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Simple Summary: Colorectal cancer is one of the leading causes of cancer-associated deaths world-
wide. From the 1960s to 2002, the standard systemic treatment consisted of cytotoxic chemotherapy.
However, in the past 20 years, the development of targeted therapies has revolutionized care for
CRC. Dozens of new drugs have been developed specifically targeting actionable and identifiable
molecular biomarkers expressed by these tumors. This growing field, precision oncology, has been
responsible for a dramatic drop of more than 50% in the CRC mortality rate in the United States. As
research into this field exponentially expands, new targets are being uncovered, and new drugs are
being developed. This review aims to summarize the recent advances in biomarkers, landmark trials,
and future perspectives for colorectal cancer.

Abstract: In 2022, approximately 600,000 cancer deaths were expected; more than 50,000 of those
deaths would be from colorectal cancer (CRC). The CRC mortality rate in the US has decreased
in recent decades, with a 51% drop between 1976 and 2014. This drop is attributed, in part, to
the tremendous therapeutic improvements, especially after the 2000s, in addition to increased so-
cial awareness regarding risk factors and diagnostic improvement. Five-fluorouracil, irinotecan,
capecitabine, and later oxaliplatin were the mainstays of mCRC treatment from the 1960s to 2002.
Since then, more than a dozen drugs have been approved for the disease, betting on a new chapter in
medicine, precision oncology, which uses patient and tumor characteristics to guide the therapeutic
choice. Thus, this review will summarize the current literature on targeted therapies, highlighting
the molecular biomarkers involved and their pathways.

Keywords: colorectal cancer; biomarkers; liver transplant; oncology; surgical oncology; colorectal
liver metastasis

1. Introduction

Cancer is the second leading cause of death in the United States of America (USA)
today, second only to heart disease [1]. In 2022, approximately 600,000 cancer deaths were
expected; more than 50,000 of those deaths would be from colorectal cancer (CRC) [1].
Despite a recent increase in incidence in the younger population, which is not yet subjected
to routine CRC screening [2], the CRC mortality rate in the US has decreased in recent
decades, with a 51% drop between 1976 and 2014 [3]. This drop is attributed, in part, to the
tremendous therapeutic improvements, especially after the 2000s, in addition to increased
social awareness regarding risk factors and diagnostic improvement [3]. For patients who
develop metastatic CRC (mCRC), approximately 50–60% of all patients with CRC [4], the
standard treatment is antineoplastic agents aimed at improving and prolonging the quality
of life [5].
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Five-fluorouracil, irinotecan, capecitabine, and later oxaliplatin were the mainstays of
mCRC treatment from the 1960s to 2002 [5]. Since then, more than a dozen drugs have been
approved for the disease, betting on a new chapter in medicine, precision oncology, which
uses patient and tumor characteristics to guide the therapeutic choice [5]. More than half of
the patients with mCRC have tumors with specific molecular profiles for which targeted
therapies or immunotherapies are already available [6].

In this context of intense innovation, which is changing clinical practice and patient
outcomes, understanding the mechanisms underlying these new medications has become
imperative in medical practice [7]. Thus, this review will summarize the current literature
on targeted therapies, highlighting the molecular biomarkers involved and their pathways.

2. Biomarkers and Targeted Therapies
2.1. Vascular Endothelial Growth Factor (VEGF)

The VEGF system is one of the most relevant and researched factors of angiogenesis,
the formation, and the organization of new vessel arrangements, a critical step in tissue
growth [8,9]. Hypoxia, oncogenes, and various cytokines may promote its transcription,
increasing its action on the tissues in which it occurs [10]. In the neoplastic microenviron-
ment, constant hypoxia promotes the tumor endothelium to continuously release VEGF in
an autocrine manner, promoting cell growth and support [11–13].

VEGF can be used as a biomarker for metastatic colorectal cancer (mCRC), helping to
understand and treat patients better [14]. In a retrospective analysis, Jurgensmeier et al.
discussed “Cediranib with fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) versus
bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal
cancer” (HORIZON III), a randomized controlled trial, concluding that high baseline VEGF
values are associated with worse Progression-Free Survival (PFS) and Overall Survival
(OS) in mCRC patients, independent of treatment [15]. A correlation was also observed
between VEGF expression and the development of metastatic disease in patients who did
not receive adjuvant chemotherapy when analyzed over a 5-year period [16].

The VEGF family contains VEGF-A, VEGF-B, VEGF-C, VEGF-D, and Placental Growth
Factor, and it is the primary agent in the regulation of angiogenesis, promoting the mainte-
nance, proliferation, migration, and differentiation of endothelial cells [17]. It is possible
to differentiate VEGF-A more precisely since: multiple isoforms are created from a single
gene, generating variants with different characteristics and molecular weights [18].

At least 12 isoforms are formed: VEGF-A111, VEGF-A121, VEGF-A121b, VEGF-A145,
VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165b, VEGF-A183, VEGF-A189, VEGF-
A189b, and VEGF-A206 [19,20]. This more precise classification is relevant because each
subtype reflects different characteristics [17,20]. The most common pro-angiogenic form
is VEGF-A165a, while the most common anti-angiogenic form is VEGF-A165b, pointing
to very distinct types of behavior [17,21]. The VEGF-A189 isoform is correlated with a
higher rate of liver metastasis and a worse prognosis [22]. There is also evidence that VEGF-
A121, which can be detected in blood, may be a good predictor of a patient’s response to
anti-angiogenic treatment [23].

The strong correlation between VEGF as an angiogenic factor and the development
and progression of colorectal cancer leads to its usability for therapeutic purposes. Cur-
rently, the principal medications that act on this system are bevacizumab, Ziv-Aflibercept,
Ramucirumab, and Regorafenib [24].

Bevacizumab, a humanized monoclonal antibody that binds to VEGF-A isoforms, is
the first-line anti-angiogenic treatment for advanced or metastatic CRC [25]. It is usually
used in combination with oxaliplatin-based therapies [25]. Its antitumor action can be
described in three ways: 1—A decrease in the number of vessels, either by inhibiting the for-
mation of new ones or by regressing newly formed vessels; 2—Changing the functionality
of these vessels; 3—Direct effects on the tumor [25–28].

A recent meta-analysis from Baraniskin et al. indicates that the use of bevacizumab
together with 5-FU-containing therapies significantly increases PFS (Hazard Ratio [HR],
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0.71; 95% CI, 0.65–0.77; p < 0.00001) and OS (HR, 0.85; 95% CI, 0.78–0.94; p = 0.0008) [29].
When the analysis was restricted to fluoropyrimidine monotherapy, the addition of beva-
cizumab led to a significant increase in PFS (HR, 0.57; 95% CI, 0.48–0.66; p < 0.00001) and
OS (HR, 0.83; 95% CI, 0.70–0.98; p = 0.03) [29].

Ziv-aflibercept is a recombinant protein composed of extracellular parts of the vascular
endothelial growth factor receptor 1 and 2 (VEGFR-1 and VEGFR-2), linked to the constant
fragment (Fc) region of human immunoglobulin G 1 (IgG1) [30]. It acts as a VEGF receptor
decoy, binding to VEGF factors, thus preventing their efficient action [31]. Its role is still
less defined than that of bevacizumab, especially when it comes to first-line treatment,
but apparently it presents itself as a good tool for patients who, despite treatment with
bevacizumab, continue with disease progression [32].

In the “VEGF trap (aflibercept) with irinotecan in colorectal cancer after failure of ox-
aliplatin regimen trial” (VELOUR trial), the combination of Ziv-Aflibercept with infusional
fluorouracil, leucovorin, and irinotecan (FOLFIRI) was studied in patients with mCRC, pre-
viously treated with oxaliplatin, including those previously treated with bevacizumab [33].
A significant improvement was observed in the OS compared with that with FOLFIRI plus
placebo (HR, 0.817; 95% CI, 0.713–0.937; p = 0.0032), with an increase in the median OS to
13.5 months using aflibercept plus FOLFIRI compared with 12.06 months with the use of
placebo plus FOLFIRI [33]. There was also a significant increase in PFS, from 4.67 months
to 6.9 months [34]. The response rate was 19.8% (95% CI, 16.4–23.2%) with aflibercept plus
FOLFIRI versus 11.1% (95% CI, 8.5–13.8%) using placebo plus FOLFIRI (p = 0.0001) [33].

Ramucirumab is a complete human IgG-1 monoclonal antibody, which binds with
high affinity to the extracellular domain of VEGFR-2, disrupting the VEGF-mediated
signaling pathway and promoting an antitumor effect [35,36]. The randomized, double-
blind, multicenter, phase III “Ramucirumab versus placebo in combination with second-line
FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after
first-line therapy with bevacizumab, oxaliplatin, and fluoropyrimidine trial” (RAISE trial)
evaluated the use of this medication combined with FOLFIRI as a second-line versus
placebo plus FOLFIRI in patients with mCRC [37]. After a follow-up of 21.7 months, the
median OS was 13.3 months (95% CI 12.4–14.5) using Ramucirumab plus FOLFIRI, while it
was 11.7 months (95% CI, 10.8–12.7) for the placebo group (HR 0.844; 95% CI 0.730–0.976;
p = 0.0219). The PFS was 5.7 months (95% CI, 5.5–6.2) in the first group versus 4.5 months
(95% CI 4.2–5.4) in the placebo group (HR 0.793; 95% CI-0.697–0.903; p = 0.0005) [37,38].

Regorafenib is a multiple kinase inhibitor already approved for the treatment of
patients with CRC refractory to other therapies worldwide [39]. Originally, Regorafenib
was developed as a V-raf-1 murine leukemia viral oncogene homolog 1 (RAF1) inhibitor,
but in preclinical experiments, its usefulness as a multi-targeting kinase inhibitor with a
wide therapeutic range was observed [40,41]. In the multicenter, randomized, placebo-
controlled, “Regorafenib monotherapy for previously treated metastatic colorectal cancer”
(CORRECT) study, Grothey et al. evaluated the use of Regorafenib as monotherapy in
patients with mCRC previously treated with standard therapies [42]. In this study, the
median OS was 6.4 months in the Regorafenib group compared with 5 months in the
placebo group (HR 0.77; 95% CI 0.64–0.94; p = 0·0052) [42]. The “Regorafenib for patients
with metastatic colorectal cancer who progressed after standard therapy” study (CONSIGN
study) confirmed these results and found an overall median PFS of 2.7 months (95% CI),
2.5 months for KRAS mutant tumors, and 2.8 months for KRAS wild-type tumors [42].

2.2. Epidermal Growth Factor Receptor (EGFR) Pathway

EGFR belongs to the Erythroblastosis Oncogene B/Human Epidermal Growth Factor
Receptor (HER) family and has four members: erythroblastic leukemia viral oncogene ho-
molog 1 (ErbB1) (EGFR/HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4) [43]. Once
activated, this receptor triggers a series of downstream intracellular signaling pathways,
notably RAS/RAF/Mitogen-activated protein kinase (MEK)/extracellular-signal-regulated
kinase (ERK); Phosphatidylinositol 3-kinases/AKT (PI3K/AKT); and Janus kinase-signal
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transducer and activator of transcription 3 (JAK/STAT3), which regulate the growth, migra-
tion, invasion, and survival of these cells [44,45]. The hyperactivation and hyperexpression
of receptors in this family are related to several cancers, such as head and neck, stomach,
colorectal, prostate, pancreas, and lung [43], and it may indicate a worse prognosis, survival,
resistance to specific drugs, and higher metastasis rate [45–47].

Over-expression of EGFR is found in 65–75% of patients with advanced colorectal
cancer [48]. Epidermal Growth Factor (EGF) and EGFR levels are significantly higher in
malignant zones of colorectal cancer specimens than in other nearby regions [49]. The
presence of high levels of EGFR in CRC justifies the use of targeted therapies for this
pathway [50]. Cetuximab and panitumumab are the most used treatments that fit this
category for CRC [24].

Cetuximab is an IgG antibody that, after competitive binding to the external domain
of the receptor, promotes the internalization and destruction of EGFR [51], resulting in an
inhibition of cell growth, a decrease in the production of matrix metalloproteinase (MMP)
and VEGF, and induction of apoptosis [49,52,53].

Cetuximab, in conjunction with other chemotherapies, improves progression con-
trol, as noted by the Phase III “Irinotecan and 5-FU/FA with or without cetuximab in the
first-line treatment of patients with mCRC” (CRYSTAL) trial, which demonstrated supe-
rior median progression-free survival times with FOLFIRI plus cetuximab compared with
FOLFIRI alone (8.9 vs. 8 months, HR 0.85; 95% CI), but with an OS without significant differ-
ences (HR 9.93; 95% CI) [54]. The use of only cetuximab after the combined use of FOLFOX
plus cetuximab maintained a similarly elevated PFS, but with fewer adverse effects [54].

Skin toxicity with cetuximab has an 80% of frequency, infusion-related reactions are
present in 90% of the patients in the first infusion, and 48% for anemia [50]. Panitumumab,
a fully humanized antibody that was developed, does not trigger antibody-dependent
cell-mediated cytotoxicity, granting a different profile of toxicity with lower rates of anemia
(48% vs. 5.2%; p < 0.001) and infections (22,4% vs. 12.5%, 95% CI, p < 0.001), but with higher
rates of discontinuation (13.5% vs. 6.9%, 95% CI, p < 0.001) and fatal serious adverse events
(SAE) (2.9% vs. 4.5%, 95% CI, p = 0.004) [55,56].

The “Panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOL-
FOX4) versus FOLFOX4 alone as first-line treatments in patients with previously un-
treated mCRC” (PRIME) trial compared panitumumab in conjunction with FOLFOX ver-
sus FOLFOX alone, finding better PFS in the panitumumab group (10 vs. 8.6 months,
95% CI 0.66–0.97, HR 0.80, p = 0.01), as well as better OS (23.9 vs. 19.7 months, 95% CI
0.67–1.02, HR 0.83, p = 0.17) [57,58]. The “Panitumumab Efficacy in combination with
mFOLFOX6 against bevacizumab plus mFOLFOX in mCRC subjects with KRAS WT tu-
mors” (PEAK) study found that median PFS was longer in the panitumumab group in
relation to the bevacizumab group (12.8 vs. 10.1 months, HR = 0.68, 95% CI), and the
median OS was 36.9 vs. 28.9 months, HR = 0.76, 95% CI [59]. Panitumumab has been
shown to have a higher proportion of patients achieving early tumor shrinkage (ETS) in
left-sided disease patients than in right-sided disease patients [60].

Both drugs, cetuximab and panitumumab, are considered first-line treatments for
CRC [23] with no inferiority between them, as well as side effects, as shown in the phase III
Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS
exon 2 mCRC (ASPECCT) study, with an OS of 10.0 months for cetuximab and 10.4 months
for panitumumab, 95% CI 0.839–1.113, HR 0.97, p < 0.0007 for noninferiority [61].

2.2.1. EGFR-Related Resistance Mechanism

Treatment using Anti-EGFR monoclonal antibodies (MoAb), such as cetuximab or
panitumumab, is only effective in a portion of patients due to, among others, non-expression
of EGFR and mutations, both in EGFR itself and at other points in the pathway, which can
lead to the development of resistance [62–65].

Mutations directly in the EGFR or a low expression of EGFR can decrease the benefit
of anti-EGFR therapies [66]. The most common mutation in patients with CRC is the
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substitution of serine to arginine at amino acid 492 (S492R) in the extracellular domain
of EGFR, which causes a decrease in response to cetuximab and panitumumab [67]. The
incidence of EGFR mutation varies across studies by region. In Greece, patients with
non-Small-cell Lung Carcinoma (NSCLC) had an EGFR mutation rate of 28% [68], while in
South Korea, the rate was 15% [69]. In colorectal cancer patients, the incidence in Western
countries of EGFR mutation was 0.34% [70], while it was 12% in Japan and 22.4% in South
Korea [71,72]. Patients from the Middle Eastern population with colorectal cancer had an
EGFR mutation rate of 0% [73].

EGFR-targeted therapies, such as cetuximab and panitumumab, may also affect neigh-
boring stromal cells near the cancer cells, promoting an increase in the secretion of EGF,
inducing resistance against EGFR-targeted therapies through continuous mitogen-activated
protein kinase (MAPK) signaling [65].

2.2.2. Resistance Mechanism—RAS Family

The RAS family, composed mainly of Kirsten rat sarcoma viral oncogene homolog
(KRAS), neuroblastoma RAS viral oncogenes homolog (NRAS), and Harvey rat sarcoma vi-
ral oncogene homolog (HRAS), participates in the EGFR pathway, acting in the transducing
and auto-inactivation of this pathway [66]. Mutations in this family are considered a major
cause of resistance to anti-EGFR therapy [74–77]. The incidence of RAS mutations in CRC
is about 53% [78], mainly in codons 12 or 13 of exon 2 (81–96% of all KRAS mutations), and
4–19% at exon 3 or exon 4 [66,79,80]. Therefore, the RAS genotype has become an essential
factor in the therapeutic decision of patients with mCRC [48].

RAS inhibitors have recently been studied to overcome this obstacle [81]. Among
the studies of RAS-targeted therapies, sotorasib, which acts selectively and irreversibly
on KRAS-mutated glycine 12 to cysteine (G12C), is an example of a medication that pro-
moted better responses to anti-EGFR in patients with RAS mutations, which is why it was
approved by the Food and Drug Administration (FDA) in May 2021, although having
no effect in patients with mutations at codons 12, 13, and 61 [82,83]. However, acquired
resistance is anticipated, limiting its long-term clinical use due to secondary mutations
causing resistance in sotorasib in vitro, and requiring a switch to two other drugs, BI-3406
plus Trametinib, to overcome this new obstacle [84]. Medications targeting other muta-
tions, such as dasatinib, showed results in vitro but did not reproduce results in Phase
IB/II studies of 77 patients with previously treated mCRC [85]. Some non-targeted drugs
showed positive results in these patients [86]. Some studies indicate that simvastatin plus
cetuximab reduces the proliferation of KRAS mutant cells and suppresses v-raf murine
sarcoma viral oncogene homolog B1 (BRAF) activity in these patients [87,88], and that
Metformin reverses acquired resistance in KRAS to anti-EGFR drugs [89].

2.2.3. Resistance Mechanism PI3KCA/AKT

The PI3K/AKT signaling pathway, one of the components of the EGFR pathway, when
activated, is an essential contributor to the growth, proliferation, and survival of multiple
solid tumors [90,91]. The most frequently mutated gene that enhances this pathway is
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), mainly
in exon 9, 20, or both [92,93]. The frequency of these mutations in patients with CRC changes
according to the detection technique used [94], but varies between 7 and 32% [93–95].
There is a positive association between PIK3CA mutations and clinical features, such
as proximal location (OR = 1.79; 95% CI: 1.39–2.29) and mucinous histology (OR = 1.86;
95% CI: 1.50–2.31) [94]. It is also related to a worse prognosis [93,96].

PI3K inhibitors may contribute to the control of tumor growth, regardless of driver
genotypes [91]. Mutations in PIK3CA lead to the permanent activation of the EGFR
pathway, promoting resistance to EGFR-blocking effects and decreasing the response rate
of anti-EGFR therapies, with a relative risk of 0.56 (0.38–0.82, 95% CI) [97]. Other drugs
on the PI3K axis are being developed to act in cases of PI3KCA mutations, such as AKT



Cancers 2023, 15, 3023 6 of 21

inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and dual inhibitors of PI3K
and mTOR [93], but they are still in the initial phases [98].

In patients with mutated PI3KCA colorectal cancer, regular use of aspirin is associated
with a blockade of the PI3K pathway, causing suppression of cancer cell growth and
induction of apoptosis [99,100]. The post-diagnosis use is associated with a higher OS
(HR = 0.83; 95% CI, 0.75–0.9) and superior colorectal cancer-specific survival (HR = 0.78,
95% CI, 0.66–0.92) [101]. In patients with PI3KCA WT, it is not associated with differences
in these values [102]

Phosphatase and Tensin homolog (PTEN) is a negative regulator of the PI3K/AKT
pathway, and mutations are seen in 5.8% of CRC patients [103,104]. Loss of this regulator
results in permanent activation of the PI3K/AKT pathway, generating resistance to anti-
EGFR drugs [103,104]. PTEN-negative status is correlated with worse response rates and
lower PFS than PTEN-positive status [105,106].

2.3. BRAF Mutations

BRAF mutations are present in 5–21% of patients [107–109], mainly a valine to glutamic
acid substitution at codon 600 (V600E), and are correlated with worse prognoses [110]. This
mutation correlates with downstream MEK and ERK phosphorylation, making mitogen
activation a permanently activated protein kinase (MAPK) pathway, promoting tumor cell
growth and survival [111]. These mutations are associated with a high stage at diagnosis,
poor differentiation, serrated architecture, and mucinous histology [111–116]. BRAFV600E-
mutated CRC has a median survival of approximately one-third of non-BRAFV600E-
mutated tumors (1 year vs. 2–3 years) [107,117]. The National Comprehensive Cancer
Network (NCCN) recommends testing for mutations of KRAS/NRAS and BRAF genes in
all patients with mCRC [118].

BRAF-inhibitor monotherapy in BRAFV600E-mutated CRC has low response rates,
which is linked to incomplete inhibition of MAPK signaling in tumor cells [119,120].
BRAF inhibition generates a feedback activation of EGFR, causing an increase in the
EGFR pathway and its consequences [121]. The addition of targeted therapies to BRAF
and EGFR results in synergistic inhibition of BRAFV600E-mutant CRC [122,123]. Vemu-
rafenib, the oral selective inhibitor of the BRAFV600 kinase, is suggested as a possibility for
BRAFV600E mutation-positive patients by the NCCN [118], but studies vary in confirming
its efficacy [124–127].

The phase III “Binimetinib, encorafenib, and cetuximab in BRAF600E-mutated CRC”
(BEACON) trial showed the efficacy of another BRAF inhibitor, encorafenib, in dual-
targeted EGFR and BRAF therapy as second-line systemic therapy for BRAFV600E-mutated
CRC. In this study, the objective response rate (ORR) for the triple regimen (encorafenib
and binimetinib, a MEK inhibitor, with cetuximab) was 26%, compared with 2% in the
control group. The Median OS was 9 months for the triple regimen and 5.4 for the control
group (p < 0.0001, 75) [123]. The use of triple therapy in clinical practice may be related
to drug toxicity events, and drugs must be monitored constantly [128,129]. More recently,
new local delivery technologies, nanocarriers (NCs), are being tested that propose to reduce
these toxicity events by delivering medications precisely [129]. In the case of colorectal
cancer, NCs that use CEA and CD44 receptors, both well-established biomarkers for CRC,
have shown to be especially promising, with high specificity for tumor cells [130,131].

The Encorafenib, binimetinib and cetuximab in subjects with previously untreated
BRAF-mutant CRC (ANCHOR-CRC) (NCT03693170) study released results in August 2022:
the investigator-assessment confirmed that ORR based on local tumor assessments was
47.8% (95% CI 37.3–58.5%), and the median PFS per local review was 5.8 months
(95% CI 4.6–6.4 months) [132].
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Patients with mCRC who underwent chemotherapy with FOLFOX or CAPEOX in
the last 12 months and are BRAFV600E-mutation-positive have as therapeutic options
recommended by the NCCN the use of encorafenib plus cetuximab or vemurafenib [118].

2.4. HER2

HER2 is the only member of the EGFR family that is not activated by ligands but
by homo or heterodimerization with other ligand-bound receptors [133], resulting in
the activation of signal transduction pathways (RAS-RAF-ERK and PI3K-PTEN-AKT),
which control cell growth and differentiation [134]. High HER2 expression is found in
2–11% of CRC cases [135]. HER2 amplification and KRAS, NRAS, and BRAF mutations
simultaneously are very unlikely in advanced CRC [136].

In addition to functioning as an oncogenic driver, HER2 is a mediator of resis-
tance to anti-EGFR therapies [137]. In patients with de novo HER2 amplification, PFS
(PFS 89 vs. 149 days; p = 0.0013) and OS (307 × 515 days) are lower than in patients with-
out amplification, when both treated with anti-EGFR targeted therapies [137].

Targeted therapy for the HER2 pathway in cancers in general currently relies on
three medications with different mechanisms: trastuzumab, an HER2-targeted monoclonal
antibody that binds to the extracellular domain; pertuzumab, a recombinant humanized
monoclonal antibody that inhibits the heterodimerization of HER2 with other HER2 recep-
tors; and lapatinib, the tyrosine kinase inhibitor against EGFR1 and HER2 [137].

The HERACLES-A, a multicenter open-label phase II trial (HER2 Amplification for
Colorectal Enhanced Stratification), used trastuzumab plus lapatinib in HER2-positive
KRAS exon 2 WT advanced CRC patients who were resistant to first-line treatments,
including cetuximab [138]. In this study, an ORR of 30% was found with a median duration
of response of 9.5 months and a median PFS of 21 weeks (95% CI 16–32 weeks) [138].
HERACLES-B, a phase II study with only twelve patients treated and eight assessed for
response, evaluated the combination of pertuzumab and ado-trastuzumab emtansine
(T-DM1), an antibody–drug conjugate linking trastuzumab to a microtubule inhibitor
chemotherapy, in patients with mCRC HER2-positive KRAS exon 2 WT. In that study, a
decrease in tumor volume was found in 87% of patients [139].

The MyPathWay (pertuzumab plus trastuzumab for HER2-amplified metastatic col-
orectal cancer NCT02091141) trial is still ongoing [140]. However, interim data point to
a PFS of 2.9 months, an OS of 11.5 months, and an overall response rate gain of 32% in
patients with mCRC HER2-amplified treatment with double treatment of trastuzumab and
pertuzumab [141].

2.5. Immune Checkpoints

Mismatch-repair deficiency (dMMR) is found in 15% of all colorectal cancer pa-
tients [142]. Eighty percent of patients with dMMR are sporadic cases, primarily due
to methylation of the mutL homolog 1 (MLH1) promoter gene. The hereditary cases are due
to germline mutations in the MLH1 and mutS homolog 2 (MSH2) genes [143]. These events
result in the cells being unable to repair mutations, causing a significant accumulation of
these, generating tumors with high microsatellite instability (MSI-H) [144,145]. MSI-H is
associated with increased risk for CRC, particularly with high tumor mutational burden
and higher numbers of tumor-infiltrating lymphocytes [145,146]. The presence of dMMR
alters the chance of responsiveness to specific conventional chemotherapy regimens and
encourages the possibility of adding other treatments [147].

The immune system identifies the high tumor mutational burden generated by the
propensity to mutations promoting a series of secondary signals that regulate the im-
mune system response [148,149]. The programmed death 1/programmed death 1–ligand
(PD-1/PD-L1) receptor-ligand system and Cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) play a fundamental role in this regulation, being responsible for the tolerance or
not of the immune system to those cells [150,151]. Malignancies often have elevated levels
of checkpoint inhibitors such as CTLA-4 and PD-L1, significantly higher in mCRC, which
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interferes with the host immune response and confers resistance of these tissues to the host
immune system [152]. Co-high expression of tumor PD-L1 and CTLA-4 in CRC tissues is
a negative predictor of OS (HR 3.86, 95% CI 1.71–8.51, p = 0.001 in the membrane-bound
receptor form and HR 5.72, 95% CI 1.87–14.54, p = 0.004 in the soluble form), in addition to
being an independent prognostic factor for poor disease-free survival [153].

Immune checkpoint inhibitors (ICI) act on co-inhibitory receptors, such as CTLA-4
and PD-1, on immune system cells, or their ligands, such as PD-L1, on tumor and immune
cells, in order to prevent the resistance of these cells to the immune system, potentiating
the cytotoxic killing of tumor cells [154].

PD-1 blockage using antibodies in patients with MSI-H or dMMR mCRC has become
an efficient treatment option [155]. Pembrolizumab, a humanized IgG4 antibody, has
been approved for the treatment of mCRC by the FDA [156]. The recently published
“Health-related quality of life in patients with MSI-high or dMMR mCRC treated with
first-line pembrolizumab versus chemotherapy” (KEYNOTE-177) randomized, open-label,
phase III study compared Pembrolizumab versus chemotherapy for MSI-H or dMMR in
mCRC patients, with a median follow-up of 44.5 months (IQR 39.7–49.8). Although the
study did not obtain a median overall survival for patients treated with Pembrolizumab
due to the planned alpha of 0.025 for statistical significance not being achieved, data
for PFS were promising [157]. The median PFS for the pembrolizumab-treated group
was 16.5 months (95% CI 5.4–38.1) versus 8.2 months (6.1–10.2) for chemotherapy-treated
patients (HR 0.59, 95% CI 0.45–0.79) [157]. A lower rate of serious adverse events was
also found in patients treated with pembrolizumab (16%) compared with those treated
with traditional chemotherapy (29%), pointing to pembrolizumab as an efficient option for
first-line therapy in patients with MSI-H or dMMR mCRC [157].

Nivolumab, another humanized monoclonal IgG4-based PD-1 antibody, has been
FDA-approved for use alone or in combination with ipilimumab, the CTLA-4 inhibitor,
in patients with mCRC who have progressed following first-line chemotherapy treat-
ment [118]. The study that resulted in this approval was the “Nivolumab in patients with
metastatic DNA dMMR or MSI-high CRC” (CheckMate-142) study; the phase II, open-label,
multicenter study first investigated the use of Nivolumab in patients with MSI-H or dMMR
mCRC after the use of first-line therapy, finding an objective overall response rate of 31.1%
(95% CI 20.8–42.9%), median PFS of 14.3 months (95% CI 4.3-NE), and 12-month OS of
73.4% (95% CI 62–82) [158]. In this same study, Nivolumab plus low-dose ipilimumab for
MSI-H/dMMR was evaluated as a possible first-line treatment in mCRC patients [159].
ORR was 69% (95% CI 53–82), and the disease control rate was 84% (95% CI 70.5–93.5), with
a 13% complete response rate. No median PFS or median OS was found with a follow-up
of 24.2 months (24-month rates of 74 and 79%, respectively) [159].

Figure 1 and Table 1 summarize the described targeted therapies and important clinical
trials cited throughout this publication.
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Figure 1. Targeted Therapies in Colorectal Carcinoma. Explores the mechanisms involved in the
pathophysiology and development of colorectal carcinoma, drug interventions, and their targets
within these mechanisms. The drugs mentioned are those approved by the FDA and already used in
specific therapeutic strategies to treat CRC. All of these are explored more extensively throughout
this review. Produced with biorender.com (accessed on 5 September 2022).
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Table 1. Key Trials for Target Therapies. Summarizes the most commonly used target therapies in the treatment of mCRC by the NCCN guideline and some of its
critical trials, exploring their specificities, such as characteristics, design, and results.

Target Agent Key trial Characteristics N Design Comparison PFS OS RR

EGFR

Cetuximab CRYSTAL
NCT00154102

mCRC
first-line 1198

Phase III, multi-center,
randomized, parallel

assignment, open label.

FX + Cetuximab
vs. FX

8.9
vs.
8.0

19.9 vs. 18.6 46.9% vs.
38.7%

Panitumumab PRIME
NCT00364013

mCRC first-line
(KRAS WT)

1183
Phase III, multi-center,
randomized, parallel

assignment, open label

FX + Panitumumab
vs. FX

9.6
vs.
8.0

23.9 vs. 19.7 55.21%
vs. 47.68%

mCRC first-line
(KRAS Mutant)

7.3
vs. 8.8 15.5 vs. 19.3 39.53% vs.

40.2%

BRAF + MEK

Vemurafenib SWOG
NCT02164916

mCRC
BRAFV600E-

mutant
106

Phase II, multi center,
randomized, crossover
assignment, open label.

CIH + Vemurafenib
vs. CIH 4.3 vs. 2.0 9.6 vs. 5.9 16% vs.

4%

Dabrafenib +
Trametinib

Concoran
NCT01750918

mCRC
BRAFV600E-

mutant
43 Phase I, open-label Dabrafenib 3.5 NR 12%

Encorafenib +
binimetinib

BEACON CRC
NCT02928224

mCRC
BRAFV600E-

mutant
702

Phase III, multi-center,
randomized, sequential
assignment, open label.

Encorafenib +
Binimetinib +
Cetuximab vs.

Irinotecan/cetuximab
OR

FOLFIRI/Cetuximab
(Investigator’s

choice)

4.3 vs. 1.51 9.03 vs.
5.42

29% vs.
2%

HER2

Trastuzumab +
pertuzumab

MyPathway
NCT02091141

mCRC HER2-
amplified/

overexpressed
57

Phase IIA, multi-center,
non-randomized,

parallel assignment,
open label.

Trastuzumab +
pertuzumab 2.9 11.5 32%

Trastuzumab +
lapatinib

HERACLES
NCT03225937

mCRC HER2
positive 54

Phase II, multi-center
non-randomized, two

sequential cohorts,
open label.

Trastuumab +
lapatinib 4.9 10.7 30%
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Table 1. Cont.

Target Agent Key trial Characteristics N Design Comparison PFS OS RR

VEGF

Bevacizumab AVEX
NCT00484939 mCRC elderly 280

Phase III, multi-center,
randomized, parallel

assignment, open label

Bevacizumab +
capecitabine

vs.
Capecitabine

9.1
vs.
5.1

20.7
vs.

16.8

19%
vs.

10%

Regorafenib CORRECT
NCT01103323

mCRC
refractory to all

treatment
760

Phase III, multi-center,
randomized, parallel

assignment,
quadruple masking.

Regorafenib + BSC
vs.

BSC
1.96 vs. 1.73 6.53 vs. 5.03 1% vs. 0.4%

ZIV-aflibercept VELOUR
NCT00561470

mCRC
refractory to
oxaliplatin
treatment

1226

Phase III, multi center,
randomized, parallel

assignment,
triple masking

FOLFIRI +
aflibercept

vs.
FOLFIRI + placebo

6.90
vs.

4.67
13.50 vs. 12.06

19.8%
vs.

11.1%

Ramucirumab RAISE
NCT01183780

mCRC
refractory to all

treatment
1072

Phase III, multi center,
randomized, parallel

assignment,
quadruple masking

FOLFIRI +
Ramucirumab

vs.
FOLFIRI +

placebo

5.7
vs.
4.5

13.3
vs.

11.7

13.4%
vs.

12.5%

PD-1

Pembrolizumab KEYNOTE-164
NCT02460198

locally
advanced

unresectable
CRC or mCRC +

treatment
refractory or

dMMR/MSI-H

124

Phase II, multi center,
non-randomized, single

group assignment,
open label

Pembrolizumab 2.3 31.4 32.8%

Nivolumab CheckMate142
NCT0206188

mCRC
dMMR/MSI-H 74

Phase II, multi center,
non-Randomized,

parallel assignment,
open label

Nivolumab 36% * 49% * 39%
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Table 1. Cont.

Target Agent Key trial Characteristics N Design Comparison PFS OS RR

PD-1 + CTLA-4 Nivolumab +
Ipilimumab

CheckMate142
NCT0206188

mCRC
dMMR/MSI-H

45

Phase II, multi center,
non-Randomized,

parallel assignment,
open label

Nivolumab 3
mg/kg + 1 mg/kg

Ipilimumab
(4 doses) followed

by Nivolumab
3 mg/kg

51% * 72% * 71%

119

Nivolumab
3 mg/kg +

Ipilimumab
1 mg/kg

54% * 71% * 65%

Abbreviations: MOA—mechanism of action PFS—Progression-free survival OS—Overall survival RR—Response rate mCRC—metastatic Colorectal Cancer FX—FOLFOX
CIH—Cetuximab, Irinotecan Hydrochloride. BSC—Best Supportive Care *—48 months rate OS—survival RR—response rate MSI-H—Microsatellite instability-high PFS—Progression
free survival PD-1—Programmed death-1 dMMR—deficient mismatch repair CTLA-4—Cytotoxic T lymphocyte-associated antigen 4.
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3. Conclusions

Understanding the mechanisms involved in the pathophysiology and evolution of
colorectal carcinoma, as well as possible specificities that can influence clinical presentation
and outcomes of patients, allows for the development of more precise care. In this context,
the identification of molecular subtypes, and the elaboration of strategies aimed at each
of these, provide better final results for patients, fewer side effects, and reduce loss of
therapeutic adherence.
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Abbreviations

ANCHOR-CRC trial
The Encorafenib, binimetinib, and cetuximab in subjects with previously
untreated BRAF-mutant CRC trial;

ASPECCT study
Panitumumab versus cetuximab in patients with
chemotherapy-refractory wild-type KRAS exon two mCRC study;

BEACON trial
Binimetinib, encorafenib, and cetuximab in BRAF600E-mutated
colorectal cancer trial;

BRAF V-raf murine sarcoma viral oncogene homolog B1;
CI Confidence interval;

CONSIGN study
Regorafenib for patients with metastatic colorectal cancer who
progressed after standard therapy;

CORRECT study
Regorafenib monotherapy for previously treated metastatic
colorectal cancer;

CRC colorectal cancer;

CRYSTAL trial
Irinotecan and 5-FU/FA with or without cetuximab in the first-line
treatment of patients with mCRC trial;

CTLA-4 Cytotoxic T lymphocyte-associated antigen 4;
dMMR Mismatch-repair deficiency;
EGF Epidermal growth factor;
EGFR Epidermal growth factor receptor;
ErbB Erythroblastic leukemia viral oncogene homolog;
ERK Extracellular-signal-regulated kinase;
ETS Early tumor shrinkage;
FDA Food and Drug Administration;
FOLFIRI Infusional fluorouracil, leucovorin, and irinotecan;
HER Human Epidermal Growth Factor Receptor;
HERACLES HER2 Amplification for Colorectal Enhanced Stratification;

HORIZON trial
Cediranib with fluorouracil, leucovorin and oxaliplatin (mFOLFOX6)
versus bevacizumab with mFOLFOX6 as first-line treatment for patients
with advanced colorectal cancer;

HR Hazard ratio;
HRAS Harvey rat sarcoma viral oncogene homolog;
ICI Immune checkpoint inhibitors;
IQR Interquartile range;
JAK/STAT3 Janus kinase-signal transducer and activator of transcription 3;

KEYNOTE-177 study
Health-related quality of life in patients with MSI-high or dMMR mCRC
treated with first-line pembrolizumab versus chemotherapy study;
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KRAS Kirsten rat sarcoma viral oncogene homolog;
mCRC Metastatic colorectal cancer;
MEK Mitogen-activated protein kinase;
mFOLFOX6 Fluorouracil, leucovorin and oxaliplatin;
MLH1 mutL homolog 1;
MMP Matrix metalloproteinase;
MOA Mechanism of action;
MSH2 mutS homolog 2;
MSI Microsatellite instability;
mTOR Mammalian target of rapamycin;
NCCN National Comprehensive Cancer Network;
NRAS Neuroblastoma RASA viral oncogene homolog;
NSCLC Non-small-cell lung carcinoma;
OR Odds ratio;
ORR Objective response rate;
OS Overall survival;
PD-1 Programmed death 1;
PD-L1 Programmed death 1-Ligand;

PEAK study
Panitumumab Efficacy in combination with mFOLFOX6 against
bevacizumab plus mFOLFOX in mCRC subjects with KRAS WT
tumors (PEAK);

PFS Progression-free survival;
PI3K/AKT Phosphatidylinositol 3-kinases/AKT;
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha;

PRIME trial
Panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin
(FOLFOX4) versus FOLFOX4 alone as first-line treatments in patients
with previously untreated mCRC trial;

PTEN Phosphatase and Tensin homolog;
RAF1 V-raf-1 murine leukemia viral oncogene homolog 1;

RAISE trial

Ramucirumab versus placebo in combination with second-line FOLFIRI
in patients with metastatic colorectal carcinoma that progressed during
or after first-line therapy with bevacizumab, oxaliplatin, and
fluoropyrimidine trial;

RAS Rat sarcoma virus;
RR Response rate;
SAE Serious adverse events;
T-DM1 Trastuzumab emtansine;
VEGF Vascular endothelial growth factor;

VELOUR trial
VEGF trap (aflibercept) with irinotecan in colorectal cancer after failure
of oxaliplatin regimen trial;

WT Wild type.
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