular regulated protein kinase 1 (ERK1) and extracellular regulated
protein kinase 2 (ERK2) in breast cancer [47] to promote the glycolytic activity of tumor
cells. On the other hand, WTAP modified and enhanced the expression of insulin-secretion-
related genes and specific transcription factors in pancreatic islets beta cells by increasing
the level of METTL3 protein [73]. Therefore, WTAP could become a promising therapeutic
target for certain tumors through the glycolysis pathway.

Lipid metabolism is an important cellular process that converts nutrients into metabolic
intermediates for membrane biosynthesis, energy storage, and signal molecule production.
Changes in lipid metabolism are particularly prominent in the metabolic changes of cancer.
Additionally, enhancing lipid uptake or synthesis contributes to tumor formation and rapid
growth of cancer cells [74]. Several studies have shown that lipogenesis was crucial for
tumor growth [75–77]. WTAP, METTL3, and METTL14 formed a complex that actively
controlled lipogenesis by promoting cell cycle transitions in mitotic clonal amplification
(MCE) during lipogenesis [66]. In vitro experiments have found that hepatic deletion of
WTAP inhibits the upregulation of cyclin A2 during MCE, leading to cell cycle arrest and
impaired adipogenesis [66]. Recently, Li et al. revealed that hepatic deletion of WTAP could
lead to non-alcoholic steatohepatitis (NASH), which is one of the most common potential
risk factors for hepatocelluar carcinoma (HCC) [78,79]. Mechanistically, liver conditional
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knockout of WTAP enhanced lipolysis in adipose tissue by inducing the expression and
secretion of IGFBP1, and increased the expression of CD36 and CCL2, thereby enhancing
liver free fatty acids (FFA) uptake and inflammation [78]. In short, these findings provide
new ideas for the study of adipogenesis in tumors.

3.3. WTAP and Autophagy

Autophagy is a highly conserved process of cellular decomposition and metabolism
that can be divided into three types: macro-autophagy, micro-autophagy, and chaperone-
mediated autophagy (CMA) [80]. Autophagy plays a dual role in the development of
cancer, but there is sufficient evidence that autophagy, as a tumor suppressor, inhibits the
occurrence and development of liver tumors. In vitro experiments have found that down-
regulation of WTAP promoted the conversion of LC3-I to LC3-II (indicating autophagy
formation), and inhibited the proliferation and metastasis of liver cancer cells by promoting
autophagy [48]. Further analysis showed that WTAP targeted liver kinase B1 (LKB1), which
in turn mediated the phosphorylation of AMP-activated protein kinase (AMPK) through
m6A, thereby promoting the progression of hepatocellular carcinoma [48]. Overexpression
of WTAP could protect cells from autophagic death. Autophagy in liver cancer cells can
reduce inflammation and cell damage through its organelle quality and protein control
function, and then prevent the initiation and development of tumors [81]. In short, inducing
autophagy in liver tumors by targeting WTAP may be an effective method for developing
new promising therapies.

3.4. WTAP and Immune Response

Tumor progression is closely related to immune infiltration in the tumor microen-
vironment. The immune system is regulated by the interaction between cells mediated
via cytokines, and shows a dynamic equilibrium between tumor infiltration and periph-
eral cisterns [82–84]. Wang et al. discovered that overexpression of WTAP in Treg cells
positively promoted Treg cell differentiation and enhanced the inhibition of immature T
cells mediated by Treg cells [85]. Further mechanism studies indicated that FOXO1 was
the downstream target of WTAP, and WTAP upregulated FOXO1 protein levels via the
enhancing m6A modification of FOXO1 mRNA [85]. In addition, mice with WTAP defi-
ciency of CD4+T cells exhibited a phenotype of impaired thymocyte growth and peripheral
T cell reduction [86]. Further analysis showed that T cell receptor (TCR)-induced T cell
expansion was negatively affected by WTAP deficiency. Interestingly, WTAP deficiency
in combination with TCR stimulation strongly induced apoptosis, but in the absence of
TCR stimulation, depletion of WTAP did not alter the activity of initial CD4+T cells [86].
Therefore, it was found that WTAP has a very close relationship with the immune system.
However, there is currently a significant lack of research on the impact of WTAP on tumor
immunity. In cancer cells, bioinformatic analysis demonstrated that overexpression of
WTAP was significantly positively correlated with CD4+T cells, CD8+T cells, B cells, cancer
associated fibroblasts, bone marrow dendritic cells, neutrophils, and macrophages, while
it was significantly negatively correlated with Treg cells [36,49]. Based on the previous
studies mentioned above, WTAP may play a potential role in tumor immunity, which
requires further research.

3.5. WTAP and Ferroptosis

Promoting cancer cell death is an effective cancer treatment method. The common
types of cell death currently include necroptosis, pyroptosis, ferroptosis, parthanatos, im-
munogenic cell death (ICD), lysosome-dependent cell death (LCD), necrotic cell death
(NCD), and autophagy-dependent cell death [87]. However, current research on WTAP
and tumor cell death is limited to ferroptosis [50,51]. Ferroptosis is an iron-dependent pro-
grammed cell death characterized by a significant accumulation of reactive oxygen species
(ROS) and mortal lipids that is different from autophagy, necrosis, and apoptosis [88–90].
Targeting ferroptosis will provide a new idea for treating cancers that are difficult to deal
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with using traditional therapies. On one hand, ferroptosis contributed to cancer develop-
ment by regulating some tumor suppressors. On the other hand, ferroptosis weakened
some types of cancer cells and these may be developed as a potential therapeutic target [91].
In hepatocellular carcinoma, WTAP knockdown reduced the m6A level of circCMTM3, in-
hibited the expression of circCMTM3, and increased ferroptosis-related biomarkers (MAD,
iron, and Fe2+), suggesting that ferroptosis was induced [50]. Specifically, circCMTM3
regulated by WTAP bound with IGF2BP1 to regulate the expression of PARK7, which in
turn affected ferroptosis in HCC [50]. WTAP has been found to promote the proliferation
of bladder cancer cells and inhibit the ferroptosis induced by erastin [51]. Mechanism
studies have shown that WTAP enhances the modification of NRF2 mRNA 3’-UTR and
increased the expression of NRF2 through YTHDF1, thereby inhibiting ferroptosis. The
m6A binding motif is AACCA [51]. These findings provide insights on how to target WTAP
in combination with ferroptosis for cancer therapy. Certainly, other cell death modes are
also worth exploring.

3.6. WTAP and EMT

EMT, the process by which epithelial cells acquire mesenchymal characteristics, en-
dows cells with the ability to migrate and invade. EMT is important for various tumor
biological functions, including tumor initiation, tumor cell migration, malignant progres-
sion, metastasis, blood infiltration, and resistance to treatment [92–94]. It was reported
that knockdown of WTAP in liver cancer cells significantly inhibited the proliferation,
migration, and invasion of tumor cells [53]. Mechanism analysis showed that miR-139-5p-
mediated WTAP regulated HCC progression by controlling EMT. Specifically, the study has
discovered that knockdown of WTAP decreased several mesenchymal markers including
Slug, Snail, and N-cadherin, and increased E-cadherin expression [53]. The imbalance
of EMT modulators such as E-cadherin, N-cadherin, Slug, Snail, and vimentin is closely
related to tumor invasion and adverse clinical outcomes [95]. Similar results have also been
reported by Yu et al. [54]. Dysregulation of WTAP in ovarian cancer reduced the expression
of vimentin and increased the expression of E-cadherin, thereby inhibiting migration [54].
In colon cancer, WTAP upregulated the expression of Snai1 by increasing m6A levels,
thereby promoting lung metastasis [52]. Mechanistically, TTC22 was upstream of WTAP
and increased the level of WTAP protein by promoting the binding of 60S ribosomal protein
L4 (RPL4) to WTAP mRNA [52]. Epidermal growth factor (EGFR) played key roles in the
proliferation and migration of cancer cells [96]. However, when EGFR signal transduction
was altered, it became the primary coordinator of epithelial transformation. Jin et al. found
that overexpression of WTAP enhanced EGFR phosphorylation without affecting total
EGFR to promote the migration and invasion of glioblastoma cells [55].

3.7. WTAP and Drug Resistance

Chemotherapy is one of the most effective measures for treating cancer, and together
with surgery and radiotherapy, these are known as the three major treatment measures for
cancer. However, the effectiveness of anti-tumor chemotherapy drugs is often limited by
tumor resistance. Cisplatin is a common anticancer drug. The most acceptable mechanism
is to inhibit cell division and interact with purine bases on DNA to cause DNA damage,
leading to cell apoptosis [97]. WTAP depletion has been shown to promote cisplatin
resistance in endometrial carcinoma cells by inducing cell cycle arrest [39]. The Wnt/β-
catenin pathway is a downstream target of WTAP [39]. Similarly, WTAP knockdown has
been proven to inhibit cisplatin resistance in natural killer/T cell lymphoma (NKTCL)
cells [59]. In bladder cancer, WTAP can also modulate cisplatin sensitivity by enhancing
the expression of TNF Alpha Induced Protein 3 (TNFAIP3) [61]. In esophageal cancer,
WTAP in hypoxic environments is upregulated by lncRNA EMS and promotes cisplatin
resistance in cancer cells [60]. Etoposide is often used in combination with cisplatin,
and the therapeutic mechanism is also related to the cell cycle [98]. In vitro experiments
have shown that knockdown of WTAP reduces etoposide resistance in diffuse large B
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cell lymphoma cells [57]. Anthracyclic drugs (such as doxorubicin and daunorubicin)
function by promoting the formation of reactive oxygen species (ROS) and inhibiting DNA
and RNA synthesis. In breast cancer, the WTAP-induced DLGAP1-AS1 axis inhibits the
sensitivity of tumor cells to doxorubicin [58]. Moreover, the effect of WTAP on daunorubicin
resistance is achieved by influencing tumor cell proliferation, and regulating the G1/S
phase transition and differentiation [41]. In addition, WTAP has also become a regulator of
resistance to pyrimidine antimetabolic chemotherapy drugs. WTAP can activate the Fak-
Src-GRB2-Erk1/2 and Fak-PI3K-AKT signaling pathways to restrain the chemosensitivity
of pancreatic cancer cells to gemcitabine, and Fak inhibitors have been shown to be able
to rescue high WTAP-mediated chemo-tolerance to gemcitabine in pancreatic cancer [56].
To sum up, targeting WTAP and its upstream and downstream targets may be a feasible
strategy for suppressing drug resistance and cancer treatment.

4. Potential Clinical Applications of WTAP

Based on the multiple functions of WTAP, targeting WTAP may become a new per-
spective for cancer therapy. In most cancers studied, WTAP is almost an oncogene, closely
related to the occurrence and progression of tumors. Specifically, WTAP was upregulated
in various types of cancer, such as liver cancer, esophageal cancer, AML, and osteosar-
coma [37,41,49,99]. Moreover, the upregulation of WTAP promoted tumor proliferation
and metastasis, usually indicating poor prognosis, and was an independent prognostic risk
factor for cancer. In addition, Wang et al. found that WTAP was more highly expressed
in poorly differentiated colorectal cancer (CRC) tissue, suggesting that WTAP may be a
malignant feature that is positively correlated with the degree of malignancy of the tu-
mor [100]. Therefore, targeted WTAP could identify abnormalities and serve as a diagnostic
or prognostic marker for different forms of cancers. Given the carcinogenic effect of and
the involvement of various pathophysiological events, WTAP may be a promising target
for cancer treatment. However, no inhibitor of WTAP has been found. Due to the crucial
function of WTAP in cancer progression, it is urgent to design and develop effective WTAP
inhibitors. Drug resistance has always been an obstacle during clinical chemotherapy,
and WTAP plays a prominent role in regulating chemical resistance. The reduced WTAP
expression heightened the chemosensitivity of different cancers to diverse medications,
comprising cisplatin, gemcitabine, and anthracyclines [39,41,56]. The combination of WTAP
inhibitors and chemotherapy has great therapeutic potential and is expected to be the basis
of further research in the future.

5. Summary and Perspectives

The availability of knowledge of the molecular mechanisms of carcinogenesis, cancer
inhibition, and drug action is the prerequisite for developing novel and effective clinical
treatments. Understanding the role of WTAP in regulating factors, targeting pathways, and
cell functions in cancer could help us develop novel clinical anticancer treatment strategies
through targeting WTAP. In this review, our concentration centers on the latest research
on WTAP in the cell cycle, metabolic regulation, autophagy, immune response, ferroptosis,
EMT, and drug resistance. Studies have shown that WTAP knockdown regulates G1/S
and G2/M phase transformation through targets such as cyclin A2 and CDK2 in cancers
such as nasopharyngeal carcinoma, renal cancer, and liver cancer [35,37,38]. Under hypoxic
conditions, WTAP is regulated by hypoxia inducible factor (HIF)-1α, promotes the Warburg
effect of ovarian cancer cells, and significantly increases the glycolytic ability of ovarian
cancer cells [45]. The WTAP research on tumor lipid metabolism is still in its infancy,
which is worth further exploration in the future. According to reports, the depletion of
WTAP can promote autophagy in hepatocellular carcinoma [48]. Mechanistically, WTAP
regulates LKB1, which in turn mediates downstream AMPK phosphorylation, thereby
promoting autophagy [48]. The immune system plays a significant role in combating cancer
by identifying and destroying newly formed tumor cells through a process called cancer
immunosurveillance [101]. Taku and colleagues found that WTAP plays an essential role in
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the growth of thymocytes. In addition, they observed that the absence of WTAP in CD4+ T
cells resulted in reduced levels of peripheral T cells [86]. Nevertheless, the current research
on the effect of WTAP in tumor immunity is mostly limited to bioinformatics analysis.
Therefore, the regulatory mechanism of WTAP in tumor immunity needs further research.
Furthermore, WTAP also stabilizes NRF2 expression through YTHDF1 to promote the pro-
liferation of bladder cancer cells via inhibiting ferroptosis [51]. In hepatocellular carcinoma
and ovarian cancer, WTAP depletion significantly restrains the migration and invasive
ability of tumor cells [53,54]. Mechanistically, the expression of mesenchymal markers such
as vimentin and Slug decreases after WTAP knockdown, indicating that the EMT process is
inhibited [53,54]. In pancreatic cancer, WTAP targets the Fak-PI3K-AKT and Fak-Src-GRB2-
Erk1/2 axes to promote tumor cell chemosensitivity to gemcitabine [56]. Interestingly,
WTAP seems to be a double-edged sword for cancer. In CRC, carbonic anhydrase IV (CA4)
inhibits tumor cell proliferation via the Wnt/β-catenin signaling pathway, while WTAP
knockdown rescues the inhibition of cell viability caused by CA4 [102]. Therefore, WTAP
may play complex roles in both tumor suppression and tumor promotion. Further studies
are needed to fully reveal the mechanism of WTAP as a tumor suppressor gene.

6. Conclusions

To summarize, our review explores the fundamental mechanisms and latest discov-
eries of how WTAP controls cancer. The diverse functions of WTAP in the development
and advancement of cancer indicate WTAP’s potential as a hopeful treatment target for
cancer. Nonetheless, comprehending the precise mechanisms through which WTAP con-
tributes to the progression and spread of tumors requires additional research, along with
the production of focused therapeutic approaches that efficiently exploit its operation.
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