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Simple Summary: Cutaneous melanoma is one of the deadliest forms of skin cancer. While ad-
vancements in systemic targeted therapies and immunotherapies have greatly improved melanoma
survival in recent years, tumor resistance can limit the efficacy of these therapies. Targeting redox
homeostasis in melanoma progression is a promising therapeutic approach, especially in cases of
melanoma drug resistance. The role of oxidative stress in melanoma is paradoxical in that it promotes
tumor initiation but prevents vertical growth and metastasis. As the disease progresses, melanoma
employs adaptive mechanisms to decrease oxidative stress in the tumor environment. Thus, agents
with antioxidant properties may have the greatest utility in chemoprevention whereas those with
pro-oxidant properties may be better suited for treatment. The purpose of this review is to provide
an overview of oxidative stress in melanoma, and how the antioxidant system may be manipulated
in a therapeutic context for improved efficacy and survival.

Abstract: Cutaneous melanoma ranks as the fifth most common cancer in the United States and
represents one of the deadliest forms of skin cancer. While recent advances in systemic targeted
therapies and immunotherapies have positively impacted melanoma survival, the survival rate
of stage IV melanoma remains at a meager 32%. Unfortunately, tumor resistance can impede the
effectiveness of these treatments. Oxidative stress is a pivotal player in all stages of melanoma
progression, with a somewhat paradoxical function that promotes tumor initiation but hinders
vertical growth and metastasis in later disease. As melanoma progresses, it employs adaptive
mechanisms to lessen oxidative stress in the tumor environment. Redox metabolic rewiring has been
implicated in acquired resistance to BRAF/MEK inhibitors. A promising approach to enhance the
response to therapy involves boosting intracellular ROS production using active biomolecules or
targeting enzymes that regulate oxidative stress. The complex interplay between oxidative stress,
redox homeostasis, and melanomagenesis can also be leveraged in a preventive context. The purpose
of this review is to provide an overview of oxidative stress in melanoma, and how the antioxidant
system may be manipulated in a therapeutic context for improved efficacy and survival.

Keywords: melanoma; oxidative stress; ROS; antioxidants; NRF2; thioredoxin reductase; glutathione;
superoxide dismutase; BRAF/MEK inhibitors; N-acetylcysteine (NAC)

1. Introduction

Over the past 30 years, the global incidence of cutaneous melanoma has consistently
risen, and projections by the International Agency for Research on Cancer suggest that
this trend will persist [1]. In the United States, melanoma is the fifth most common cancer
among both men and women [2]. According to the American Cancer Society, in 2023,
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an estimated 97,610 adults (58,120 men and 39,490 women) in the United States will be
diagnosed with invasive cutaneous melanoma. Worldwide, an estimated 324,635 people
were diagnosed with melanoma in 2020 [2]. While cutaneous melanoma accounts for the
majority of skin-cancer related deaths, the 5-year survival rate is quite favorable (98–99%)
when treated in its earliest stages [3,4]. In contrast, the 5-year survival rate of stage IV
melanoma is approximately 32% [3]. Due to the association between advanced disease and
unfavorable patient outcomes, early detection and effective therapeutic approaches have
been vital to improving melanoma survival in recent years [5].

Melanoma develops from the malignant transformation of melanocytes, which are
dendritic pigment-producing cells located in the basal layer of the epidermis, hair folli-
cles, inner ear, and uvea of the eye [6–8]. Cutaneous melanoma is characterized by a high
mutational burden and is frequently associated with mutations in genes that regulate cell
proliferation and survival, including BRAF, NRAS, NF1, and tumor suppressor PTEN [9–15].
These mutations lead to overactivation of the mitogen-activated protein kinase (MAPK)
pathway and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling path-
ways. Currently, the most common genetic cause of melanoma is the BRAFV600E mutation,
which is present in approximately 50% of melanomas, and contributes to increased cell
proliferation and metabolic reprogramming [10,16,17]. Other genetic alterations have been
identified in cutaneous melanoma, including mutations in cell cycle regulators like CDK4,
and tumor suppressor genes TP53 and CDKN2A [11–13,18]. These mutations contribute to
alterations in telomere maintenance, histone modification and methylation, which affect
gene expression and contribute to the development and progression of the disease.

Current therapeutic interventions for cutaneous melanoma include surgical resection,
radiation, chemotherapy, immunotherapy, and targeted therapy [19]. Surgical resection
of the tumor with wide margins is curative in early-stage melanoma localized to the
skin. Of note, surgical excision may be also be used to treat accessible solitary metastatic
lesions; in the case of several metastatic tumors, radiation therapy may be employed,
especially in lesions affecting the skin, bone, or brain [20]. Systemic therapies are typically
reserved for advanced melanoma (stage III and IV) following surgical resection. Earlier
untargeted chemotherapies (e.g., dacarbazine and temozolomide) have largely been re-
placed by more effective immunotherapy and targeted therapy agents, which exploit the
tumor microenvironment [21]. Immunotherapy drugs have revolutionized melanoma
treatment and significantly improved outcomes for patients with advanced or metastatic
disease [22–25]. This category includes immune checkpoint inhibitors like pembrolizumab
(anti-PD-1), nivolumab (anti-PD-1), ipilimumab (anti-CTLA-4), and cytokine therapies
like interleukin-2 [26]. Approved targeted therapies for melanoma, which may be used
if the cancer progresses despite initial immunotherapy treatment and in patients with
BRAF-mutations, include BRAFV600E and MEK inhibitors (e.g., vemurafenib, dabrafenib,
trametinib) [27]. Despite the variety of systemic treatment options available for metastatic
melanoma, efficacy may be limited by tumor resistance [28,29].

Targeting redox homeostasis in melanoma progression is a promising therapeutic
approach, especially in cases of melanoma drug resistance [10]. The purpose of this review
is to provide an overview of oxidative stress in melanoma, and how the antioxidant system
may be manipulated in a therapeutic context for improved efficacy and survival.

2. Oxidative Stress in Melanomagenesis

Oxidative stress refers to an imbalance between the production of reactive oxygen
species (ROS), reactive nitrogen species (RNS) and the antioxidant defense mechanisms
that neutralize them [30]. ROS are highly reactive molecules that can cause damage to
cellular macromolecules, such as lipids, proteins, and DNA, if they accumulate to excessive
levels. Endogenous sources of ROS include nicotinamide adenine dinucleotide phosphate
hydrogen (NADPH) oxidase (NOX), cyclooxygenases, lipooxygenases, and cytochrome
P450, endothelial nitric oxide synthase (eNOs) and others. Exogenous sources of ROS
include UV irradiation and inflammation [31,32]. Biomarkers for oxidative stress include
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DNA lesions in the form of 8-hydroxy-2′-deoxyguanosine (8-OHdG), end products of lipid
peroxidation, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), and derivatives
of protein oxidation, advanced oxidation protein products (AOPPs) and advanced glycation
end products (AGEs).

Under normal conditions, the antioxidant response system maintains a balance be-
tween ROS production and scavenging. The antioxidant response includes non-enzymatic
and enzymatic molecules: glutathione (GSH), which belongs to the glutathione system,
also involving glutathione reductase, glutathione peroxidase (GPX) and glutathione-s-
transferase (GST), superoxide dismutase (SOD), superoxide reductase, catalase (CAT) and
thioredoxin (TRX) [33,34]. However, under certain conditions, such as exposure to UV
radiation, environmental toxins, or inflammation, the production of ROS can overwhelm
the antioxidant defenses and lead to oxidative stress.

Oxidative stress and redox homeostasis are implicated in all phases of melanomagen-
esis as well as in the emergence of drug resistance [10,35]. The role of oxidative stress is
somewhat paradoxical: while ROS help to promote cancer survival, proliferation, tumor
vascularization and metastasis, at high levels, they can also cause DNA damage and cancer
cell death [10,35–37]. Thus, melanoma requires adaptive strategies to resist the effects of
increased ROS levels [38,39]. Various studies have investigated the antioxidant response
of melanoma cells, and show increased levels of enzymes that protect the tumor from
ROS damage [10,35,40–42]. GR is associated with oxidative stress regulation in melanoma.
Inhibition of GR suppresses lung metastasis and subcutaneous growth of melanoma, while
also impacting other cellular behaviors like proliferation, colony formation, migration,
and invasion [43]. GPX1 expression increases with melanoma progression, correlating
with heightened proliferation [44]. GPX3, on the other hand, can act as a tumor suppres-
sor gene and is typically downregulated in various tumors, including melanoma [45,46].
Low GPX3 levels are linked with higher proliferation, motility, invasiveness, and poor
prognosis [45]. GST levels decrease in metastasis derived from skin or lymph nodes
but increase with overall tumor progression. GST is directly involved in melanoma in-
vasion and the development of drug resistance, with GST π being the most expressed
isoform [47,48]. However, GSTT and GSTM isozymes are absent in a large population
portion and could influence melanoma development by decreasing oxidative stress [49].
The role of SOD2 in melanoma is controversial, with some studies linking lower levels to
metastasis [50]. High SOD2 expression can suppress melanoma’s malignant phenotype
in vitro, but serum SOD2 levels may increase in melanoma patients and correlate with
disease progression [51]. Alterations in SOD expression also relate to therapy resistance.
SOD1 is involved in melanogenesis and/or differentiation, while SOD3 overexpression
inhibits the growth of specific melanoma cells [36,52]. In melanoma, there appears to be
a redox imbalance characterized by decreased catalase activity and increased SOD activ-
ity [53]. Catalase activity may increase in stages I, II, and III, but not in stage IV, suggesting
a protective role against metastasis [54]. Mutations in the CAT gene were found in 10% of
the melanoma patients, mostly leading to increased mRNA expression, but these mutations
had no significant impact on survival [34]. Transcriptional factors like Ap-1 and NF-kB and
activation of the MAPK pathway and S-phase kinase-associated protein 2/Skp2/MTH1
axis have been implicated in protecting melanomas from ROS damage [55,56]. Overex-
pression of ecto-enzyme gamma-glutamyltransferase (GGT) and CD 147, a cell surface
receptor for cyclophilin A, have also been shown to be involved in melanoma’s resistance
to oxidative stress [57–59]. The aldehyde dehydrogenases convert toxic aldehydes into
non-toxic carboxylic acids. Upregulation of ALDH1 isozymes have been reported in several
malignancies. ALDH1A1 has been implicated in tumorigenicity, invasion, and resistance to
chemotherapy, in various types of cancer, including melanoma [60]. Whereas ALDH1B1 has
also been demonstrated to be upregulated in several cancers, acting as an oncogene, but its
role in melanoma has not been determined [61,62]. Conversely, ALDH2 expression has been
shown to be downregulated in melanoma, leading to acetylaldehyde accumulation, which
results in poorer prognosis [63,64]. Zhai et al. analyzed gene profiling datasets GSE15605,
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GSE7553, and GSE46517, to compare the gene expression levels of ALHD1A1, ALDH1B1,
and ALDH2 in normal human skin versus metastatic melanoma [65]. They found that
ALDH2 expression was significantly downregulated in 3 Gene Expression Omnibus (GEO)
melanoma datasets. Interestingly, while oxidative stress increases in metastasizing cells, it
limits their ability to invade and metastasize [66]. The low GSH-to- glutathione disulfide
(GSSG) ratio seen in metastatic melanoma suggests that metastatic cells attempt to maintain
redox homeostasis by consuming GSH. Isocitrate dehydrogenase (IDH2) is one of the key
enzymes in melanoma’s antioxidant system, and downregulation of IDH2 has been shown
to inhibit tumor growth [67]. Additionally, Nuclear factor erythroid-2-related factor (NRF2),
which is one of the most essential proteins involved in regulating the antioxidant response,
modulates the expression of antioxidant enzymes HO-1 (heme oxygenase-1), SOD, CAT,
and GPX, and can have both an onco-promoter and onco-suppressor function depending on
the context [10,68,69]. Normal expression of NRF2 has a cytoprotective role against initial
melanomagenesis, and NRF2 depletion and ROS accumulation is associated with cancer
initiation. However, aberrant overexpression of NRF2 increases antioxidant responses and
changes the cellular redox state, aiding in melanoma cell survival, growth, and metasta-
sis [70]. According to a recent study by Davalos et al., Nuclear Receptor Subfamily 2 Group
F, Member 2—isoform 2 (NRF2F2-Iso2) promotes the progression of metastatic melanoma
by influencing the activity of full-length NR2F2 on neural crest cell (NCC) and epithelial-to-
mesenchymal transition (EMT) target genes [71]. Importantly, NRF2 may promote invasion
and migration by upregulating HO-1 [72]. NRF2 has also been shown to upregulate P62,
another driving force in tumor growth and metastasis [73,74]. NRF2 and P62 are linked
through a positive feedback loop: NRF2 directly promotes P62, and interactions between
P62 and Keap1 (Kelch-like ECH-associated protein 1) prevent Keap1 from inhibiting NRF2.
Because constant NRF2 activation promotes tumor development and metastasis, it is thus
considered a negative prognostic factor and associated with worsened melanoma-specific
survival [68,75,76]. A positive correlation has been demonstrated between NRF2 expres-
sion, Clark level, Breslow index and nodular development [69]. Whereas expression of
Calpain-3, an intracellular cysteine protease that increases formation of ROS, is down-
regulated in the vertical growth phase and metastasis [77]. Metallothioneins (MTs) are a
family of small, cysteine-rich proteins that are involved in metal homeostasis and detoxi-
fication [78,79]. In melanoma, MTs are upregulated in response to oxidative stress. They
are capable of binding and sequestering metal ions, such as zinc and copper, which are
essential for the catalytic activity of ROS-producing enzymes like NADPH oxidase [79,80].
Furthermore, MTs possess antioxidant properties themselves, as they can scavenge ROS
directly, protecting melanoma cells from oxidative damage induced by ROS [79]. Heat
Shock Protein 27 (HSP27) functions as a molecular chaperone and assists in protein folding,
preventing the aggregation and denaturation of proteins under stressful conditions [81,82].
Additionally, HSP27 can interact with other proteins involved in apoptosis pathways, such
as caspases, and inhibit their activation [82,83]. Of note, the antioxidant system response
has also been implicated in disease resistance to targeted therapy [59,84].

It should be recognized that the mechanism and impact of melanin on oxidative
stress in the context of melanomagenesis has not been fully elucidated. While the pro-
duction of melanin can result in oxidative stress, once formed, the melanin pigment has
unpaired electrons and can interact with free radicals and other reactive species as an
antioxidant [85,86]. However, as Slominski et al. points out, this is a double-edged sword:
shielding healthy melanocytes from oxidative stress but potentially accelerating disease
and limiting the response to therapies that induce oxidative stress [7]. One study demon-
strated that induction of melanogenesis in amelanotic human and hamster melanoma cells
resulted in significant transformations in the cells’ metabolic condition and performance,
both biochemically and molecularly [87]. These shifts were paired with a notable surge
in hypoxia inducible factor (HIF-1α) expression in the nuclear components derived from
pigmented cells. Thus, it can be inferred that pigmented melanomas may be more resistant
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to therapies that induce oxidative stress compared to amelanotic melanomas. However, it’s
important to note that the response to oxidative stress is influenced by a number of factors.

3. Preventive and Therapeutic Strategies That Target Oxidative Stress Pathways

Burgeoning preventive and therapeutic approaches to melanoma exploit the complex
interplay between oxidative stress, redox homeostasis, and melanomagenesis. Given the
role of ROS in tumor initiation and progression, antioxidants are an interesting potential
option for melanoma prevention and treatment. However, later in pathogenesis, melanoma
tumors develop antioxidant mechanisms, but ROS levels are still higher compared to nor-
mal cells [34,88]. Therefore, further induction of oxidative stress may result in preferential
demise of malignant cells. In other words, both antioxidants and pro-oxidants may have
utility in the context of melanoma interventions (Figure 1). The till date usage of various
small molecules, bioactive compounds and phytochemicals (e.g., polyphenols) with anti-
oxidant properties in melanoma prevention and inhibition of disease progression has been
described in the following sub-sections.
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Figure 1. Oxidative Stress and Therapeutic Targets in Melanoma. Oxidative stress refers to an
imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) and the antioxidant defense mechanisms that neutralize them [30]. Exogenous sources of
ROS include UV irradiation and inflammation [31,32]. Endogenous sources of ROS include nicoti-
namide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX), cyclooxygenases,
lipooxygenases, cytochrome P450, endothelial nitric oxide synthase (eNOs), and others. Oxidative
stress and redox homeostasis are implicated in all phases of melanomagenesis [10,35]. The role
of oxidative stress is somewhat paradoxical: while ROS help to promote cancer survival, prolif-
eration, tumor vascularization, and metastasis, at high levels, they can also cause DNA damage
and cancer cell death [10,35–37]. Thus, melanoma requires adaptive strategies to resist the effects
of increased ROS levels [38,39]. N-acetylcysteine, selenium, alpha-tocopherol, SOD mimetics, and
flavonoids have antioxidant properties that may be chemo-preventive in utility [89–95]. How-
ever, studies have shown that antioxidants such as n-acetylcysteine, selenium, carotenoids, and
alpha-tocopherol can promote growth and metastasis in later diseases by bolstering the tumor’s an-
tioxidant system adaptations [91,96,97]. Paraoxonase-2 inhibition, buthionine sulfoximine, disulfiram,
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photodynamic therapy, curcumin, resveratrol, flavonoids, and quassinoids inhibit tumor antioxidant
system adaptations through various mechanisms, leading to increased oxidative stress and cancer
cell death [35,98–116]. Abbreviations: UVR—ultraviolet radiation; ROS—reactive oxygen species;
MAPK—mitogen-activated protein kinase; NF-kB—nuclear factor kappa B; Skp2—S-phase kinase
associated protein 2; MTH1—MutT homolog 1; NRF2—nuclear factor erythroid 2-related factor 2;
GSH—glutathione; CAT—catalase; SOD—superoxide dismutase; IDH2—isocitrate dehydrogenase 2;
TRXR—thioredoxin reductase; MTs—metallothioneins; HSP27—Heat Shock Protein 27. Created
with BioRender.com.

3.1. N-Acetylcysteine

N-acetylcysteine (NAC) is an affordable, highly potent, orally bioavailable, and cell-
permeable antioxidant [89]. One murine study reported that pre-treatment with NAC
reduced thiol depletion and blocked formation of 8-oxoguanine in mouse skin following
neonatal UV treatment, and significantly delayed mean onset of UV-induced melanocytic
tumors [90]. A 2009 study in 72 individuals with a history of numerous or atypical nevi
and/or personal or family history of melanoma, concluded that NAC can be safely ad-
ministered to patients to modulate UV-induced oxidative stress in nevi, suggesting that
NAC may be a potential chemo-preventive agent in melanoma [89]. Ultraviolet radiation-
induced glutathione depletion was attenuated in the post-drug (compared with pre-drug)
nevus in approximately half of patients tested. While the above results seem promising,
later studies reported that incubating human melanoma cells with NAC increased cell
migration and cell division, and NAC-supplemented drinking water accelerated metastasis
in murine models of malignant melanoma [66,117]. A 2022 study in a murine melanoma
model reported a potential mechanism for this, demonstrating that high doses of NAC
can cause metastatic spread of malignant melanoma, increase the generation of ROS, and
increase the nuclear translocation of NRF2 [96]. Altogether, the above results suggest
that NAC is the quintessential example of the paradoxical nature of the oxidative stress
pathways involved in melanomagenesis and should be used with caution.

3.2. Selenium

Selenium is an essential micronutrient that was first studied in the context of cancer
prevention nearly three decades ago [118,119]. The role of selenium supplementation
in melanoma prevention and treatment is controversial and its efficacy is dependent on
several factors. Cassidy et al. used a combination of in vitro and in vivo models to examine
the utility of two unique chemical forms of selenium in these contexts. The results were
mixed with topical treatment with l-selenomethionine delaying the time required for UV-
induced melanoma development, but increasing the rate of growth of those tumors once
they appear [91]. Whereas oral administration of high dose methylseleninic acid signifi-
cantly decreased the size of human melanoma xenografts. They also found that a modest
elevation of selenium levels in the skin may accelerate the growth of developing tumors.
Additionally, a systematic review and meta-analysis of nine studies, including, randomized
controlled trials and prospective observations studies, showed that the consumption of
selenium, vitamin C, E (tocopherol), and A (retinol), carotenoids and selenium, as food,
supplements, or both, or high fruit and vegetable intake did not affect the incidence of
cutaneous melanoma [120].

3.3. Carotenoids

Carotenoids are natural pigments found in various fruits and vegetables that have
antioxidant properties [121]. They include β-carotene, lycopene, lutein, and zeaxan-
thin, among others. Several clinical studies have investigated the relationship between
carotenoid intake and melanoma risk. These studies have primarily focused on dietary
intake rather than using carotenoids as direct treatments for melanoma. The Vitamins and
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Lifestyle (VITAL) study, a large prospective cohort of 69,635 participants found that dietary
or total intake of carotenoids was not associated with melanoma risk [122]. The VITAL study
was unable to detect an association of melanoma risk with regard to lutein and lycopene
supplements as the cohort was underpowered for these carotenoids. The Women’s Healthy
Study, a randomized, double-blind placebo-controlled trial, also reported that β-carotene
intake had no impact on melanoma risk, with a relative risk of 0.90 (95% CI 0.49–1.68) [123].
A meta-analysis of randomized controlled trials found that β-carotene supplementation
did not affect the incidence of melanoma (RR, 098; 95% CI, 0.65–1.46) [124]. As noted
above, in Miura and Green’s meta-analysis, consumption of carotenoids as food, supple-
ments, or both did not affect the incidence of cutaneous melanoma [120] However, a recent
murine study found that β-carotene accelerated metastasis in mice with BRAFv600E-driven
melanoma [97]. They also reported that the transcription factor BACH1 is activated fol-
lowing antioxidant administration, and silencing of Bach1 in murine melanoma models
resulted in reduced metastasis.

3.4. Alpha-Tocopherol

With its capacity to neutralize free radicals and hinder lipid peroxidation, Vitamin
E (alpha-tocopherol) demonstrates potent antioxidant properties [125]. However, Miura
and Green’s meta-analysis reported that the consumption of vitamin E as food, supple-
ments, or both did not affect the incidence of cutaneous melanoma [120]. Whereas the
SU.VI.MAX trial, a randomized, placebo-controlled investigation into the impact of an-
tioxidant vitamins and minerals on health, reported that women consuming antioxidant
supplements, including dietary supplementation with vitamin E, were at an increased risk
for developing melanoma [126] One in-vivo study showed that pretreatment with topical
vitamin E and NAC 24 h prior to UV exposure significantly decreased the expression of ma-
trix metalloprotease-12 in UV-irradiated skin, suggesting a potential protective effect [93].
However, Kashif et al. found that the vitamin E analogue, Trolox, reduced ROS levels and
increased migration of melanoma cells [97]. Thus, alpha-tocopherol may have value in
a preventive context when applied topically but likely has a negative effect in the active
disease state.

3.5. Superoxide Dismutase Mimetics

Superoxide dismutase mimetics are a class of compounds designed to replicate the
activity of the natural SOD enzymes, and studies have demonstrated their potential in
melanoma prevention and adjunct therapy. One study demonstrated that an exogenous
manganese superoxide dismutase isolated from Allium sativum, a medicinal plant, was
capable of modulating intracellular reactive oxygen species levels and inhibiting cell multi-
plication in tumor cells [94]. A noted decrease in SOD levels during early stages of cancer
development implies its potential for preventive measures. While lacking widespread
clinical trials and pharmaceutical industry support, SOD liposomes and mimetics have
been effective in animal models and early-phase clinical trials [127]. Another therapeutic
strategy utilizes GC4419, a selective SOD mimetic in combination with pharmacological
ascorbate to enhance the effects of radiation [128]. Lastly, small molecule SOD mimetics
have been shown to minimize radiation and chemotherapy-induced normal tissue injury,
indicating a further area where SOD might enhance patient outcomes in melanoma ther-
apy [129]. Overall, the role of SOD and its mimetics in influencing intracellular reactive
oxygen species, preventing cell multiplication, and mitigating the harmful effects of cancer
therapies shows promising avenues for melanoma prevention and treatment.

3.6. Taurine

The antitumor and cytoprotective effects of taurine are linked to its ability to enhance
antioxidant capacity, boost immunity, synergize with chemotherapeutic agents, and reduce
chemotoxicity [130,131]. In B16F10 murine melanoma cells, taurine has been shown to
increase the activity of SOD and GPX, leading to a decrease in ROS levels and inhibition
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of tumor cell growth [95]. Monocarboxylate transporter 7 (MCT7)/Slc16a6, a novel fa-
cilitative taurine transporter, has been identified as a survival factor in melanoma [132].
MCT7 is highly expressed in melanoma cells, and two independent single-nucleotide
polymorphisms (SNPs), PDSS1 rs12254548 G>C and SLC16A6 rs71387392 G>A, with al-
lelic hazard ratios of 0.58 (95% confidence interval [CI] = 0.44–0.76, p = 9.00 × 10−5) and
1.98 (95% CI = 1.34–2.94, p = 6.30 × 10−4), respectively, have been linked to cutaneous
melanoma survival [133]. Thus, taurine supplementation or targeting its transporters may
have therapeutic potential in melanoma treatment.

3.7. Paraoxonase-2 Inhibitors

Another promising therapeutical target in melanoma is the intracellular enzyme,
paraoxonase-2 (PON2) [35]. PON2 exerts antioxidative properties within the mitochon-
drial respiratory chain by binding with high affinity to coenzyme Q10 within the inner
membrane, leading to a reduction of superoxide anion release during the electron transport
chain [98,134,135]. Interestingly, expression of PON2 has been shown to be positively corre-
lated with Breslow thickness, Clark level, regression, mitoses, lymph node metastases, and
thus, overall staging [136]. Because of this, Bachetti et al. assert that PON2 may have utility
as a biomarker of tumor aggressiveness in melanoma. Additionally, silencing of the gene
responsible for the enzyme in human A375 melanoma cells bearing BRAFV600E mutation
has been shown to improve chemosensitivity to cisplatin; thus, paraoxonase-2 inhibitors
may be of therapeutic value [98].

3.8. Buthionine Sulfoximine

Buthionine sulfoximine (BSO) also acts to increase chemosensitivity. There is a growing
body of evidence to suggest that depleting antioxidant defenses, particularly GSH levels,
which are implicated in chemoresistance to alkylating agents, may prove to be a viable
strategy in treatment resistant melanoma [99]. Recent reports have shown encouraging
results from combining chemotherapy with buthionine sulfoximine (BSO), a sulfoximine
derivative that reduces GSH levels by inhibiting gamma-glutamylcysteine synthetase, the
enzyme responsible for the initial step of glutathione synthesis. BSO was found to enhance
melphalan cytotoxicity by 2.46-fold in SK-MEL 28 melanoma cells [99].

3.9. Disulfiram

Disulfiram, an FDA-approved drug for the treatment of alcoholism, is a potent in-
hibitor of copper-zinc superoxide dismutase. Several mechanisms of its antitumor activity
have been suggested, including induction of reactive oxygen species and death signaling
pathways [137]. When complexed with copper ions, the metabolite of disulfiram, diethyl
dithiocarbamate (DDTC) has also been shown to inhibit the ubiquitin-proteasome sys-
tem [137–139]. It is hypothesized that the antitumor activity may be closely related to lipid
peroxidation accumulation and ferroptosis mediated by the SLC7A11/GPX4 signaling
pathway [139]. Disulfiram has been shown to improve the chemosensitivity of melanoma
cells to oxaliplatin treatment, according to several studies [100–102]. Another study on
the cytotoxic activity of the combination of curcumin with disulfiram in murine B16-F10
melanoma cells showed that a combination of curcumin and disulfiram displayed syner-
gistic tumor growth inhibition [103]. Although these results are promising, the Cu-DDTC
complex, which is responsible for some of disulfiram’s anti-tumor activity is quite unsta-
ble [139]. Thus, this prompted Li et al. To create a nanomedicine that employs copper
benzene-1,3,5-tricarboxylate (Cu-BTC), a metal organic framework (MOF) to carry DTC.
The combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor
effect and a promising safety profile [139].

3.10. Photodynamic Therapy

Photodynamic therapy (PDT) is a treatment modality that uses a photosensitizer
and light of a specific wavelength to generate ROS, such as singlet oxygen, to induce
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cell death [116,140]. It has been investigated for use in various types of cancer, including
melanoma. Studies have incorporated ruthenium complexes and nanoparticles to enhance
the efficacy of PDT and minimize side effects [140–142]. One study reported that homoli-
gand polypyridyl ruthenium complexes (HPRCs) exhibited increased reactive oxygen
species (ROS) generation and decreased dark cytotoxicity, mitigating damage to healthy
tissue and demonstrating potential as effective antitumor PDT agents [140]. Concurrently,
a systematic review of combined and multidrug therapies based on PDT and photothermal
therapy (PTT) showed synergistic effects, particularly in preclinical murine models [116].
Additionally, the utilization of TiO2 nanoparticles combined with specific photosensitizers,
such as 5,10,15,20-(Tetra-N-methyl-4-pyridyl)porphyrin tetratosylate (TMPyP4), showed
promising results, demonstrating improved cell penetration, ROS production, and cancer
selectivity, particularly when activated by blue light [141]. Moreover, Ag-doped TiO2
nanoparticles used in simulated-daylight photodynamic therapy (SD-PDT) showcased
potential in overcoming limitations of conventional PDT, such as severe pain and erythema,
by enhancing the daylight response and anti-tumor therapeutic effects [142]. These de-
velopments in melanoma treatment indicate a promising future for PDT and PTT-based
therapies, especially with the strategic use of nanoparticles and photosensitizers.

3.11. Curcumin

Curcumin, a relative of turmeric, is a polyphenolic phytochemical that stimulates
reactive oxygen species production and has been shown to induce cell death in eight
melanoma cell lines [103,104]. Curcumin induces apoptosis in human melanoma cells
through a Fas receptor/caspase-8 pathway independent of p53 and is hypothesized to
act through a membrane-mediate mechanism [104] Curcumin has also been shown to
block the NF-kappaB cell survival pathway and suppress the apoptotic inhibitor, x-linked
inhibitor of apoptosis protein (XIAP). Kocyigit et al. were the first to highlight that ROS
may be important in curcumin’s ability to cause DNA damage, cell death, and apoptosis.
To test this, they studied the effects of curcumin on murine melanoma cancer cells (B16-F10)
and fibroblastic normal cells (L-929) [105]. They found that curcumin caused more DNA
damage and apoptosis in melanoma cells than normal cells and also reduced cell viability
and mitochondria membrane potential. These effects were linked to the production of ROS,
which increased with higher doses of curcumin. One study in human melanoma (A375)
cells, showed that curcumin caused oxidative stress by inducing the ROS burst, decreas-
ing GSH, and destroying mitochondria membrane potential (MMP) [143]. Furthermore,
apoptosis was induced through ROS-dependent HIF-1α and its downstream proteins [143].
Additionally, curcumin has photoactive properties, and curcumin-based photodynamic
therapy has been shown to be effective in reducing the viability of both melanotic (A375)
and amelanotic melanoma (C32) cell lines [144]. In Szlasa et al.’s study, photodynamic
therapy with curcumin increased the number of apoptotic and necrotic cells compared to
incubation with curcumin without irradiation. Although effective, it should be noted that
this intervention was not selective towards melanoma cells.

3.12. Resveratrol

Resveratrol is an anticancer phytochemical polyphenol that naturally occurs in red
grapes [145]. Resveratrol has been shown to downregulate and inactivate Akt/protein
kinase B in murine B16F10 and B16BL6 melanoma cells (derived from the former), inhibiting
migratory and invasive properties of the malignant cells [106]. Resveratrol also inhibits cell
viability and α-MSH-activated matrix metalloproteinase- (MMP-)9 expression and invasion
capacity of B16 melanoma cells [107]. Resveratrol has also been shown to decrease NRF2
expression in melanoma cells, inducing increased production of ROS and inhibiting growth
and proliferation by downregulating the Bcl-2 protein level and upregulating Bcl-2-related
X protein expression [108].

Oral, topical, and intraperitoneal resveratrol have all been shown to be effective in
melanoma. Oral dosing of resveratrol has been associated with reduced primary tumor
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volume, Akt expression, and the propensity for metastasis in syngeneic mouse models of
melanoma [106]. One investigation evaluating resveratrol-loaded solid-lipid microparticu-
late topical gel in vitro, showed sustained release profiles, antioxidant properties, tyrosinase
inhibition, cytotoxicity, and effective apoptosis in B16F10 melanoma cells [146]. The in-
vivo portion of the study in C57BL mice exhibited significant tumor reduction. Another
study investigated intraperitoneal injection of resveratrol in immunocompetent mice as
a potential therapeutic agent for metastatic melanoma [147]. They found that in vitro
growth and proliferation of melanoma cell lines (B16F10, B6, and A375) was significantly
suppressed by a dose of 40 µM resveratrol for 72 h. In the mice, in-vivo intraperitoneal
injection of 40 mg/kg resveratrol increased mean survival rate and inhibited metastatic
lung tumor growth. The lung tumors showed elevated levels of CXCL10 and IFN-γ as well
as a reduction in angiogenesis and tumor infiltration by Tregs.

3.13. Flavonoids

Flavonoids are polyphenol compounds found in various vegetables, fruits, and other
plants [92]. They are well-known for their strong antioxidant properties. Apigenin, dios-
min, fisetin, leteolin, quercetin, myricetin, and naringenin are among the commonly stud-
ied flavonoids for melanoma treatment [148]. In addition to reducing ROS production,
flavonoids have been shown to modulate cell growth, induce apoptosis, and repair DNA.
They have also been shown to shrink cancerous tumors and prevent metastasis, and pos-
sibly contribute to lower skin cancer mortality rates. The selenocysteine (Sec)-containing
mammalian thioredoxin reductase (TRXR) has evolved as a new target for anticancer drug
development because TRXR and TRX are overexpressed in many aggressive tumors and the
tumor cells are more dependent on the TRX system than normal cells [109,149]. One study
suggests that quercetin and myricetin inhibit thioredoxin reductase (TRXR), which is impli-
cated in cellular redox control, halts cell proliferation, and induces apoptosis [109]. Another
flavonoid, Naringenin has been shown to block endolysosomal/melanosomal two pore
channel 2 (TPC2), thus increasing melanin production while simultaneously reducing MITF
(melanocyte inducing transcription factor)-driven melanoma proliferation, migration, and
invasion in B16F10 murine melanoma cells [110,111]. Luteolin, has been shown to act
as an NRF2 inhibitor in mouse melanoma cells, inhibiting GST and depleting GSH [112].
While flavonoids show promising mechanisms of action in the treatment of melanoma,
it should be noted that murine melanoma cells tend to respond better to treatment with
flavonoids compared to human melanoma cells, and thus, mouse studies cannot be directly
extrapolated to humans [150].

3.14. Quassinoids

Similarly, to Flavonoids and Resveratrol, Quassinoids have been shown to downreg-
ulate NRF2. Ailanthone, an extract derived from the tree Ailanthus altissima, has shown
anti-tumor activity by downregulating NRF2 and inducing oxidative stress [113–115]. Ad-
ditionally, low-dose UVA irradiation can act synergistically with brusatol, a Brucea javanica
plant-derived NRF2 inhibitor, demonstrated increased intracellular ROS, inhibition of
melanoma cell proliferation, and induction of cell apoptosis both in vitro and in vivo [151].

4. Conclusions

The role of oxidative stress in melanoma is paradoxical in that it promotes tumor
initiation but prevents vertical growth and metastasis. As the disease progresses, melanoma
employs adaptive mechanisms to decrease oxidative stress in the tumor environment. Thus,
agents with antioxidant properties may have the greatest utility in chemoprevention,
whereas those with pro-oxidant properties may be better suited for treatment (Table 1).
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Table 1. Potential preventive and therapeutic agents with antioxidant and pro-oxidant properties
and their proposed mechanisms of action.

Intervention Proposed Mechanism(s) of Action

N-acetylcysteine

• Antioxidant properties→ potential chemo-preventive
agent [89,90]

• High doses may increase the nuclear translocation of NRF2→
promote metastasis [96]

Selenium • Antioxidant properties→ potential chemo-preventive agent [91]
• May increase tumor growth once disease is present [91]

Carotenoids • Antioxidant properties→ no clear preventive benefit [120–124]
• May accelerate metastasis [97]

Alpha-tocopherol

• Antioxidant properties→ unclear benefit when taken
systemically, but may be chemo-preventive when applied
topically [93,120,125,126]

• May increase migration of melanoma cells and promote
metastasis [97]

SOD mimetics
• Mimics the activity of SOD enzymes→ potential

chemo-preventive agent [94]
• May be useful as adjunct therapy to radiation [128,129]

Taurine • ↑ SOD and GPX activity→ ↓ ROS [95]

Paraoxonase-2
inhibitors

• PON2 exerts antioxidative properties within the mitochondrial
respiratory chain→ blockade increases oxidative stress [98]

Buthioninesulfoximine • Inhibits gamma-glutamylcysteine synthetase→ reduces GSH
levels [99]

Disulfiram

• SOD inhibitor [100–102]
• Inhibits ubiquitin-proteasome system [137–139]
• Induces ferroptosis mediated by the SLC7A11/GPX4 signaling

pathway [139]

Photodynamic therapy
• Combines a photosensitizer and light of a specific wavelength to

generate ROS, such as singlet oxygen→ induces cell
death [116,140]

Curcumin

• Induces apoptosis through a Fas receptor/caspase-8 pathway and
ROS-dependent HIF-1α and its downstream proteins [104,143]

• Inhibits the NF-kappaB cell survival pathway [104]
• Induces the ROS burst, decreases GSH, and destroys

mitochondria membrane potential [143]

Resveratrol

• Downregulation of Akt/protein kinase B→ inhibits migratory
and invasive properties of the malignant cells [106]

• Inhibits cell viability and α-MSH-activated MMP-9 expression
and invasion [107]

• Downregulates NRF2 expression [108]
• Increases CXCL10, IFN-γ, and tumor infiltration by Tregs and

reduces angiogenesis→ inhibition of metastasis [147]

Flavanoids

• Antioxidant properties→ chemo-preventive [92]
• Quercetin and myricetin: inhibition of TRXR→ induces

apoptosis [109]
• Naringenin: inhibition of TPC2→ increases melanin production

and reduces MITF-driven proliferation, migration, and
invasion [110,111]

• Luteolin: inhibits NRF2→ induces oxidative stress [112]

Quassinoids • NRF2 downregulation→ induces oxidative stress [113–115,151]
NRF2, nuclear factor erythroid 2-related factor 2; SOD, superoxide dismutase; PON-2, paraoxonase -2; GSH,
glutathione; HIF-1α, hypoxia inducible factor 1 subunit alpha; NF-kB, nuclear factor kappa B; ROS, reactive oxygen
species; α-MSH, alpha-melanocyte stimulating hormone; MMP-9, metalloprotenaise-9; CXCL10, chemokine
ligand-10; IFN-γ, interferon gamma; Treg, T-regulatory cells; TRXR, thioredoxin reductase; TPC2, two pore
channel 2; MITF, melanocyte inducing transcription factor.
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A promising approach to improving the response of melanoma patients to therapy
may involve boosting intracellular ROS production through the use of active biomolecules
or by targeting enzymes responsible for managing oxidative stress. Acquired resistance to
BRAF/MEK inhibitors can lead to disease relapse, and is thought to at least be in part due
to redox metabolic rewiring [14]. Thus, treatment modalities that affect the oxidative stress
pathways may prove especially beneficial in drug-resistant melanomas.

Future investigations should aim to identify and develop novel therapies that can
effectively manage oxidative stress in melanoma and further elucidate mechanisms of
action of known therapeutic candidates. Combining targeted “oxidative stress pathway
therapies” with other treatment modalities such as chemotherapy or immunotherapy, may
enhance the response to treatment and provide another option for aggressive or resistant
disease. With the standard of personalized medicine on the horizon, identification of
reliable predictive biomarkers and tumor characteristics of patients who respond well
to antioxidant and/or pro-oxidant-based modalities may be of value. However, clinical
studies are first required to ensure efficacy and mitigation of harmful side effects, if any, of
antioxidants and pro-oxidants in melanoma therapy.
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