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Simple Summary: A variety of anticancer therapeutic targets have been identified over the decades.
Nevertheless, the complexity of biological regulation dictates the necessity of knowledge about
mechanisms specific to a particular tumor type. Using the DepMap CRISPR/Cas9 knockout database,
we performed a comprehensive search for genes critical for tumor survival. Both established and
novel markers of tumor viability were identified, many of which are transcriptional regulators. Our
results substantiate new therapeutic strategies applicable to individual tumors.

Abstract: The identification of mechanisms that underlie the biology of individual tumors is aimed at
the development of personalized treatment strategies. Herein, we performed a comprehensive search
of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the
DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked
out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes
whose deletion was lethal in the particular case, indicating both known and unknown Supertargets.
Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription
factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical
tumor samples but not in the respective non-malignant tissues. These results point to transcriptional
mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors
emerges as a straightforward approach to optimize therapeutic regimens.

Keywords: cancer; tumor markers; DepMap; DOCK5; BEST3; TEAD3; WDR88; NFIA; ZBTB18

1. Introduction

Genetic factors of tumor progression are distinct for individual cancer types. In each
case, there is a unique set of regulatory circuits (i.e., signaling pathways and transcrip-
tional regulators) whose dysfunction contributes to the biology of specific malignancies.
Commonly, conventional chemotherapeutics are indiscriminately toxic to many cell types
including non-malignant counterparts. Ideally, for each tumor type, it is necessary to select
the unique targets whose inactivation would preferentially affect the particular tumor [1,2].

A large-scale analysis of transformed cell lines has been demonstrated to be promising
for the identification of genes essential for tumor cell proliferation/survival [3–8]. The
most sizeable resource that accumulates high throughput data is the DepMap (Dependency
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Map) project (https://depmap.org/portal/, accessed on 15–30 April 2022 and on 17–19
April 2023). This database contains a comprehensive set of genes individually knocked out
by CRISPR/Cas9 technology in a broad panel of human-transformed cell lines. Results are
represented as the ‘gene effect’ score indicating the probability of dependency of each cell
line on the gene of interest. Strong negative values mark the cases where a given gene is
critically important for cell proliferation/viability [3].

In this study, we used the DepMap panel to search for genes whose knockout most
specifically affected the viability of the particular tumor type in comparison with other
tumors. We coined the term ‘Supertargets’ for these critical genes. In total, we analyzed cell
lines derived from 27 tumor types (six hematological and 21 solid malignancies). The top
five genes within each tumor type were identified on the basis of efficacy and selectivity
for cell viability inhibition. Next, using the TNMplot database portal, we analyzed the
expression of identified genes and uncovered the transcripts deregulated in tumor vs.
normal samples. The majority of identified Supertargets have been previously implicated
in tumor biology and/or served as therapeutic targets, thereby validating the adequacy of
the approach. Importantly, our cohort of Supertargets also contains poorly studied genes
with unknown roles. These genes deserve future in-depth investigation as potential new
targets for anticancer therapy.

2. Materials and Methods

The DepMap website (https://depmap.org/portal/, accessed on 15–30 April 2022
and on 17–19 April 2023) analysis of the dependency of tumor cell lines on individual genes
was conducted using the CRISPR (release CRISPR (DepMap 21Q3 Public+Score, Chronos;
accessed on 15–30 April 2022) and RNAi (release RNAi (Achilles+DRIVE+Marcotte, DEME-
TER2); accessed on 17–19 April 2023). Gene effect difference was calculated as T-statistic
scores by DepMap portal using scipy.stats.ttest_ind (https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_ind.htm, accessed on 15–30 April 2022). Gene ex-
pression analysis in cell lines was carried out by DepMap Expression Public 22Q4 release,
accessed on 10–13 April 2023.

Gene expression in tumor samples and the respective normal tissues were evaluated
with Mann–Whitney test using the TNMplot database (https://tnmplot.com/, accessed
on 20–25 December 2022), which contains transcriptome data from The Cancer Genome
Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) repositories [9]. GO enrichment
analysis was performed using The Gene Ontology Resource (http://geneontology.org/,
accessed on 20 January 2023). Annotation version and release date: GO Ontology database
DOI: 10.5281/zenodo.6799722 (released 1 July 2022). Analysis type: PANTHER Overrep-
resentation Test (released 13 October 2022); test type: Fisher’s exact [10]. The following
annotation datasets were used: ‘GO cellular component complete’ to describe the localiza-
tion of Supertargets in cells; ‘GO PANTHER pathways’ to characterize signaling pathways;
and ‘PANTHER GO-Slim Molecular Function’ to identify functional classes of Supertarget
gene products.

The GOplot analysis was carried out using the TNMplot database (https://tnmplot.
com/, accessed on 15 April 2022). DNA-binding domains of transcription factors were
determined using Homo sapiens Comprehensive Model Collection (HOCOMOCO, https:
//hocomoco11.autosome.org/, accessed on 15 January 2023 [11]). The search for references
for each gene was carried out using PubMed (https://pubmed.ncbi.nlm.nih.gov, accessed
on 20–25 May 2022). The survival analysis was carried out using the Pan-Cancer datasets
of the online tool www.kmplot.com (accessed on 20 April 2023).

3. Results
3.1. Approach

In the DepMap project, a cell line is considered dependent if the probability of de-
pendency is <0.5; a score of 0 is equivalent to a non-essential gene whereas a score of
−1 corresponds to the median of all commonly essential genes. Supplementary Figure S1

https://depmap.org/portal/
https://depmap.org/portal/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.htm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.htm
https://tnmplot.com/
http://geneontology.org/
https://tnmplot.com/
https://tnmplot.com/
https://hocomoco11.autosome.org/
https://hocomoco11.autosome.org/
https://pubmed.ncbi.nlm.nih.gov
www.kmplot.com


Cancers 2023, 15, 3042 3 of 19

shows three major situations depending on the molecular function of the given gene. Dis-
ruption of the RPL3 gene encoding the ribosomal L3 protein is lethal in all tested cancer
lines. As expected, deletion of the HTR1B gene coding for the neurotransmitter receptor of
the release of serotonin, dopamine, and acetylcholine in the brain, had minimal cytotoxic
effects in tumor cells. At the same time, disruption of the MYB, a well-studied factor in
blood malignancies (see below), is insufficient for a majority of cancer cell lines, although
MYB inactivation has a strong inhibitory effect in hematopoietic tumors.

The difference in average ‘gene effect’ values between the selected group and the
rest of the cell lines can be counted as a T-statistic score (see Material and Methods). The
lowest T-statistic scores correspond to genes whose knockout affects cell viability in the
particular tumor type. We selected the top five genes (referred to as Supertargets) with
the lowest T-statistic scores for 27 cancer types using the DepMap portal. Since T-statistics
scores depend on the number of cell lines for the respective tumor type, in each cohort we
analyzed the top five genes independently.

3.2. Blood Malignancies
3.2.1. Supertargets in Acute Myeloid Leukemia (AML) and Acute Lymphocytic
Leukemia (ALL)

To further validate the proposed approach, we focused on AML and ALL, the malig-
nancies with well-characterized therapeutic targets [12,13]. Indeed, the top five targets for
AML and four out of the top five ALL targets have been described (Figure 1A). Details of
Supertargets for each tumor type are given in Supplementary File S1.
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maintenance of the proliferative potential in AML cells [17]. In the mouse AML model, 
shRNA-mediated MYB down-regulation resulted in the remission of leukemia without 
inhibition of normal myelopoiesis [18]. Several chemical compounds have been developed 
to preferentially inhibit the proliferation of AML vs. normal hematopoietic cells (see [19] 
for a detailed review). 

Other AML Supertargets encoded SPI1 (SPI1 proto-oncogene, a.k.a. PU.1), LIM do-
main only 2 (LMO2), Janus kinase 2 (JAK2), and growth factor independence 1 (GFI1) 
proteins (Figure 1A). The PU.1 transcription factor belongs to the erythroblast transfor-
mation-specific (ETS) family important for hematopoiesis. The role of PU.1 in AML is the 

Figure 1. Analysis of gene effect difference reveals Supertarget genes in leukemia cell lines.
(A) DepMap data analysis. Gene deletion effects for all cell lines are colored in grey (All, 1032 cell
lines), and gene effects for tumor type-specific cell lines are rendered in blue. 26 and 16 cell lines
were analyzed in case of Acute Myeloid Leukemia (AML) and Acute Lymphocytic Leukemia (ALL),
respectively. The T-statistic scores and p-values are given below the diagrams. (B)The differential
gene expression in clinical samples from TNMplot database. The differential gene expression in
normal (green) vs. tumor (red) samples is presented as violin plots (P, p-value, Mann–Whitney test.
FC, fold change median).



Cancers 2023, 15, 3042 4 of 19

The MYB gene encoding the MYB transcription factor is deregulated in hematological
malignancies including AML [14] and ALL [15,16]. In our analysis, this marker was
identified with a minimal T-statistic score (rank 1) for AML and the second minimal score
(rank 2) for ALL cells. The MYB protein binds to DNA via the helix-turn-helix (HTH) type
domain and acts in cooperation with the CBP/p300 co-activator complex essential for the
maintenance of the proliferative potential in AML cells [17]. In the mouse AML model,
shRNA-mediated MYB down-regulation resulted in the remission of leukemia without
inhibition of normal myelopoiesis [18]. Several chemical compounds have been developed
to preferentially inhibit the proliferation of AML vs. normal hematopoietic cells (see [19]
for a detailed review).

Other AML Supertargets encoded SPI1 (SPI1 proto-oncogene, a.k.a. PU.1), LIM do-
main only 2 (LMO2), Janus kinase 2 (JAK2), and growth factor independence 1 (GFI1) pro-
teins (Figure 1A). The PU.1 transcription factor belongs to the erythroblast transformation-
specific (ETS) family important for hematopoiesis. The role of PU.1 in AML is the subject
of research [20]; PU.1 elimination was therapeutically beneficial in leukemia [21]. LMO2 is
a key hematopoietic regulator that functions as a bridging molecule in the multiprotein
transcription activator complex that includes, in addition to LMO2, the AL1/SCL, GATA1
and LDB1 subunits [22,23]. Chromosomal translocations t(11;14) (p13;q11) and t(7;11)
(q35;p13) activated LMO2 in acute T-cell leukemia; to date, LMO2 function has been
characterized mostly in this tumor type [24]. However, the DepMap data suggest that
AML cells, rather than ALL counterparts, are much more sensitive to LMO2 knockout
(Supplementary Figure S2). Furthermore, JAK2 is a member of the Janus family of non-
receptor tyrosine kinases involved in the control of cell growth, proliferation, and differ-
entiation [25]. The role of JAK2 in hematopoiesis and AML is well studied, and a number
of JAK2-targeted small molecule inhibitors have been shown to be efficient in adult and
pediatric AML [26]. Finally, GFI1 is a C2H2 type zinc finger transcriptional repressor
implicated in the pathogenesis of AML and myelodysplastic syndrome (MDS). Presumably,
GFI1 might be involved in the progression from MDS to AML [27].

The LEF1 (lymphoid enhancer binding factor 1), RUNX1 (RUNX family transcription
factor 1), and EBF1 (EBF transcription factor 1) genes, identified as ALL Supertargets, are
key hematopoietic transcription regulators that play central roles in differentiation and
survival of lymphocyte progenitors [28] (Figure 1A). Apart from the above factors, the
gene with minimal T-statistic score in ALL is ATP6V0A2 (Figure 1A). To our knowledge,
this marker is unknown in ALL biology and is therefore a new candidate target. The
ATP6V0A2 gene encodes the component of the proton channel of vacuolar ATPase (V-ATPase).
A recent study indicated that the V-ATPase complex, in addition to its main function in gener-
ating the electrochemical proton gradient across the membranes, is involved in Notch/Wnt-
dependent tumor progression [29].

Next, we investigated whether the transcripts of identified genes were differentially
presented in tumor vs. normal tissues. Among the hematological malignancies, the
expression data for AML and ALL are available at the TNMplot portal [9]. Figure 1B shows
the comparison of the Supertarget gene expression between normal and tumor clinical
samples. For nine out of ten genes, the expression in tumor samples was significantly higher
than in the respective normal counterparts. The highest increase was detected for MYB
mRNA in AML (FC median = 153.75) and ALL (FC median = 113.25). The expression of
other genes also increased (FC ranged from 1.45 to 8.59). One exception was the SPI1 mRNA
decrease in AML (FC = 0.19; Figure 1B). The decrease in SPI1 transcripts in AML samples
compared to normal bone marrow cells is in accordance with the findings of a previous
study [30]. Importantly, even when AML cells have low amounts of SPI1 transcripts,
their growth was sensitive to SPI1 inhibition by RNAi or chemical compounds [21]. To
estimate gene effect differences between the transformed and non-malignant cells of the
same tissue origin, we took advantage of the new 22Q4 DepMap release that accommodates
data on non-transformed cells. In support of the importance of identified Supertargets,
the knockout of the MYB, SPI1, LMO2, or JAK2 genes was cytotoxic in AML lines but
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not in the respective non-malignant cells (Supplementary Figure S3). Thus, the DepMap
‘gene effect’ criterion is adequate for the accurate identification of known factors important
for the proliferation/survival of AML and ALL cells, suggesting that this approach is
straightforward for the search of Supertargets in hematological malignancies.

3.2.2. Chronic Myelogenous Leukemia (CML), Lymphoma, and Multiple Myeloma

All CML cell lines in the DepMap panel contain the Philadelphia chromosome that
leads to the formation of BCR-ABL1 fusion proteins. As expected, at the top of CML
Supertargets are the BCR and ABL1 genes with extremely low T-statistic scores (Figure 2A).
Furthermore, three CML Supertarget genes, that is, GRB2-associated binding protein
2 (GAB2), son of sevenless homolog 1 (SOS1), and signal transducer and activator of
transcription 5B (STAT5B), are the components of JAK/STAT signaling pathway critical in
BCR-ABL1-positive neoplasms [31–34].
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The most important genes in Hodgkin’s lymphoma (HL; Figure 2B) encode proteins
implicated in signal transduction: interleukin-13 receptor subunit alpha-1 (IL13RA1) and
its direct partners, STAT6 and IL4R (reviewed in [35]). Two genes with the lowest T-statistic
scores encode the transcriptional repressors that regulate lymphogenesis: Ikaros zinc
finger protein 1 (IKZF1) [36] and the basic leucine zipper transcription factor ATF-like 3
(BATF3) [36].

In non-Hodgkin’s lymphoma (NHL), four out of five Supertargets (myocyte enhancer
factor 2B (MEF2B), EBF transcription factor 1 (EBF1), BCL6 transcriptional repressor (BCL6),
and paired box 5 (PAX5)) encode well-studied transcription factors with significant roles in
B-cell malignancies (reviewed in [37]) (Figure 3A). The marker ranked fourth is the SH3GL1
gene that encodes the ubiquitously expressed endophilin-A2 implicated in endocytosis [38].
To our knowledge, no data point to a direct role of endophilin-A2 in tumor biology.

Cancers 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 3. Supertarget genes in non-Hodgkin’s lymphoma (NHL, (A), 24 cell lines) and multiple my-
eloma (MM, (B), 21 cell lines) cell lines. Designations are as in Figure 1. See text for details. 

3.3. Supertargets in Solid Tumors 
The search of Supertargets was performed for 21 solid tumor types presented in the 

DepMap panel. Figure 4A shows the T-statistic scores for the top five genes whose knock-
out was lethal. Of note, skin malignancies and neuroblastoma were the most sensitive, 
whereas the liver and osteosarcoma cells were less affected. 

Figure 3. Supertarget genes in non-Hodgkin’s lymphoma (NHL, (A), 24 cell lines) and multiple
myeloma (MM, (B), 21 cell lines) cell lines. Designations are as in Figure 1. See text for details.
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In multiple myeloma (MM), four Supertarget genes encode transcription factors such
as interferon regulatory factor 4 (IRF4), PR/SET domain 1 (PRDM1), POU class 2 homeobox
associating factor 1 (POU2AF1), and myocyte enhancer factor 2C (MEF2C, Figure 3B).
Products of these genes are implicated in transcriptional regulation during germinal center
formation and pathogenesis of B-cell malignancies [39]. The fourth gene is a homocysteine
inducible endoplasmic reticulum protein with the ubiquitin-like domain 1 (HERPUD1),
a component of the quality control system of ubiquitin-dependent degradation of misfolded
proteins. HERPUD1 is implicated in ovarian [40] and liver [41] cancers, whereas no data
link HERPUD1 to MM. Thus, we identified two new Supertargets, i.e., SH3GL1 for NHL
and HERPUD1 for MM.

3.3. Supertargets in Solid Tumors

The search of Supertargets was performed for 21 solid tumor types presented in the
DepMap panel. Figure 4A shows the T-statistic scores for the top five genes whose knockout
was lethal. Of note, skin malignancies and neuroblastoma were the most sensitive, whereas
the liver and osteosarcoma cells were less affected.

Cancers 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 4. Supertargets in solid tumors. (A) Overview of gene effect difference calculated as T-statis-
tic score for genes 1–5 in each cohort. (B) Differential gene expression (FC median; TNMplot data-
base) in normal vs. tumor samples. Statistical significance was calculated by a Mann–Whitney U-
test and set at 0.01. NS, non-significant; Mann–Whitney p-value. FC values for significantly overex-
pressed and down-regulated genes are highlighted in red or green, respectively. ND, no data. TAR-
GET, pediatric tumors. 

We next analyzed the differential expression in clinical solid tumor samples using the 
TNMplot portal. Figure 4B summarizes the RNAseq TNMplot data for clinical samples. 
In total, more than half of the identified Supertargets were significantly overexpressed in 
tumor samples (p < 0.01, Mann–Whitney test). The most dramatically elevated transcripts 
of the top five genes were observed in neuroblastoma (FC ranging from 218 to 4085). Ad-
ditionally, in breast cancer and osteosarcoma, all the top five Supertargets were up-regu-
lated. In contrast, SMARCA2 (a subunit of the SWI/SNF chromatin remodeling complex) 
and DDX5 (RNA helicase) (Figure 4B) were significantly down-regulated in lung cancer 
samples. Interestingly, while the ovarian and renal cell carcinoma (RCC) cells were sensi-
tive to PAX8 knockout, the transcription profiles of PAX8 in normal and tumor samples 
differed for each of these malignancies (Figure 4B). In the normal ovary, PAX8 transcrip-
tion was below the level of detection, although drastically increased in tumors (Supple-
mentary Figure S4). The PAX8 transcripts were elevated in normal kidneys but were 
down-regulated in RCC (Supplementary Figure S4). 

Figure 4. Supertargets in solid tumors. (A) Overview of gene effect difference calculated as T-statistic score
for genes 1–5 in each cohort. (B) Differential gene expression (FC median; TNMplot database) in normal
vs. tumor samples. Statistical significance was calculated by a Mann–Whitney U-test and set at 0.01. NS,
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We next analyzed the differential expression in clinical solid tumor samples using the
TNMplot portal. Figure 4B summarizes the RNAseq TNMplot data for clinical samples.
In total, more than half of the identified Supertargets were significantly overexpressed in
tumor samples (p < 0.01, Mann–Whitney test). The most dramatically elevated transcripts
of the top five genes were observed in neuroblastoma (FC ranging from 218 to 4085).
Additionally, in breast cancer and osteosarcoma, all the top five Supertargets were up-
regulated. In contrast, SMARCA2 (a subunit of the SWI/SNF chromatin remodeling
complex) and DDX5 (RNA helicase) (Figure 4B) were significantly down-regulated in
lung cancer samples. Interestingly, while the ovarian and renal cell carcinoma (RCC) cells
were sensitive to PAX8 knockout, the transcription profiles of PAX8 in normal and tumor
samples differed for each of these malignancies (Figure 4B). In the normal ovary, PAX8
transcription was below the level of detection, although drastically increased in tumors
(Supplementary Figure S4). The PAX8 transcripts were elevated in normal kidneys but
were down-regulated in RCC (Supplementary Figure S4).

We next focused on the tumor types in which the expression of all Supertargets was
significantly increased in clinical samples: neuroblastoma, breast cancer, and osteosarcoma
(Figure 4B, Supplementary File S2). In neuroblastoma, our analysis identified the transcrip-
tion factors ISL1, HAND2, PHOX2B, PHOX2A, and MYCN as the top five targets critical
for the survival of cell lines (Supplementary Figure S5). MYCN is a molecular hallmark of
this tumor, thereby justifying the significance of the other four markers. Indeed, MYCN,
ISL1, HAND2, and PHOX2B, together with GATA3 and TBX2, comprise the core regulatory
circuit, an autoregulatory transcriptional loop that maintains the malignant phenotype
of MYCN-positive neuroblastoma [42]. One may hypothesize that the increased MYCN
abundance is a result of gene amplification or overexpression as an early trigger. At physi-
ological levels, MYCN binds to gene promoters; however, if abundant, this transcription
factor can invade enhancers. The HAND2 partner cooperates with MYCN to compete with
nucleosomes in the regulation of global gene transcription. These events are sensitive to
down-regulation of their upstream mechanisms: a combination of Aurora kinase A and
histone deacetylase inhibitors suppressed the tumor [43]. In line with these observations,
Li et al. demonstrated that inhibition of Aurora kinase A led to ISL1 attenuation [44]. Thus,
pharmacological combinations of selective protein kinase blockers with chromatin-targeting
agents raise novel therapeutic possibilities.

Breast cancer was also the disease with substantially increased transcription of each of
the five Supertargets (Figure 4B, Supplementary Figure S6). SPDEF (ranked 1) contains the
ETS DNA binding domain, a subtype of the bHLH domain; functions of this gene product
are vital for normal development as well as for the survival of breast cancer cells [45]. The
Supertarget genes, FOXA1, ESR1, and GATA3, are among the most studied prognostic
markers and therapeutic targets in breast cancer (reviewed in [46,47]). As for the TRPS1
(transcriptional repressor GATA binding 1) gene, its overexpression has been recently
shown to drive genome evolution in breast carcinomas [48].

In osteosarcoma, SMARCAL1, IRS1, SUB1, HMGA2, and FANCM were identified
as Supertargets (Figure 4B, Supplementary Figure S7). Three genes encode the proteins
implicated in DNA repair. The ATP-dependent chromatin remodeling protein SMARCAL1
interacts with damaged replication forks to promote their stability [49,50]. FANCM acts
as an anchor for DNA repair complex [51]; pharmacological inhibition of FANCM was
selectively toxic for cancer cells that use alternative lengthening of telomeres [52]. SUB1
recognizes G-quadruplexes and DNA lesions, thereby activating double-strand break
repair by stimulating the joining of non-complementary DNA ends and promoting genome
stability [53,54]. IRS1 is a cytosolic adaptor protein involved in insulin receptor and
insulin-like growth factor I receptor signaling. This protein can also act as a transcription
regulator to support tumor growth by an incompletely defined mechanism [55]. HMGA2
is a transcription factor with the high mobility group DNA binding domain. HMGA2
mediates multiple mechanisms of tumor progression including stimulation of proliferation
and inhibition of apoptosis (reviewed in [56]).
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3.4. Expression in Tumor Cell Lines and Functional Types of Supertargets

Differential sensitivity of tumor cells to individual gene depletion can result from cell
type-specific gene expression. Alternatively, if the gene is expressed ubiquitously, its prod-
uct can be critically involved in cell type-specific metabolism. To validate these options,
we analyzed the expression of 114 Supertargets using RNAseq DepMap. In total, 96.5%
of Supertarget genes were expressed in >50% tumor cell lines using the log2(TPM + 1)
threshold; 73.7% Supertarget genes were expressed in >50% tumor cell lines if we set
a higher threshold log2(TPM + 2) to cut very low expressing genes (Supplementary Figure S8).
Thus, the expression of the majority of Supertargets is not confined to a particular tumor type.

However, the expression of certain Supertargets may vary between cell lines of differ-
ent tissue origins. We estimated the relative expression of Supertargets by measuring the
ratio between the median expression of Supertargets in cell lines of the specific tumor type
(for which the Supertarget was identified) and its median expression in the total cohort of
tumor cells. We found that 83% of Supertargets were expressed higher in the particular
tumor type compared to their average median expression. Moreover, the expression of
35% Supertargets was at least 2-fold higher; strikingly, the amounts of MYOG and MYOD1
transcripts were 50-fold higher. Thus, while transcription of Supertargets is not tumor
type-specific, its relative expression is generally elevated.

GO cellular component analysis using the Gene Ontology Resource, http://geneontology.
org/, accessed on 20 January 2023, revealed that 92 out of 124 (73%) unique Supertar-
gets were present in the nucleus (fold enrichment = 1.96, raw p-value = 8.95 × 10−16,
FDR = 1.66 × 10−13) and 58 (46%) were associated with chromosomes (fold enrichment = 5.12,
raw p-value = 3.12 × 10−27, FDR = 3.18 × 10−24). Supertargets were involved in differ-
ent signaling pathways; the principal enrichment of observed vs. expected values was
revealed for JAK/STAT (raw p-value = 2.32 × 10−4, FDR = 3.72 × 10−3), interleukin (raw
p-value = 8.52 × 10−9, FDR = 4.54 × 10−7), insulin/IGF pathway mitogen-activated pro-
tein kinase kinase/MAP kinase cascade (raw p-value = 1.35 × 10−3, FDR = 1.35 × 10−2),
and p53 pathway feedback loops 2 (raw p-value = 3.50 × 10−4, FDR = 4.31× 10−3)
(Supplementary File S3).

The analysis of molecular functions by the GOplot tool indicated an overwhelming en-
richment of transcription factors among Supertargets (Figure 5A). According to PANTHER
GO-Slim Molecular Function analysis, 52 (41.3%) Supertargets possessed sequence-specific
double-strand DNA binding activity (fold enrichment = 7.61, raw p-value = 6.36 × 10−32,
FDR = 6.94 × 10−30; Supplementary File S3). Importantly, transcription factors represent
the largest group both in solid and hematopoietic cancers (Supplementary Figure S9).

In accordance with the predicted tumor specificity, the GOplot analysis of biolog-
ical pathways revealed the ‘lymphocyte and T-cell differentiation’ and ‘regulation of
hemopoiesis’ groups as the most enriched Supertargets of blood tumors, and the ‘cell
fate commitment’ and ‘gland, muscle, and mesenchyme development’ groups for solid
tumors (Supplementary Figure S10).

To further estimate the representation of DNA-binding domains in Supertargets, we
used the Homo sapiens Comprehensive Model Collection (HOCOMOCO, [11]) classification.
This resource divides DNA binding factors into ten classes with 34 groups of specific DNA
binding motifs. One-half (17/34) of specific motif groups were found among Supertar-
gets (Supplementary File S4); seven groups were presented most frequently (Figure 5B).
Thus, transcription factors comprise the leading group within the entire set of Supertar-
gets. However, we observed no prevalence of individual DNA binding motifs. While
18 proteins had the HTH domain, and 9 proteins belonged to C2H2-type zinc fingers,
they corresponded to only 4.4% and 1.3% of proteins carrying these motifs, respectively.
Thus, transcription factors with different types of DNA-binding domains are the most
representative Supertargets.

http://geneontology.org/
http://geneontology.org/
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3.5. Clinical Utility of Supertargets

We next investigated the correlation between the Supertarget gene expression and
patient prognosis using the KMplot portal (https://kmplot.com, accessed on 15 February
2022). Out of 27 tumor types in DepMap, the KMplot database contains data on 12 types.
We analyzed the overall survival (OS) of patients based on 60 (12 × 5) Supertargets. As
a result, 17 genes demonstrated significant (p < 0.01) differences in life expectancy depend-
ing on the high or low expression of individual Supertargets (Figure 6A). In seven cases
the elevated mRNA abundance correlated with poor prognosis, whereas overexpression
of 10 genes was associated with a longer lifespan. Figure 6 shows correlations with the
highest (CCNE1, uterine cancer; KRAS, pancreatic cancer) (Figure 6B) and the lowest (MYB
in AML, ZER1 in cervical cancer) (Figure 6C) hazard ratios (HR). Intriguingly, high or low
HR values per se do not necessarily indicate the prognostic significance (compare HR data

https://tnmplot.com/analysis/
https://kmplot.com
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for KRAS vs. MYB), further substantiating the complexity of cellular roles of individual
Supertargets in specific contexts.
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Figure 6. Prognostic value of Supertargets analyzed by KMplot resource. (A) Seventeen genes
revealed significant (p < 0.01) differences in OS depending on high or low Supertarget expression.
The hazard ratio (HR) is shown in red when higher gene expression is correlated with a shorter
survival, and in green in case of a longer survival. (B) KMplots for KRAS (pancreatic cancer) and
CCNE1 (uterine cancer) genes with the highest HR. (C) KMplots for MYB (AML) and ZER1 (cervix
cancer) genes with the lowest HR. Red is the cohort with high gene expression; black, low expression.

3.6. Significance of Supertargets Is Supported by RNAi DepMap Data

Besides the CRISPR analysis, DepMap includes RNAi data. However, these parameters
cannot be compared directly, since CRISPR and RNAi contain different sets of tumor
lineages. Additionally, the knockdown efficiency by RNAi differs significantly for different
genes. We estimated the effect of RNAi knockdown for top5 CRISPR identified Supertargets
using data on five blood malignancies (AML, ALL, MM, Hodgkin’s, and Non-Hodgkin’s
lymphomas) and for five solid tumors (skin cancer, neuroblastoma, rhabdomyosarcoma,
Ewing sarcoma, and colorectal cancer). In the solid tumors, the five selected cancer types
are those having the lowest T-statistic values by the CRISPR analysis (Figure 4). Overall,
50 genes were analyzed.

To take into account the RNAi efficiency, the genes were divided into two sub-
groups using the DepMap database criterion: 25 genes with high prediction accuracy and
25 with low prediction accuracy. Next, we determined whether each gene in each group
can be considered a Supertarget by RNAi analysis for CRISPR-determined tumor type. For
each gene, the statistical significance of the negative gene effect difference was assessed
using the confidence threshold p < 0.0005 set by DepMap. If the gene fit this criterion, it
was considered a Supertarget and was given an “RNAi KD” score of “1”; otherwise, the
score was “0”.

Figure 7 shows that each of the 25 genes from the high prediction accuracy group fit
the established criteria, while in the low prediction accuracy group, only 7/25 genes passed
the confidence threshold p < 0.0005. Thus, in the case of efficient RNAi, the genes act as
Supertargets upon knockdown.
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Figure 7. DepMap RNAi data analysis corroborates the efficacy of Supertargets identified by CRISPR
knockout. (A) Conformity of Supertargets identified by CRISPR analysis with RNAi knockdown
(KD) data. RNAi score 1: KD has an inhibitory effect in a particular tumor type (p < 0.0005); score
0: KD has no significant effect. (B) Prediction accuracy score for RNAi data. The high prediction
accuracy group is highlighted in green; the low prediction accuracy is shown in pink.

Figure 8 shows the effects of RNAi on top3 Supertargets with the highest value of
prediction accuracy in hematological and solid tumors.
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Figure 8. RNAi data (DepMap project) for blood and solid tumors. Gene depletion effects for all cell
lines (All, 710 cell lines) are colored in grey; gene effects for tumor-specific cell lines are rendered
in purple. T-statistic scores and p-values are given below the diagrams. (A) RNAi data for MYB
gene in AML and ALL, and RUNX1 gene in ALL tumor cell lines are shown. 22 and 7 cell lines were
analyzed in case of AML and ALL, respectively. (B) RNAi data for SOX10 gene in Skin, CTNNB1 in
Colorectal, BRAF in Skin tumor cell lines are shown. 47 and 43 cell lines were analyzed in case of
Skin and Colorectal tumors, respectively.
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3.7. Novel Supertargets

The Supertargets identified herein included the previously characterized markers as
well as proteins whose function has not been attributed to the respective tumor. To analyze
the latter group, we performed a PubMed search of manuscripts with a text combination of
the gene and the respective tumor type. We found that 24 out of 135 Supertargets have not
been linked to the respective tumors (Figure 9). Among these 24 genes, only three encoded
the DNA binding transcription factors: NFIA, ZBTB18, and TEAD3. NFIA is required
for the proliferation of cervical cells, ZBTB18 for rhabdomyosarcoma, and TEAD3 for the
urinary tract cells (Figure 9, Supplementary File S1). ZBTB18 has been identified as a tumor
suppressor in glioblastoma [57] and colorectal cancer [58]. TEAD3 is a component of the
Hippo pathway implicated in a number of diseases including cancer [59,60]. Functions of
the NFIA gene are better understood in brain development [61], although recent findings
link its role to tumor progression [62]. Regarding non-DNA binding factors, at least three
are known to be directly involved in the regulation of transcription; SUB1 (required for
osteosarcoma cell proliferation) and EDF1 (the upper aerodigestive tract) are transcriptional
coactivators, whereas SPTY2D1 (in the cervix) is a histone chaperone.
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4. Discussion

In the present study, we used the DepMap database to search for genes that can serve
as therapeutic targets for individual tumor types. For each of the total 27 tumor types, we
identified the top five genes whose CRISPR/Cas9 mediated knockout was lethal. A similar
inhibitory effect was observed through the analysis of RNAi DepMap data. Importantly,
we found 24 new Supertarget genes whose functions have not been investigated previously
in the respective tumor.
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Selectivity of Supertargets for an individual tumor can arise from two mechanisms. In
the first scenario, the expression of Supertargets is cell type-specific. Second, the expression
of Supertargets is ubiquitous, but its knockout affects cell type-specific cascades. Using
RNAseq data available at the DepMap portal, we showed that, although transcription of
Supertargets is not confined to a particular tumor type, the relative abundance of specific
transcripts is higher in those cells in which the Supertarget gene was identified. Further-
more, using the TNMplot portal, we demonstrated that the expression of >50% of identi-
fied genes was significantly increased in matched tumor vs. non-malignant clinical sam-
ples. The most dramatic transcriptional burden was observed in neuroblastoma samples
(a 200–4000-fold increase in steady-state levels of five Supertarget mRNAs).

Interestingly, genes coding for transcription factors with various DNA-binding do-
mains are the predominant group within Supertargets (41%). Our data substantiate the
key role of transcription factors in tumor biology [63,64]. For a long time, transcription
factors have been considered non-druggable in contrast to enzymes or other biomolecules
that bind small molecular weight compounds [65]. Recent advances in targeting tran-
scription factors have changed this postulate and opened the way for new therapies using
drugs against these proteins (reviewed in [66]). For example, the small molecule inhibitor
AI-10-49 selectively disrupted the interaction between the aberrant activator CBF-β and
DNA binding transcriptional factor RUNX1, thereby restoring normal expression patterns
and delaying leukemia progression in mice [67]. Another example of a protein–protein
interaction inhibitor is the small molecules that disrupt MDM2–p53 binding to reduce
p53 ubiquitination, thereby increasing p53 abundance and cell death [68–70]. A series of
PROTAC (PROteolysis Targeting Chimera)-based drugs targeting transcription factors have
entered clinical trials [71–73].

From this viewpoint, three newly identified DNA binding Supertargets, NFIA, ZBTB18,
and TEAD3, are of particular interest. They are required for the proliferation of cervical,
rhabdomyosarcoma, and urinary tract tumors, respectively. In addition, several new
Supertargets encoding non-DNA binding transcriptional regulators were identified for
osteosarcoma (transcriptional coactivator SUB1), cervix (histone chaperone SPTY2D1),
and upper aerodigestive tract (transcriptional coactivator EDF1). In additional, several
other non-DNA binding transcriptional regulators are present among all Supertargets:
a component of the cohesion complex STAG1 (Ewing sarcoma), SMARCA2 (lung) and
SMARCAL1 (osteosarcoma). SMARCA2, a.k.a. BRM, is an ATPase subunit of SWI/SNF
remodeling complexes [74,75], whereas SMARCAL1 is an SWI/SNF-related ATPase [50].
The presence of these proteins among Supertargets supports an important role for chromatin
regulators and epigenetic markers in cancer progression [76]. The design of targeted
chemical tools to selectively remove transcriptional regulators emerges as a challenging
strategy to inactivate these intractable mechanisms.

Among the discovered Supertargets are the genes for which the oncogenic driver
mutations have been found. Individual mutations can cause tumor hypersensitivity to
deletion of the mutated gene; for example, GOF mutations of the EZH2 methyltransferase
gene in lymphoid tumor cells [77]. A similar situation is observed in the case of KRAS,
BRAF and CTNNB1 (Supplementary Figure S11). Deletion of the KRAS gene is most
dramatic for the survival of pancreatic cancer cells (Supertarget) as well as for lung and
colorectal cancers (Supplementary Figure S11A). Forty-four KRAS mutations were detected
in 47 pancreatic cell lines. The same situation was observed for the BRAF and CTNNB1
genes. The skin tumor lines with the mutant BRAF (Supertarget) were most sensitive to
deletions of this gene. In addition, BRAF mutations were associated with the sensitivity
of thyroid cancer cell lines (Supplementary Figure S11B). The CTNNB1 gene emerged as
a factor of viability in colorectal cancer (Supertarget) and, to a lesser extent, in stomach
cell lines (Supplementary Figure S11C). More studies are required to estimate in detail the
relation of oncogenic driver mutations in Supertargets to tumor cell viability.

Intriguingly, the involvement of some Supertargets in tumor biology has been shown
earlier, although for unrelated malignancies. For example, an aberrant HERPUD1 expres-
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sion has been reported for ovarian [40] and liver [41] cancers. However, the DepMap
database demonstrated that HERPUD1 gene knockout is most crucial in MM. Likewise,
TRPM7 has been implicated in breast, pancreatic and gastric malignancies (reviewed in [78]).
Nevertheless, our analysis suggests a major role of this protein in bile duct cancer. These re-
sults expand the role of individual markers beyond the specific tumor, thereby uncovering
new mechanisms and suggesting previously neglected therapeutic opportunities.

Several new Supertargets remain poorly characterized; therefore, little is known
about their functional properties. In glioma cells, this study identified RPP25L as a novel
Supertarget. Currently, there is only one report that attributed the RPP25L gene product to
RNase P/MRP complexes involved in tRNA processing [79]. In uterine carcinoma cells,
one Supertarget was the WDR88 gene encoding a protein with six WD40 repeat domains;
however, information about its functions is lacking.

Finally, we provide initial evidence in support of the clinical relevance of Supertargets.
Although the dataset for analysis is currently limited to 12 tumor types, a subgroup
of Supertargets showed promising value in OS prognosis. However, it is premature to
indiscriminately use Supertargets as prognostic markers because of data shortage and
the complexities in interpretation. Indeed, the role of an individual Supertarget should
be considered with regard to the specific context, largely the tissue origin of the tumor.
One would expect that the patterns of gene expression significantly vary in the course
of tumor development and the response to treatment. Therefore, the differential ranking
and representation of individual Supertargets should be kept in mind as a prerequisite for
evaluating their practical usefulness.

5. Conclusions

Our comprehensive search of critically vital genes, termed Supertargets, in the panel
of tumors of various origins identified both established and yet unknown mechanisms.
Importantly, the majority of proteins encoded by Supertargets appeared to be transcrip-
tional regulators such as DNA binders and chromatin modifiers. This finding justifies
the relevance of chemical tools that target transcription factors for treatment optimization.
The development of selective instruments that combat the specific transcription regulators
would help elucidate the functional roles of the identified genes. In turn, these tools would
serve as prototypes of specific inhibitors for personalized therapies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15113042/s1, Supplementary File S1: Supertargets tables; Supple-
mentary File S2: Supplementary Figures; Supplementary File S3: GO analysis; Supplementary File S4:
DNA-binding domains of Supertargets.
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