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Simple Summary: Gastric cancer is a leading cause of cancer-related death worldwide. Despite
developments in the clinical management of this disease, currently, only 31% of patients with gastric
cancer are expected to survive 5-years. However, not all patients follow the same course of the
disease, and it is important to identify those individuals with potentially favorable or unfavorable
outcomes to better define treatment options. For this purpose, we analyzed transcriptomic data from
gastric tumors and identified 20 genes by which disease outcomes could be predicted. Unsupervised
clustering of tumors based on the expression of these genes generated two major subgroups in a
large number of cohorts. We show that patients with a poor prognosis have tumors with a more
mesenchymal profile and a higher stromal content in both in silico and ex vivo experiments. We
believe these findings will help shape the clinical management of gastric cancer.

Abstract: Background: Molecular biomarkers that predict disease progression can help identify
tumor subtypes and shape treatment plans. In this study, we aimed to identify robust biomarkers
of prognosis in gastric cancer based on transcriptomic data obtained from primary gastric tumors.
Methods: Microarray, RNA sequencing, and single-cell RNA sequencing-based gene expression data
from gastric tumors were obtained from public databases. Freshly frozen gastric tumors (n = 42) and
matched FFPE (formalin-fixed, paraffin-embedded) (n = 40) tissues from a Turkish gastric cancer
cohort were used for quantitative real-time PCR and immunohistochemistry-based assessments of
gene expression, respectively. Results: A novel list of 20 prognostic genes was identified and used for
the classification of gastric tumors into two major tumor subgroups with differential stromal gene
expression (“Stromal-UP” (SU) and “Stromal-DOWN” (SD)). The SU group had a more mesenchymal
profile with an enrichment of extracellular matrix-related gene sets and a poor prognosis compared
to the SD group. Expression of the genes within the signature correlated with the expression of
mesenchymal markers ex vivo. A higher stromal content in FFPE tissues was associated with shorter
overall survival. Conclusions: A stroma-rich, mesenchymal subgroup among gastric tumors identifies
an unfavorable clinical outcome in all cohorts tested.
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1. Introduction

Gastric cancer (GC) is the fifth cancer type with the highest incidence and the fourth
most common cause of cancer-related death globally [1]. Although a variety of treatment
options are available, the 5-year survival rate of gastric cancer patients in the United
States is currently only 31% [2,3]. Surgical resection is considered curative; however,
the majority of patients are diagnosed at later stages of the disease when the cancer has
invaded other tissues, which hampers the opportunity for curative resection and results in a
poor prognosis [4].

GC is a highly heterogeneous disease, so the discovery of prognostic and molecular
subgroups among gastric tumors has been of interest, as even some of the most commonly
used predictors, such as TNM staging, are constantly being revised; an example is the
correct staging of N stage, which can be biased based on the number of harvested lymph
nodes (eighth edition AJCC staging) [5]. Intestinal type and diffuse type GCs constitute
two major histological classes, according to the Lauren classification. In 2019, WHO (World
Health Organization) defined major histological subtypes of GC, which are papillary,
tubular, mucinous, poorly cohesive, and mixed adenocarcinomas [6]. In parallel to the
increase in the numbers of gastric tumors that are molecularly characterized at multi-omic
levels, new studies in the literature reveal tumor subgroups that are biologically and/or
prognostically distinct. For example, one such factor recently identified is the percentage
of signet ring cells (SRC) in mixed-type GCs [7] and in poorly cohesive GCs [8]; in both
cases, a percentage of SRCs above 10% have been associated with a better prognosis. In
2014, The Cancer Genome Atlas project defined a classification of gastric tumors into
four subtypes: EBV (Epstein-Barr virus) positive, microsatellite unstable, genomically
stable, and tumors with chromosomal instability; however, these subgroups did not show
significant differences in terms of prognosis [9]. Although several prognostic biomarkers
have been identified in gastric cancer, only conventional markers (CA19-9, CEA) and HER2
are currently used in clinical practice [10]. Various studies showed that increased CEA
is a marker of poor prognosis in GC, although its independence from other confounding
factors was found to be inconsistent in different cohorts [11–13]. Similarly, although
elevated CA19-9 was associated with peritoneal metastases, stage, tumor depth, and nodal
involvement [14], its sensitivity for prediction of recurrence is currently only 56% with a
specificity of 74% [15]. Therefore, markers that can predict patient prognosis and molecular
subtypes, which in turn may help develop better treatment options, are very much needed.

A comprehensive evaluation of gene expression-based tests by AHRQ (the Agency
for Healthcare Research and Quality) concluded that most of the prognostic/diagnostic
tests available in the literature lack multivariate analysis (MVA) and thus analysis of
independence from confounding factors [16]. Therefore, the practical value of these tests is
unclear. In addition, AHRQ strongly recommends that prognostic tests be performed with
multiple end-point measures of survival, such as overall survival, disease-free survival,
cancer-specific survival, etc., and evaluated in multiple cohorts to avoid the identification
of cohort-specific biomarkers. [16] Therefore, in this study, we aimed to identify prognostic
biomarkers in GC that are independent of confounding factors when various end-point
measures are utilized and are robust in multiple cohorts. Utilizing publicly available
transcriptomic datasets, we obtained a list of 20 genes that consistently generated two major
subgroups of tumors upon hierarchical clustering in multiple datasets with clearly distinct
prognoses. Our data showed that this gene list could stratify both diffuse and intestinal-
type tumors, was independent of clinical confounding factors, and was associated with
both overall and disease-free survival. Further analysis showed that tumors from patients
with poor prognosis had a dramatically higher stromal content, a more mesenchymal
phenotype, and an enrichment of extracellular matrix-related gene sets.
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2. Materials and Methods
2.1. Patient Characteristics and Clinical Samples

Forty-two patients above age 18 who were diagnosed with gastric cancer between
2008 and 2010 at Ankara Yuksek Ihtisas Hospital were included in the study. The NCCN
(National Comprehensive Cancer Network) Gastric Cancer Clinical Practice Guideline was
followed to perform surgery and lymphadenectomy in enrolled patients [17]. None of the
patients received neoadjuvant therapy. Freshly frozen primary tumors (surgical specimens)
were preserved at −80 ◦C. Forty of these patients with available paraffin blocks were
included in immunohistochemistry. Clinicopathological data included overall survival
(OS) time, follow-up status, age, gender, TNM stage, differentiation, perineural invasion,
and lymphovascular invasion (Supplementary Table S1). Follow-up times ranged from 1 to
149 months. OS was calculated as the time from operation to death. Median survival was
15 months.

2.2. q-RT PCR

Primers for 5 prognostic genes (ACTA2, CALD1, HEYL, TAGLN, and TPM2),
2 reference genes (GAPDH, B2M), and epithelial and mesenchymal markers (CDH1, VIM)
were designed using Primer-Blast (Supplementary Table S2) [18]. Tm values, GC contents,
and amplicon lengths were set between 58 and 62 ◦C, 40 and 60%, and 70 and 140 bases,
respectively. Total RNA was extracted from fresh frozen primary tumors using Trizol
reagent (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s proto-
col. RNA concentration and purity measurements were performed using Nanodrop One
(Thermo Fisher Scientific). Of the RNA, 4000 ng was reverse transcribed into cDNA using
the Revert-aid first strand cDNA synthesis kit (Thermo Fisher Scientific, #K1622) using
random hexamer primers following the recommended protocol. cDNAs were then diluted
to a 1:10 concentration for qRT-PCR experiments. A cDNA pool was prepared and used at
5 different concentrations (1:2, 1:4, 1:8, 1:16, 1:32). In order to assess the efficiency of primers,
RT-PCR reactions with 5 µL iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA,
USA, # 1725121), 0.6 µL forward and 0.6 µL reverse primers, 1.8 µL nuclease-free water,
and 2 µL cDNA were run. Using an average cycle of threshold (Ct) and log of dilution
concentration, a linear regression line was fitted, and primer efficiency was calculated
with the formula: (10(−1/the regression slope) − 1) × 100. Primers with an efficiency between
90 and 110% were used in further RT-PCR experiments. All RT-PCR reactions were run
using iTaq Universal SYBR Green Supermix (Bio-Rad, #1725121) and the Light Cycler 480 II
real-time PCR cycler (Roche, Basel, Switzerland). Ct values were normalized, and relative
quantification was calculated using the delta-delta Ct method using the geometric mean of
reference genes and one tumor sample as a reference [19].

2.3. TMA Construction

A tissue microarray (TMA), consisting of 40 tumors, was constructed, including one
core (3 mm in diameter) for each tumor with the best representative morphology. FFPE,
4–5 µm thick tissue sections were stained with conventional H&E. The sections were
also used for manual immunohistochemical (IHC) studies of HEYL, CALD1, TAGLN,
and TPM2, and automated immunostaining of ACTA2, MLH1, PMS2, MSH2, and MSH6
antibodies listed in Supplementary Table S3.

2.4. Immunohistochemistry

Briefly, for manual IHC staining, the unstained slides obtained from TMA were de-
paraffinized at 60 ◦C and rehydrated gradually in a series of ethyl alcohols. Endogenous
peroxidase activity was blocked with 3% H2O2 in methanol. Antigen retrieval was per-
formed by microwaving in a citrate buffer (pH 6.0) solution. Sections were incubated with
each primary antibody separately at the optimal dilution and titrated using the streptavidin–
biotin peroxidase method for all antibodies. Sections were incubated with biotinylated goat
anti-polyvalent secondary antibodies, and the avidin–biotin peroxidase method was then
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used. The signals were developed using the chromogen 3,3′-diamino benzidine (DAB), and
finally, samples were counterstained with haematoxylin. The slides were dehydrated and
prepared for microscopic examination. Automated immunostaining was performed via the
Leica BOND-MAX IHC/ISH automated immunostainer (Leica Biosystems, Deer Park, IL,
USA). TMA slides were also scanned with the Olympus VS 120 System and visualized via
the OlyVIA software version 2.9.1 (Olympus, Hamburg, Germany).

2.5. IHC Scoring and the Determination of MMR Status

Antigen expression for all antibodies except those used for mismatch repair mechanism
proteins was assessed as follows: a simplified H score was determined by multiplying
the percentage of positive cells with the intensity (scored from 0 to 3) of the staining. The
sum of the H scores obtained from five genes was calculated. Two groups of tumors with
summed H scores above and below the median were used for categorical statistical analysis.
Additionally, percentages of tumor and stroma were evaluated separately for each tumor
core on H&E slides.

Mismatch Repair (MMR) protein expression status was evaluated based on IHC
stainings using MLH1, PMS2, MSH2, and MSH6 antibodies. Defective mismatch repair
(dMMR) was defined as the loss of protein expression for at least one of the genes (MLH1,
PMS2, MSH2, or MSH6). Proficient mismatch repair (pMMR) was defined as the presence
of protein expression for all MLH1, PMS2, MSH2, and MSH6 proteins in the nuclei of
neoplastic cells. Stainings that resulted in a non-decisive status for MMR protein expres-
sions were classified as equivocal MMR (eqMMR), as described by Uner et al. [20]. For the
eqMMR status determination, both protein expression levels and morphological evaluations
were used.

2.6. Analysis of Transcriptomic Datasets

CEL files of GSE62254 [21], GSE15459 [22], GSE29272 [23], and GSE14208 [24] were
RMA (Robust multiarray average) normalized using the “affy” package, and the “just.rma”
function in R Bioconductor [25]. The “estimate” package was used based on Entrez gene
IDs to generate stromal scores [26]. Stromal-high (ST-H) and -low (ST-L) designations were
assigned using the median stromal score generated by ESTIMATE as the cut-off. Thirteen
out of 20 probesets identified using GSE62254 and GSE15459 were available in GSE29272
and GSE14208 due to platform differences. GSE84437 [27], GSE13861 [28,29], GSE26899 [29],
GSE26901 [29], and GSE28541 [29] datasets (Illumina platform) were quantile normalized
using the “preprocessCore” package in R and then log-transformed. Annotations were
performed according to the GPL file on the GEO page of each dataset. These datasets were
clustered using probesets matching the gene names listed in Supplementary Table S4. For
GSE26899 and GSE13861, 93 samples with the tumor type of gastric cancer and 65 gastric
adenocarcinoma samples were included in the clustering analysis, respectively. For the
GSE84437, GSE26901, and GSE28541 datasets, all samples were used. Clinical data for
GSE13861, GSE26899, GSE26901, and GSE28541 were obtained from the supplementary
files of Oh et al. [29]. Clinical data for other datasets were obtained from GEO (https:
//www.ncbi.nlm.nih.gov/geo/ (accessed on 23 April 2017: GSE62254, GSE15459 and
GSE29272) (The rest of the datasets were accessed on October-November 2022)). TCGA
Stomach adenocarcinoma (STAD) primary tumor RNA sequencing (RNAseq) data was
downloaded from the GDC portal (https://portal.gdc.cancer.gov/ (accessed on 23 August
2022)) in STAR-counts format (n = 175). Genes with a count value of zero in less than 90%
of the samples were used in further analysis. Counts were normalized using the “DEseq2”
package and log transformed. Overall survival data were available for 316 patients. Days
to death and days to last follow-up data were used as overall survival for patients with
the status of dead and alive, respectively. TCGA-STAD subtype data was obtained from
cbioportal (https://www.cbioportal.org/study/clinicalData?id=stad_tcga_pan_can_atlas_
2018 (accessed on 16 September 2022)) in clinical data with the title “subtype”. Out of 20,
19 genes were available in this dataset, which was used to generate prognostic subgroups.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/study/clinicalData?id=stad_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/clinicalData?id=stad_tcga_pan_can_atlas_2018
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2.7. Determination of Genes Constituting the Prognostic Signature

Normalized log expression and overall survival data from GSE62254 (n = 300) and
GSE15459 (n = 192) were analyzed by an in-house R script utilizing the “survival” library
and “coxph” functions [30]. For each probeset, the Cox proportional hazards regression
p-value and hazard ratio (HR) were obtained separately in each dataset. Probesets were
then ranked based on Cox p-values from smallest to largest. Two rank values obtained
from the two datasets were summed, generating a single ‘rank sum’ value for each probe-
set. Prognostic relationships with HR above 1 and below 1 were noted as associations
with poor and good prognoses, respectively. Probesets associated with either a good or
poor prognosis consistently in both datasets were included in further analysis. The top
20 probesets with the lowest rank sum were selected to constitute the gene signature
(Supplementary Table S4).

2.8. Gene Set Enrichment and Ingenuity Network Analysis

The GSEA desktop application was downloaded from the Broad Institute (http://
software.broadinstitute.org/gsea/downloads.jsp (accessed on 23 April 2017)). Gene sets
were collapsed to gene symbols, and the maximum probe was selected for collapsing
mode. The gene ontology “c5_all” was selected as the gene set database. Gene sets with
less than 50 genes were not included in the analyses. Genesets with an FDR q value
smaller than 0.25 were considered enriched. Protein network analysis was performed
using the QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA) (QIAGEN Inc., Redwood
City, CA, USA, https://digitalinsights.qiagen.com/IPA (accessed on 3 January 2023))
application [31] based on differentially expressed probesets (absolute log fold change > 1,
Benjamini–Hochberg corrected p-value < 0.05) between SU and SD groups in GSE62254.

2.9. Hierarchical Clustering Analysis

Cluster 3.0 and Treeview programs were downloaded (http://bonsai.hgc.jp/~mdehoon/
software/cluster/software.htm (accessed on 23 April 2017)). Log expression values were
standardized to a mean of zero and a standard deviation of 1 with the following for-
mula: “(Value-Average)/Standard Deviation” for each gene or probeset prior to clustering
analysis. Hierarchical clustering was performed by clustering both genes and arrays us-
ing Euclidian Distance as the similarity metric and Complete Linkage as the clustering
method. Clustered data in “.cdt” format was then visualized with Treeview. SU and
SD groups were categorized based on the major two branches of the dendrogram unless
otherwise specified.

2.10. Clustering Based on EMT-Related Gene Expression

Probesets for the generic EMT signature of tumor tissues were provided by
Tan et al. [32]. A list of probesets for 145 epithelial markers and 170 mesenchymal markers
was used for the hierarchical clustering of gastric tumors in GSE62254 and GSSE15459. As
epithelial and mesenchymal markers clustered in two major branches, samples with high
expression of epithelial and low expression of mesenchymal markers were named “Epithe-
lial” (E), while samples with the opposite profile of expression were named “Mesenchymal”
(M). The rest of the samples with no clear pattern were named “Intermediate” (I).

2.11. Single-Cell RNA Sequencing Data Analysis

Single-cell RNA sequencing data from 26 gastric tumors were obtained from GSE183904.
The count data was already filtered as described by Kumar et al. [33]. Using the “Seurat”
package in R Bioconductor (Version 4.1.1), counts were log-normalized using the scale
of 10,000 [34]. 2000 variable features were determined using the “FindVariableFeatures”
function. Data were scaled with the “vars to regress” option set to mitochondrial percentage
to regress out unwanted sources of variation. Principal component analysis was performed
using the “RunPCA” function. Cell clusters were defined using the “FindNeighbors” and
“FindClusters” functions. For non-linear dimension reduction and visualization of the

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
https://digitalinsights.qiagen.com/IPA
http://bonsai.hgc.jp/~mdehoon
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clusters, the “RunUMAP” function was utilized. Cell clusters were identified based on
markers listed in Che et al. [35], with minor changes. We added the NKG7 gene for the
identification of natural killer (NK) cells. The cell cluster expressing CD68, CD163, CD14,
and LYZ was named “Myeloid cells”. Out of 20, 18 prognostic genes were available in
this dataset.

2.12. Statistical Analysis

Kaplan–Meier graphs were generated using Graphpad Prism 8 (Graphpad Prism
8 Software, San Diego, CA, USA). Spearman correlation, chi-square and Fisher’s exact tests,
and multivariate Cox regression analysis were performed using IBM SPSS Statistics for
Windows Version 23 (IBM Corp., released 2015; Armonk, NY, USA). Patients with nonzero
survival data (OS or RFS–recurrence-free survival, DFS–disease-free survival) and available
status information were included in these analyses. Documented recurrence (0 = no,
1 = yes) was used as the status for DFS. Log-rank multiple cut-off graphs were generated as
described previously [36].

3. Results
3.1. Identification of Prognostic Markers in Gastric Cancer

In order to identify RNA-based biomarkers for gastric cancer prognostication, we
performed Cox regression analysis predicting overall survival for all probesets in two
discovery datasets, GSE62254 (n = 300) and GSE15459 (n = 192). Rank values based on
p-values obtained from the two datasets for each probeset were summed, and the top
20 probesets with the lowest rank numbers were selected for the prognostic panel (see
Section 2.7) (Supplementary Table S4). Expression of all genes within the list was associated
with poor OS. Hierarchical clustering analysis using the 20 probesets identified two clearly
distinct tumor groups with noticeable high and low expressions in both discovery datasets.
As all these genes were related to increased stroma in tumors (see below), they were named
“Stromal-UP” (SU) and “Stromal-DOWN” (SD), respectively (Figure 1). The SU group had
a significantly worse prognosis compared to the SD group, in both datasets (GSE62254; HR:
2.47, p < 0.0001. GSE15459; HR: 2.66, p < 0.0001) (Figure 1). The median survival of the SU
groups was 26.3 and 20.3 months, whereas the median survival of the SD groups was longer
than the follow-up time: 120 and 200 months in the GSE62254 and GSE15459 datasets,
respectively, indicating a dramatic difference in clinical outcome. SU/SD distinctions
were robustly observed upon clustering in independent gastric tumor datasets (GSE29272,
GSE84437), and patients with SU tumors showed poor prognoses compared to the SD group
in these datasets as well (Figure 2). Clustering analysis with 19 of the 20 genes available in
The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) RNAseq data resulted
in three major subgroups with high (SU), intermediate (SI), and low expression (SD), all of
which had significantly different prognosis (p = 0.011) (Supplementary Figure S1). In this
dataset, the SD group was distinctly separated from the SI and SU groups based on both
the expression and prognostic profiles (Supplementary Figure S1). These findings show
that SU–SD classification is a strong predictor of prognosis in all cohorts analyzed.

According to the American Agency for Healthcare Research and Quality, studies of
prognostic biomarkers should be assessed using multiple clinical outcome types [16]. There-
fore, we re-analyzed our prognostic signature using DFS as a clinical outcome in GSE62254. In-
deed, the SU group was significantly associated with shorter DFS (Supplementary Figure S2).

We further applied this classification to three other datasets that had both OS and
RFS available (Supplementary Figure S3). The SU and SD groups identified signifi-
cantly different prognostic subgroups in GSE26901 as well (Supplementary Figure S3).
In datasets with smaller sample sizes (GSE26899, GSE13861), the trend remained the same
as SD groups had better median survival, although the differences were not significant
(Supplementary Figure S3). In order to better understand the potential underlying reasons
for the smaller differences in prognosis among SU–SD patients in these cohorts, we evalu-
ated whether differences in treatment protocols among these patients had an effect. The reg-
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imens overlapped between datasets: standard adjuvant chemotherapy (either single-agent
5-fluorouracil or a combination of 5-fluorouracil and cisplatin/oxaliplatin, doxorubicin, or
paclitaxel) [29] was given, while some patients received no treatment. When the prognosis
of patients with and without adjuvant chemotherapy treatment was compared, we noted
that patients who received therapy showed a significant survival benefit in GSE26899 but
not in GSE26901 or GSE13861 (Supplementary Figure S4). In addition, we noted that 79.6%,
74.6%, and 56.4% of the patients who received treatment had an epithelial phenotype (EP
as defined by Oh et al.) [29] in GSE13861, GSE26899, and GSE26901, respectively. Therefore,
a higher percentage of EP tumors in the treatment group for GSE26899 may be related to
a higher treatment benefit compared to non-treated patients. This was not observed for
GSE13861, likely due to the availability of only 16 patients with no treatment. Considering
the dramatic prognostic difference between SU and SD groups in GSE26901, but not in
GSE26899 (Supplementary Figure S3E–I), our data suggest that SU–SD classification is an
indicator of the intrinsic biological potential of the tumor to recur and progress, which
can, however, be affected by treatment. Further stratification of these patients based on
treatment showed that in GSE26901, the prognostic difference between the SU and SD
groups was less in treated patients compared to the untreated group (p > 0.1, p-value: 0.023,
respectively) (Supplementary Figure S5). In GSE26899, no significant survival difference
was noted between SU and SD in any of the treatment groups (Supplementary Figure S5).
To evaluate whether the SU–SD signature could be a predictor of treatment response,
we compared the prognosis of patients with and without treatment within the SU and
SD groups. For GSE26899, patients with either SU or SD tumors benefited from therapy,
whereas in GSE26901, neither group benefited. Therefore, our data suggest that the SU–SD
classification is not a predictor of treatment response (Supplementary Figure S6) and that it
is a predictor of overall survival independent of treatment (Supplementary Table S5).

a b
SD

SU SU SD

dc

Figure 1. Hierarchical clustering analysis of gastric cancer tumors with prognostic genes. Twenty
probesets that were significantly associated with survival data were used for hierarchical clustering
in discovery cohorts: (a) GSE62254 (n = 300) and (b) GSE15459 (n = 192). Red, black and green
colors indicate high, intermediate and low expression, respectively. Two groups with discernible
high and low expressions for all 20 probesets were labeled as “SU” and “SD” groups, respectively.
Kaplan–Meier plots are shown for patients with the SU/SD label in (c) GSE62254 and (d) GSE15459.
Log-rank p-values are indicated.
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Figure 2. Hierarchical clustering analysis and Kaplan–Meier graphs of gastric cancer tumors with
prognostic genes in validation cohorts. (a) Out of 20, 13 prognostic probesets that were available
on the HGU133A platform were used for hierarchical clustering in GSE29272, and (c) Eighteen
Illumina probesets of prognostic genes were used for GSE84437. Red, black and green colors indicate
high, intermediate and low expression, respectively. Two major branches with low and high overall
expression were assigned to the SU and SD groups. Kaplan–Meier graphs and log-rank p-values are
shown for (b) GSE29272 and (d) GSE84437.

Up until now, we compared SU–SD groups based on clear patterns in hierarchi-
cal clustering analysis. However, we also encountered two datasets, GSE14208 and
GSE28541, for which this pattern was less clear compared to the datasets previously
analyzed (Supplementary Figure S7). In GSE14208, which included samples obtained from
metastatic gastric cancer patients, there was no difference between the overall survival of
the SU and SD groups. In GSE28541, the heatmap showed correlating gene expression
patterns for a subgroup of genes, unlike other datasets where we observed correlating
expression patterns for all genes (Supplementary Figure S7). Despite that, we validated
the trend at borderline significance (p-value: 0.06). Overall, the SU–SD signature was a
predictor of prognosis in gastric cancer, as was evident, especially in cohorts with larger
sample sizes, but it was not a predictor of treatment response.

3.2. Biological Characteristics of Prognostic Groups

In order to illuminate the biological differences between SU and SD tumors, we per-
formed GSEA (gene set enrichment analysis; see Section 2.8). Zero and three genesets
were enriched in SD samples, whereas 63 and 188 genesets were enriched in SU samples
in GSE15459 and GSE62254, respectively. These results suggested a more heterogeneous
molecular profile in SD tumors compared to the SU group. For the genesets that were
enriched in the SU group, we noted common patterns for the two datasets related to the
extracellular matrix, actin cytoskeleton and binding, wound healing, and negative regu-
lation of cell cycle and metabolism (Supplementary Table S6, Supplementary Figure S8).
These findings showed that the patient group with the worse prognostic profile (SU) may
have less proliferation but more extracellular matrix (ECM) involvement and cell migration,
suggesting a more mesenchymal phenotype when compared to patients with a relatively
better prognostic profile (SD). Therefore, we utilized a published gene list of EMT mark-
ers [32] and classified gastric tumors into epithelial (E), intermediate (I), and mesenchymal
(M) (Supplementary Figure S9; see Section 2.10). The distribution of SU–SD samples was
significantly related to the E–I–M profiles (p < 0.00001 for both datasets) (Supplementary
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Table S7). The majority of the SD tumors were epithelial (GSE62254), and most of the SU
samples were mesenchymal (GSE15459). When only E and M samples were considered, the
E profile overlapped with SD, and the M profile overlapped with the SU group to a large
extent. The I group did not have a consistent overlap with either prognostic subgroup. As
enrichment of ECM-related gene sets suggests a more stromal profile for the SU group,
we utilized a previously defined algorithm, ESTIMATE, which uses gene expression sig-
natures to infer the fraction of stromal and immune cells in tumor samples [26]. In both
GSE62254 and GSE15459, SU groups had significantly higher stromal scores, as calculated
via ESTIMATE (Supplementary Figure S10). To evaluate the molecular interactions that
are differentially regulated in the SU group, we performed an Ingenuity network analysis
based on differentially expressed genes between the SU and SD groups in GSE62254 (see
Section 2.8) (Supplementary Figure S11). The summary graph generated by Ingenuity,
which highlights the major biological themes in our analysis, had TGF-beta as a hub, with
several key mesenchymal markers (TWIST1, FN1, TWIST2), the stem cell marker CD44,
HIF1A (the master regulator of cellular and systemic homeostatic response to hypoxia), and
inflammatory markers (IL1-alpha and IKBKB) (Supplementary Figure S11A). In addition,
the activation of multiple cellular processes related to fibrosis and cellular movement,
including the migration of carcinoma cells, was predicted. We noted molecular interactions
between FBN1 (an extracellular matrix glycoprotein fibrillin), multiple collagens (COLA1,
COL3A1, COL1A2, COL6A1, COL6A3), TPM2 (an actin filament binding protein), PDLIM3
(an actinin-associated protein), junction proteins (AMOTL1, GJC1), TIMP3 (a metallopro-
teinase inhibitor), and AMIGO2 (involved in cell adhesion), supporting a denser stroma
for the SU group. In the top network with the highest number of focus molecules, the
activation of NF-kB was predicted (Supplementary Figure S11B) in relation to the induction
of transcription of extracellular matrix remodeling enzymes, influencing the expression
of VEGF and E-cadherin, promoting EMT, angiogenesis, and metastasis [37]. Overall,
these findings indicate that the SU group has more stromal involvement, less proliferative
activity, and a more mesenchymal phenotype, all of which are likely due to the activation
of TGF-beta and NF-kB, which are also associated with a more cancerous stem cell-like
environment. The SD group was comprised of rather more epithelial and less aggressive
tumors.

3.3. Expression of Prognostic Genes in Gastric Tumors at the Single-Cell Level

As GSEA and network analysis results contained consistent enrichment of ECM-
related components in the SU group, in which the prognostic genes were expressed at
high levels, we next asked whether these genes are expressed in cancer cells or the stromal
cells of the tumor microenvironment (TME). Analysis of a single-cell RNA sequencing
dataset that included 26 primary gastric tumors (GSE183904) showed that six of the genes
(IGFBP7, CALD1, TAGLN, TUBB6, LAMC1, and RAI14) were expressed mainly in cancer-
associated fibroblasts (CAFs) and endothelial cells (Supplementary Figure S12), while
ITGB5, MXRA7, ACTA2, and TPM2 were expressed primarily in CAFs (Supplementary
Figure S12). One gene, AKAP12, was expressed in both CAFs and mast cells. There were
7 genes (MATN3, LAYN, TGFB2, LOXL4, RASSF8, HEYL, and NALCN) for which very
low or no expression was noted in the cell types detected in the dataset. Strikingly, none of
the genes were expressed in epithelial cells, except for very weak expression from ITGFB5
and TPM2. These data together suggest that the SU–SD signature defines an expression
profile mostly originating from the stromal cells in the TME that is strongly associated with
clinical outcomes.

3.4. Evaluation of the SU–SD Signature with Clinical and Biological Subgroups

TCGA has classified gastric tumors into four main subtypes: tumors positive for
Epstein-Barr virus (EBV), microsatellite unstable tumors (MSI), genomically stable tumors
(GS), and tumors with chromosomal instability (CIN) [9]. The distribution of these subtypes
was related to subgroups defined by the SU–SD gene signature within TCGA stomach
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tumors (high (SU), low (SD), and intermediate (SI) (p < 0.001) (Supplementary Table S8). We
noted that GS-type tumors, which are enriched for the diffuse histological variant and muta-
tions of RHOA or fusions involving RHO-family GTPase-activating proteins, contained the
highest percentage of SU samples (60%) (Supplementary Table S8). In contrast, the largest
percentage of SD samples were observed in EBV and MSI types. EBV tumors are known to
display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification
of JAK2, PD-L1, and PD-L2, whereas the MSI profile is associated with elevated mutation
rates in many genes. Both types have been defined as responsive to immunotherapy [38].
None of the TCGA subtypes overlapped more than 60% with SU–SD groups, indicating
that the SU–SD classification is related but biologically distinct from the previously de-
fined molecular subtypes. Indeed, multivariate analysis showed that the SU–SD signature
was an independent prognostic predictor when TCGA subtypes were included in the
model (Supplementary Table S9). In this line, the SU–SD signature could stratify CIN
and MSI types, suggesting that the involvement of ECM and stroma-related biological
patterns is prognostically relevant within these groups (Supplementary Figure S13). Strati-
fication within GS and EBV subtypes is inconclusive, likely due to the very low sample size
(Supplementary Figure S13).

3.5. SU–SD-Based Classification Is an Independent Prognostic Marker

Multivariate analysis showed that the SU–SD classification was independent of clinical
confounding factors: age, tumor pathological subtype (diffuse, intestinal, mixed), location,
stage, H. pylori infection, MLH1 status, and previously defined molecular subtypes [21],
among others (Supplementary Tables S10 and S11). In this model, we found SU–SD was
one of the three sole prognostic factors, together with stage and tumor subtype. Thus, as
expected, our prognostic signature stratified patients with either intestinal or diffuse-type
tumors into subgroups with significantly different clinical outcomes in terms of both OS
and DFS (Figure 3; Supplementary Figure S14). Similarly, among four distinct gastric
tumor subgroups previously defined by the Asian Cancer Research Group (ACRG), MSI,
MSS/EMT, MSS/TP53+ (MSS with intact TP53 activity), and MSS/TP53- (MSS with TP53
functional loss), MSI- and MSS/TP53--type tumors could be stratified into significantly
different prognostic groups based on SU–SD classification (Supplementary Figure S15).
Although we observed a relatively worse prognosis in the SU group compared to SD
patients in MSS/TP53+, this was not significant (p = 0.09). Univariate analysis of com-
mon clinical confounding factors in GSE15459 and GSE29272 showed that stage was a
significant prognostic factor in GSE15459 but not age, gender, or pathological subtypes,
whereas none of them were significant in GSE29272 (Supplementary Table S12). When
stage and SU–SD classification were included in a multivariate model in GSE15459, SU–SD
classification was an independent prognostic factor, confirming our findings in GSE62254
(Supplementary Table S13). We then analyzed the prognostic relationship of the SU–SD
signature within each stage. The SU–SD signature was able to significantly stratify stage
II and stage III tumors but not stage I and IV tumors (Supplementary Figure S16). As the
SU–SD classification was related to the presence of stroma within the tumor, we tested
whether stroma itself was a prognostic factor and, if so, whether SU–SD was a prognostic
factor independent of stromal presence. For this purpose, we used the median stromal
score, as generated by ESTIMATE, to stratify patients into stromal-high (ST-H) and -low
(ST-L) groups. Univariate analyses showed that the ST-H phenotype was associated with
worse overall survival in GSE62254 (p-value: 0.044, H.R.: 1.39), but not in GSE15459
(p = 0.1, H.R. = 1.41). We next performed MVA with both stromal score-based and SU–SD
classifications included in the model in GSE62254. This showed that SU–SD was associated
with survival, independent of stromal classification; Cox p-values were <0.001 and 0.209,
H.R.s: 2.86 and 1.28, for SU–SD and stromal classification, respectively. Overall, our data
indicated that the SU–SD signature was an independent prognostic classifier and that it
was able to prognosticate especially MSI- and MSS/TP53--type tumors and those of stages
II and III.
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Figure 3. Kaplan–Meier plots for SU–SD groups within intestinal and diffuse type tumors in GSE62254
and GSE15459. Log-rank p-values are shown.

3.6. Validation of the SU–SD Signature Ex Vivo

To validate the SU–SD signature ex vivo, we selected five genes (HEYL, ACTA2,
TPM2, CALD1, and TAGLN) that are expressed at the protein level in gastric tumors
as defined in the Human Protein Atlas (https://www.proteinatlas.org/ (accessed on
10 January 2019)). Four of the genes, ACTA2, TPM2, CALD1, and TAGLN, were known
to be involved in muscle contraction and differentiation and the actin cytoskeleton in
cell motility, suggesting a consistent biological pattern with stromal features associated
with the poor prognostic group [39–43]. We performed IHC using FFPE tissues from
Turkish gastric cancer patients (n = 40), 12 of which were classified as gastric carcinoma
with lymphoid stroma based on morphological evaluation [6] (Supplementary Figure S17)
(Supplementary Table S1). At the time of diagnosis, 26 and 16 patients were above and
below 60 years of age, respectively. Twenty-eight patients were male and 14 were female.
Seven out of 42 patients were censored at the time of the last follow-up. IHC-based staining
of protein levels in tissue showed different patterns regarding the five genes. Protein
expression patterns of ACTA2, TAGLN, and CALD1 were similar, and the expression of
ACTA2 was the strongest among these. These three proteins revealed cytoplasmic staining
in spindle-shaped stromal cells, mostly fibroblasts, and were negative in neoplastic epithe-
lial glands. TMP2 showed moderate to strong cytoplasmic and membranous staining in
neoplastic epithelial glands. Stromal cells were also positive to various degrees. HEYL
revealed weak to moderate cytoplasmic and nuclear staining in neoplastic epithelial glands
with moderate expression in stromal cells, including inflammatory cells (Figure 4).

https://www.proteinatlas.org/
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Figure 4. IHC-based staining of protein levels in tissue (representative low and high areas,×40 magni-
fication) and protein expression patterns of the proteins regarding the five genes (×200 magnification).
ACTA2, TAGLN, and CALD1: cytoplasmic staining in spindle-shaped stromal cells, mostly regarding
fibroblasts (asterisk) and negative in neoplastic epithelial glands (arrowhead). Staining intensity was
stronger in ACTA2, while TAGLN and CALD1 showed weaker staining. TMP2: Moderate to strong
cytoplasmic and membranous staining in neoplastic epithelial glands (arrowhead). Additionally,
stromal cells showed positivity (an asterisk) in various degrees. HEYL: weak to moderate cytoplasmic
and nuclear staining in neoplastic epithelial glands (arrowhead) with moderate expression in stromal
cells, including inflammatory cells (asterisk).

Stromal expression of ACTA2 was positively correlated with stromal expression of
TAGLN and CALD1 (rho > 0.35, p < 0.05, n = 40) (Supplementary Table S14). Both neoplastic
and stromal expression of TPM2 was positively correlated with the expression of HEYL
in all cells evaluated: neoplastic, stromal, and inflammatory cells (rho > 0.35, p < 0.05,
n = 40) (Supplementary Table S14). The staining patterns were scored based on both
intensity and percentage of cells expressing the genes (simplified H score, see Section 2.5),
separately for neoplastic cells, stromal cells, and inflammatory cells (only for HEYL). High
stromal expression of TAGLN was associated with poor overall survival in this cohort
(p = 0.041) (Supplementary Figure S18C), whereas prognostic relationships for HEYL,
ACTA2, TPM2, and CALD1 could not be validated. To evaluate the total expression levels,
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the sum of the simplified H scores from the five genes was calculated. The median cut-off
was used to classify tumors with high and low expression, which was associated with MMR
status, gender, and perineural invasion (Fisher’s exact test p-values: 0.022, 0.048, and 0.019,
respectively). Overall, a higher expression value overlapped with a higher percentage of
perineural invasion, MMR-proficient tumors, and male patients.

As the SU–SD gene signature stratified tumor groups that differed highly in their
stromal content, we next evaluated the percent stromal ratio in these tumors. A high
stromal ratio was significantly associated with an unfavorable prognosis in line with the in
silico findings (see Section 3.5) (Supplementary Figure S18A,B).

In addition to protein-level expression, we also quantified the expression of these
five genes via qRT-PCR in matched, freshly frozen primary tumor samples of the same
cohort (n = 42). Expression of the five genes is strongly inter-correlated, confirming in silico
findings (average rho: 0.75) (Supplementary Table S15). Expression of all five genes showed
a strong positive correlation with the mesenchymal marker VIM (rho > 0.6, p < 0.05) and
a negative correlation with the epithelial marker CDH1 (rho < −0.4 and p < 0.05 except
for HEYL: rho:−0.3; p-value: not significant). Analysis of paired samples with both FFPE
tissues and fresh frozen tumors showed that transcript levels of ACTA2, TPM2, CALD1,
and TAGLN were significantly and positively correlated with the stromal percentage of
the tumor. However, in this cohort, qRT-PCR-based expression of none of the genes was
significantly associated with clinical outcome (Cox p-values >0.05).

Overall, this data shows that the concordant expression of five of the 20 genes in the
SU–SD signature is correlated with the stromal presence, which is a significant predictor
of prognosis.

4. Discussion

Although therapy options have improved in GC, prognosis of these patients are still
quite poor, especially when diagnosed at later stages. Understanding the dynamic biol-
ogy of disease subtypes that are associated with differential clinical outcomes is crucial
to pave the way to alternative and more potent treatment options. Increasing number
of high-throughput datasets that are publicly available, enables identification of novel
biomarkers that are applicable to more cohorts and/or more specific subtypes. In this
study, we defined a novel list of genes that can generate gastric cancer subgroups with
dramatically different prognosis. Clustering-based classification of tumors based on this
gene list validated prognostic association in multiple datasets in terms of both OS and
DFS. We showed that SU group had higher ECM and tumor stroma-related gene expres-
sion. It can prognosticate MSS and TP53- and MSI types among ACRG subtypes but not
EMT group, as SU profile overlapped with mesenchymal gene expression. Therefore, we
identified SU group as an aggressive, stroma-rich, mesenchymal subtype. In line with
these findings, other studies showed that a mesenchymal profile was associated with poor
prognosis in gastric cancer [29]. ECM-related components were also implicated in gastric
cancer, multiple collagens and cancer associated fibroblast markers were identified among
upregulated genes in tumor compared to normal [44]. Here we show that they are indeed
key determinants of tumor progression independent of clinical confounding factors.

IHC-based stainings for the protein levels of the five genes revealed that three out of
five genes (CALD1, TAGLN and ACTA2) were expressed exclusively from the stroma. For
the other two genes (TPM2 and HEYL), in addition to stromal expression, mild to moderate
expression was observed in neoplastic cells. IHC-based expression of four genes and RNA
level expression of five of the prognostic genes, when quantified in our ex vivo cohort, were
not associated with clinical outcome. One possible reason for this could be ethnicity-related
molecular differences between the ex vivo cohort of Turkish patients and in silico cohorts,
which included mostly patients from East Asia, where the incidence/mortality ratio is
higher than that in Turkey [45]. When GSE62254 and our cohort were compared, the median
survival times were 77 and 15 months, respectively although the clinical parameters of the
two cohorts were similar (age, stage, gender), indicating different innate prognoses of these
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cohorts. As the sample size of the ex vivo cohort was much smaller compared to the in
silico datasets, it is likely that the prognostic associations may be improved in studies with
larger cohorts. We showed that these markers are associated with EMT and are expressed
predominantly from tumor stroma, however a significant number of tumors (12/40) in
our cohort had a lymphocyte-rich stroma rather than a desmoplastic one. Therefore, a
dramatically higher percentage of lymphoid rich tumors (30%) in this cohort compared to
WHO statistics (1–7%) [6], might also have influenced the validation of markers that are
expressed primarily from tumor stroma.

It is known that gastric carcinomas with lymphoid stroma have a better prognosis
and they benefit from different chemotherapy models (eg. 5-FU is contraindicated and
they are more sensitive to irinotecan etc.) [6]. In addition, this group of tumors benefits
from immunotherapies such as anti-PDL-1 and anti-PD-1 [46]. However, unexpectedly, the
overall survival in our ex vivo cohort was worse than the in silico cohorts. We may speculate
that the main reason for this discrepancy is that most of our patients were diagnosed before
identification and inclusion of the lymphoid-rich group in guidelines and thus specific
treatment models were not available for those patients yet. Most of them were not treated
with currently available chemotherapy options and immunotherapies.

Our results showed that SU–SD signature is not a predictor of treatment response.
In cohorts with a higher benefit from treatment which was likely to improve survival of
poor survivors, SU–SD group could not stratify patients significantly. In line with this, the
prognostic difference was dramatic in untreated patients, suggesting that this signature
indicates an intrinsic biological phenotype of the pre-treatment tumor, which can then be
changed by treatment. A better prognostic separation in datasets with a higher percentage
of patients who did not receive treatment (GSE26901: 63.9% vs GSE26899: 27.9%) confirmed
these findings. This signature was a good prognostic predictor in stage II and III disease,
but not in I and IV which is further supported by the poor performance of this classification
in metastatic gastric cancer patients. In line with this observation, analysis of the GSE28541
dataset, consisting mostly of stage IV tumors (52%), did not reveal a clear SU–SD pattern in
clustering and had a prognostic difference with a borderline significance (0.06). Therefore;
the stromal and mesenchymal phenotype that predicts recurrence, does not seem to be a
main prognostic indicator in already metastasized and late stage disease.

An analysis of the molecular subtypes defined by the TCGA consortium showed that
the SU–SD signature was independent of these subtypes and that the highest percentage
of the patients from both the EBV and MSI subgroups were in the SD group. Both the
EBV and MSI type tumors are considered as eligible for immunotherapy [38]. It has been
shown that the PD-L1/PD-1 pathway is activated and could be considered an emerging
therapeutic target, particularly for EBV and MSI GCs [47]. Therefore, the SD group may
more likely benefit from immunotherapy. As EBV and MSI types were shown to have
a good prognosis previously [48,49], an overlap between these types and the SD group
may be expected, as the SD group also had a favorable clinical outcome in almost all
cohorts we tested. As other immune markers, such as lower CD26 levels associated with
an immune defective antitumor response [50] are defined they can be analyzed in further
studies. Altogether, we speculate that the crosstalk between immune cells and cancer
cells in the tumor microenvironment may also differ between the subgroups in this study.
We observed an intermediate group in the TCGA-STAD dataset that was not present in
microarray datasets, likely due to the wider range of expression obtained by RNAseq.
In addition, all four TCGA subtypes had tumors distributed across SU–SI–SD groups
indicating that both classifications are likely to contribute to the molecular subgrouping of
gastric cancer.

Analysis of stromal scores in SU–SD groups showed that, SU tumors had dramatically
high stromal content compared to SD tumors. A transcription factor, HEYL (Hes Related
Family BHLH Transcription Factor With YRPW) included in our list was suggested pre-
viously as a potential prognostic marker for gastric cancer [51]. Another study showed
that HEYL expression correlated with the stromal transformation of the TME [52]. Upon
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its overexpression, transcriptional activation of cadherin 11 (CDH11) was observed [52],
which was linked with stroma–epithelium interaction [53]. Another gene in the SU–SD
signature ACTA2 (alpha)-SMA is a specific marker for myofibroblasts and is a hallmark
of myofibroblast differentiation [54,55]. It is expressed mainly by transforming growth
factor-β (TGF-β)-dependent myofibroblastic CAFs [56]. ACTA2 was included in a 32-gene
signature that defined four molecular and prognostic subgroups of gastric cancer [57]. In
this study, ACTA2 expression was associated with the mesenchymal group with TGFB
activation which did not benefit from the 5-FU + Platinum. 87% of these patients were not
responsive to immunotherapy. In parallel to the association with TGFB pathway activation
observed in this study, our list included TGFB2 which is considered to be a link between
epithelial–mesenchymal transition (EMT) and tumor mutation burden in gastric cancer, and
its high expression was associated with poor prognosis in multiple datasets [58]. TGFB2
was included in a four gene signature (FN1, TGFB2, TGFBR2, and TGFBI), as an indica-
tor of CAF abundance, which predicted survival in TCGA pan-cancer cohort comprising
9356 patients from 32 cancer subtypes [59]. In parallel, TGFB2 secreted by CAFs was found
as being essential for maintaining stemness of colorectal tumorspheres [60]. A previous
study suggested that another gene listed in our panel, NREP, was associated with poor
prognosis and may be involved in the activation of cancer-associated fibroblasts and the
epithelial–mesenchymal transition, with transforming growth factor β1 mediating both
processes [61]. IGFBP7 was identified as a tumor stroma marker of epithelial cancers, and
stromal expression of IGFBP7 was an indicator of poor survival in colorectal cancer [62,63].
When SW480 colorectal cancer cells were co-cultured with fibroblasts, IGFBP7 expression
was induced in fibroblasts at both the mRNA and protein levels [64]. In turn, IGFBP7-
expressing CAFs can induce colony formation in colon cancer cells suggesting a paracrine
tumor–stroma interaction [63]. Furthermore, when expressed by tumor cells IGFPB7 can
promote anchorage-independent growth [63]. CALD1 gene was exclusively expressed in
stromal cells in colorectal adenocarcinoma, and elevated expression of CALD1 and IGFPB7
in stromal cells predicted robustly shorter disease-free intervals [65]. In addition, the levels
of these proteins (CALD1, IGFBP7) were upregulated by TGF-β in colon fibroblasts [65].
Therefore, high expression of these genes pointed out a mesenchymal, CAF abundant, and
TGFB pathway active phenotype associated with disease progression.

Several genes in our panel are implicated in the ECM and tumor stroma-related mech-
anisms. Expression of ITGB5 in gastric tumors is associated with extracellular matrix
organization, focal adhesion and ECM-receptor interaction based on gene functional en-
richment and KEGG pathway analysis [66]. Matrix remodeling associated 7 (MXRA7)
was identified via its coexpression with genes known to mediate cellular adhesion or
extracellular matrix remodeling [67]. A limited number of studies were conducted regard-
ing the function of this gene so far, and our study suggests that MXRA7 is expressed in
stroma-high gastric tumors and may be also involved in remodeling of cancer-associated
TME. Yu et al. showed that TAGLN, an actin binding protein, was upregulated in CAFs
and through which CAFs enhanced tumor metastasis in vitro and in vivo [68]. TAGLN
gene was also included in an autophagy-stroma gene signature which was an independent
prognostic factor for colorectal cancer [69]. Furthermore, overexpression of TAGLN was
strictly localized to the tumor-induced reactive myofibroblastic stromal tissue compartment
in lung adenocarcinoma suggesting TAGLN as a marker of active stromal remodeling
in the vicinity of invasive carcinomas [70]. TAGLN and TPM2 genes were among five
genes identified as fibroblast-specific biomarkers of poorer prognosis of CRC [71]. AKAP12
was among the genes that are potentially involved in tumor–stroma talk in pancreatic
cancer [72]. LAMC1 was included in a four-gene model for prognostic risk prediction as a
stromal gene [73], as it is involved in ECM-receptor interaction pathway (KEGG pathways:
hsa04512). In keratocystic odontogenic tumors, LOXL4 gene was positively correlated
with stromal microvessel density (r = 0.882) suggesting an involvement in enhancement
of angiogenesis [74]. Overall, itis highly likely that expression of the above mentioned
genes detected in bulk tumors are primarily derived from the tumor stroma rather than
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epithelium also as supported by single-cell RNAseq data in this study. Expression of several
genes (MATN3, NALCN, RASSF8, LOXL4) were minimal or not detected in this single-cell
RNAseq dataset, which could be due to small sample number, lower stromal content in
those tumors and inter-tumoral heterogeneity. In line with the previous data indicating pos-
itive correlation of stromal content with HIF1A expression in many solid tumors [75], we
found HIF1A gene among the differentially expressed genes in the SU group. Expression
of this gene is a mark of increased hypoxia which promotes EMT, and thus migration and
invasion of gastric cancer cells [76]. Network analysis revealed subnetworks of collagens,
ECM components, mesenchymal markers, and predicted a higher activity of fibrosis and
cancer cell movement related biological processes supporting our previous findings. Thus,
our data pointed out a subgroup of gastric cancers that express genes involved in the ECM
and tumor stroma related processes and may also have a hypoxic microenvironment in
gastric cancer.

Previous studies evaluated the relationship of CAF specific gene expression with
clinical outcome. Several studies showed that a CAF signature is associated with patient
prognosis and response to immunotherapy in GC [77,78]. These studies had consistent
results indicating that a higher CAF score is associated with poor prognosis, and patients
with such a profile were less likely to benefit from immunotherapy. The HEYL gene which
is expressed at higher levels in SU group in our study, was included in the prognostic
model named CAFS-score for GC [78], thus indicating that tumors with high expression of
HEYL are associated with stroma in independent studies.

The major limitation of this study is the sample size utilized for ex vivo validation,
as geographical differences in cohorts (especially East Asian vs. others) might affect both
SU–SD based, as well as stromal percentage-defined prognostic predictions for gastric
cancer. Larger cohorts including patients both within and outside East Asia are needed
to conclusively answer these questions. In future experiments IHC-based confirmation of
this signature can be performed within specific histopathological tumor subtypes. Specific
markers for stromal cells can be utilized to perform double staining to confirm the cell
types that express the genes of interest in the tumor microenvironment.

5. Conclusions

Our approach based on a transcriptome-wide evaluation of prognostic biomarkers
revealed a set of genes that was strongly associated with the tumor stroma, ECM re-
organization, and cancer associated fibroblasts; suggests that stromal enrichment is among
the most prominent factors related to disease progression and thus prognosis. Therefore,
stroma-related gene expression signatures may help predict prognosis and help define
treatment strategies following further validation studies.
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