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Simple Summary: Approximately 50% of residual masses requiring surgery after chemotherapy in
non-seminomatous germ cell tumors consist of necrosis/fibrosis. We aimed to develop a score to
predict the malignant character of these masses to avoid surgical overtreatment and the complications.
In a retrospective study, we included 76 patients, with 149 residual masses. The score was constructed
from the textures of the masses on a computed tomography scan with a free software. In conclusion,
our score may help in the prediction of the malignant nature. However, these results are insufficient
to simply select patients for surgery.

Abstract: After chemotherapy, patients with non-seminomatous germ cell tumors (NSGCTs) with
residual masses >1 cm on computed tomography (CT) undergo surgery. However, in approximately
50% of cases, these masses only consist of necrosis/fibrosis. We aimed to develop a radiomics score
to predict the malignant character of residual masses to avoid surgical overtreatment. Patients
with NSGCTs who underwent surgery for residual masses between September 2007 and July 2020
were retrospectively identified from a unicenter database. Residual masses were delineated on post-
chemotherapy contrast-enhanced CT scans. Tumor textures were obtained using the free software
LifeX. We constructed a radiomics score using a penalized logistic regression model in a training
dataset, and evaluated its performance on a test dataset. We included 76 patients, with 149 residual
masses; 97 masses were malignant (65%). In the training dataset (n = 99 residual masses), the best
model (ELASTIC-NET) led to a radiomics score based on eight texture features. In the test dataset,
the area under the curve (AUC), sensibility, and specificity of this model were respectively estimated
at 0.82 (95%CI, 0.69–0.95), 90.6% (75.0–98.0), and 61.1% (35.7–82.7). Our radiomics score may help
in the prediction of the malignant nature of residual post-chemotherapy masses in NSGCTs before
surgery, and thus limit overtreatment. However, these results are insufficient to simply select patients
for surgery.
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1. Introduction

Testicular cancer is the most common malignancy among men aged between 20 and
35 years [1]. Malignant tumors of the testis are found in 98% of germ cell tumors (GCTs)
and can be divided into two groups: pure seminomatous germ cell tumors, which are more
common, and non-seminomatous germ cell tumors (NSGCTs) in 45% of cases. NSGCTs
consist of embryonal carcinoma, teratoma, yolk sac tumor, choriocarcinoma, and seminoma,
in varying proportions [2]. At the time of diagnosis, approximately 60–70% of patients have
stage I disease (localized disease), and 30–40% of patients are diagnosed with metastatic
disease. According to the International Germ Cell Cancer Collaborative Group (IGCCCG)
risk classification, patients with metastatic disease are treated with three or four cycles
of platin-based polychemotherapy protocols [3], eventually followed by residual tumor
resection according to the size and an objective response after chemotherapy [4,5].

Residual lesions should be evaluated using thoraco-abdomino-pelvic computed to-
mography. For NSGCTs, any residual mass greater than 1 cm in the minor axis on post-
chemotherapy re-evaluation computed tomography (CT) should be surgically removed [6].
Indeed, unlike pure seminomatous germ cell tumors, the use of 18-fluorodeoxyglucose
positron emission tomography (18-FDG-PET) to select NSGCTs with a residual mass for
surgery is not relevant because of false-negative teratomas [7]; the only selection criterion
is therefore the size criterion on the CT scan. Histological analysis of these residual masses
revealed 50% necrosis/fibrosis, 40% teratomas, and 10% active cancer cells [8–11].

Residual tumor resection does not solely consist of tumor removal but also regional
surgery [12], with combined procedures in 13.5% of cases with inherent risks (vascular,
bone, and visceral surgery) [13–15].

Several studies have attempted to determine predictive factors to classify residual
masses, including pre- and post-chemotherapy tumor marker assays, initial presence of
teratoma, residual mass size, and regression of masses during chemotherapy [16–19]. Two
models have shown potential in predicting the histology of residual masses: Vergouwe’s
model, based on six predictive factors (histology of the primary tumor, serum alpha-
fetoprotein (AFP) levels before chemotherapy, human chorionic gonadotrophin (hCG),
lactate dehydrogenase (LDH), residual mass size measured by CT, and variation in mass
size) [20]; and Leão’s model (Princess Margaret model), based on four predictive factors
(presence of teratoma in the orchidectomy, pre-chemotherapy AFP, size of masses before
chemotherapy, and variation in mass size during chemotherapy) [21]. However, the dis-
crimination ability of both models to distinguish non-malignant/malignant residual lesions
is not sufficient to safely select patients for resection and thus prevent overtreatment [22].
Thus, to date, no standard imaging procedure (including PET) or prognostic model has
reliably predicted the histology of the residual mass.

Recently, a field of research known as radiomics has been developed. It involves
identifying associations between qualitative and quantitative information extracted from
standard imaging to identify predictive and/or prognostic information/factors to facilitate
medical decision making [23–25]. This analysis of different radiomics parameters, generally
grouped in a predictive or prognostic algorithm, aims to improve the purely visual analysis
performed by radiologists.

Several studies have suggested the predictive and/or prognostic value of radiomics
(sometimes coupled with clinical data) in oncology, particularly on lymph node status in
colorectal, lung, esophageal, and bladder cancers [26–30].

Radiomics in residual masses after chemotherapy in NSGCTs, possibly coupled with
clinicopathological data, has been studied with promising results [31,32]. However, these
models remain poorly described or consist of machine-learning methods that limit their
use in daily practice and the performance of these methods has remained insufficient to
change practices.

The present study aimed to develop and validate a predictive model including a
radiomics score based on post-chemotherapy contrast-enhanced CT texture analysis for the
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histopathological presence of malignant versus benign residual retroperitoneal masses in
patients with NSGCTs.

2. Materials and Methods
2.1. Patients

In this retrospective monocentric study, all consecutive patients with histologically
proven NSGCTs, between September 2007 and July 2020 at the Oscar Lambret Center, were
screened. Inclusion criteria were a primary testicular location and retroperitoneal lymph
node involvement, patients who received platinum-based chemotherapy, and patients who
underwent retroperitoneal lymphadenectomy after normalization of tumor markers as
recommended. Participants were identified from a hospital database of patients with a
germ cell tumor who underwent surgery for residual masses after chemotherapy. Exclusion
criteria were patients for whom the pathological results of orchidectomy were not available,
those with a primary extra-testicular location, and those who had not received platinum-
based chemotherapy. Additionally, we excluded patients with post-chemotherapy injected
CT scans unavailable or deemed to be of poor quality for defining residual masses, and
those who refused to participate in the study.

Clinical, scanographic, and pathological data were retrospectively extracted from
hospital medical records. Data were collected for each patient and residual mass.

The Institutional Review Board of the Oscar Lambret Center has confirmed that
no ethical approval was required (number CEC-2023-006). This study was conducted
in compliance with the “reference methodology” (MR004) adopted by the French Data
Protection Authority (Commission nationale de l’informatique et des libertés; CNIL).
Informed consent was waived and we checked that patients did not object to the use of
their clinical data for research purposes. All data were pseudonymized.

2.2. Texture Analysis

Tumor texture analysis was performed on contrast-enhanced CT images acquired
during the portal phase. After loading the DICOM (digital imaging and communica-
tions in medicine) anonymized files, each retroperitoneal residual mass with an available
histopathological correlation was delineated in 3D using LifeX (version 7.2.0, www.lifexsoft.
org), free software for calculating radiomics features in multimodal imaging. Trained
radiologists reviewed and corrected all delineations. Residual masses were labeled as either
“benign” (necrosis or fibrosis) or “malignant” (viable tumor or teratoma) on histopathology.
Residual masses with inconclusive correlations between CT imaging and histopathology
were excluded from further analysis.

Before feature extraction, all images underwent standardized preprocessing as follows:
distance from neighbors of 1; spatial resampling to 2 × 2 × 2 mm; intensity discretization
to a bin width of 10; and absolute intensity rescaling using a scale from −1000 to 3000 [33].

2.3. Statistical Analysis

We split the sample of residual lesions into two datasets: a training dataset (including
2/3 of the entire sample) to build the model and a test dataset (including 1/3 of the sample)
to evaluate the model performance.

We modeled the risk of residual malignant lesions using logistic regression, with the
explanatory variables as continuous variables leading to the construction of a score. It was
not possible to calculate the number of lesions required for this type of modeling, given the
unknown parameters studied and the modeling chosen (penalization by ELASTIC-NET or
another approach). However, we could ensure a certain power by considering a simplified
approach consisting of reducing our model to the analysis of the association between the
risk of residual malignant lesions and a binarized factor: high versus low score. Overall,
the expected proportion of benign lesions is 50%. For a binary factor (R+/R−) equally
distributed in the population (pR+ = pR− = 50%), a total of 110 lesions were necessary
to ensure a power of 90% if this factor was associated with an OR of 5.4, such that the

www.lifexsoft.org
www.lifexsoft.org
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probability of a benign lesion was 70% if R− and 30% if R+ (or the reverse). The test
was performed at the two-sided 0.001% threshold, to account for the multiplicity of the
tests. Assuming that a patient would have an average of 1.5 lesions, 74 patients were
required in the training sample to analyze 110 lesions. The test sample had to include
65 lesions. Therefore, 110 patients were required to ensure the analysis of 165 residual
masses. Assuming an annual recruitment of approximately 15 patients at the Oscar Lambret
Center, the analysis of patients over a period of 7.5 years (2013–2020) should allow for this
number of patients to be reached.

The classical methods of descriptive statistics between the two groups (“benign” and
“malignant”) were used. The residual masses were separated into two samples: a training
sample (2/3) named “train” and a test sample (1/3) named “test”. A predictive model to
characterize the malignant or benign nature of the residual masses was developed on the
training sample and then tested on the test sample.

Considering high-dimensional data, we first kept the relevant variables (removing
extraction-specific features alone, those with more than 50% missing data, those identical
for all lesions, and those not conforming to feature definitions described by the Imaging
Biomarker Standardization Initiative (IBSI) [34]). Then, to make the distribution of feature
values comparable and of the same order, the variables were centered and reduced. Second,
the correlations between the remaining variables were analyzed. The Spearman correlation
coefficient was calculated for each feature in each pair. We then ordered the coefficients in
descending order. If the correlation was greater than strictly 0.9 (or <−0.9), we performed a
Wilcoxon Mann Whitney test for the two correlated factors, to test the association between
the distribution of each feature and the variable “benign” vs. “malignant” lesion. The
feature obtaining the test with the lowest p-value was retained in the analysis [35]. Finally,
the selection of radiomics features associated with the malignant character of the histology
of the residual masses was performed using penalized logistic regression in the training
set [36]. We fitted two models: ELASTIC-NET and least absolute shrinkage and selection
operator (LASSO). For each of the models, a grid search approach using a five-fold cross-
validation provided the penalty term(s) (one term for LASSO and two for ELASTIC-NET)
that minimizes the average deviance on the different folds. We then selected the model with
the best AUC on the training set. Based on the selected model, we calculated a radiomics
score that corresponds to the probability of a lesion to be malignant, derived from the
linear combination of the selected features, weighted by their regression coefficients. We
estimated the sensitivity, specificity, positive and negative predictive values, and their 95%
exact binomial confidence intervals (95%CI) considering several thresholds to classify the
predictions as benign versus malignant.

The performance of the radiomics score built on the training dataset was finally
evaluated on the test dataset.

The impact of adding clinico-biological factors to the radiomics score on the discrimi-
nation ability was also analyzed within the limits of the available data by comparing the
AUC of the two models [37].

These analyses were performed by residual mass.
Stata v17.0 software (StataCorp. 2009. Stata statistical software: Release 11. Col-

lege Station, TX, USA, StataCorp LP) was used for the analyses. The reported statistical
significance levels were all two-sided, with the statistical significance set at 0.05.

3. Results
3.1. Patient and Residual Masses Characteristics

Of 283 patients with a germ cell tumor who underwent surgery for residual masses,
76 were finally included in the study (Figure 1).
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Figure 1. Flowchart of patients included in the study.

The patient and tumor characteristics are presented in Table 1. The median age of
the patients was 28 years (range, 17–46 years). The initial pathology of orchidectomy
specimens described teratomas in 28.9% of the patients. All patients received cisplatin-
etoposide-bleomycin (PEB) and at least three cycles of chemotherapy. Some patients (n = 7,
9.2%) received second-line chemotherapy with vinblastine-ifosfamide-cisplatin (n = 5) or
participated in a clinical trial (n = 2). CT was performed at a median time of 4.5 (range,
0.3–365) weeks after chemotherapy, and lymphadenectomy was performed at a median
time of 6.7 (range, 0.0–40) weeks after the CT scan. Most patients presented with one
residual mass (n = 45, 59.2%) or two to five (n = 28, 36.8%). The presence of a teratoma at
diagnosis was significantly associated with the risk of a malignant residual mass (p = 0.02).

The overall sample (n = 149 residual masses) was split between the training dataset,
which included 99 residual masses (n = 65 malignant), and the test dataset, which included
50 residual masses (n = 32 malignant). Descriptions of these two datasets are presented in
Appendix A, and the pathological results of the residual masses are summarized in Table 2.

Table 1. Patient and tumor characteristics, overall and according to the persistence of malignant
lesion in the surgical examination.

Characteristics
No Malignant Lesion At Least One Malignant

Lesion (N = 47)

Total
p-Value

(N = 29) (N = 76)

Age at diagnosis (years) N = 29 N = 47 N = 76 0.051 (1)

Median-(Range) 26 (17.0; 45.0) 31 (17.0; 46.0) 28 (17.0; 46.0)

Mean-SD 27.3 7 30.1 7.4 29.1 7.4

Initial pathology of
the tumor 0.02 (2)

Presence of teratoma 4 13.80% 18 38.30% 22 28.90%

Predominantly teratoma 2 6.90% 8 17% 10 13.20%

Mixed with teratoma 2 6.90% 10 21.30% 12 15.80%
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Table 1. Cont.

Characteristics
No Malignant Lesion At Least One Malignant

Lesion (N = 47)

Total
p-Value

(N = 29) (N = 76)

Absence of teratoma 25 86.20% 29 61.70% 54 71.10%

Predominantly embryonal
carcinoma 17 58.60% 25 53.20% 42 55.30%

Choriocarcinoma 1 3.40% 0 1 1.30%

Predominantly vitelline
tumor 2 6.90% 1 2.10% 3 3.90%

Predominantly seminoma 3 10.30% 0 3 3.90%

Burn-out tumor 0 2 4.30% 2 2.60%

Mixed without teratoma 2 6.90% 1 2.10% 3 3.90%

Chemotherapy

≥3 cycles of platinum-based
chemotherapy 29 100% 47 100% 76 100%

Time between end of
chemotherapy and
post-chemotherapy scan
(weeks) (MD = 8)

N = 24 N = 44 N = 68 0.95 (1)

Median-(Range) 4.6 (1.3; 18.4) 4.4 (0.3; 364.9 *) 4.5 (0.3; 364.9)

Mean-SD 5.6 3.8 14.5 54.6 11.4 44

Time between
post-chemotherapy scan
and surgery (weeks)

N = 29 N = 47 N = 76 0.72 (1)

Median-(Range) 6.9 (0.7; 27.9) 6.7 (0.0; 39.9) 6.7 (0.0; 39.9)

Mean-SD 7.2 5.5 7.9 6.5 7.6 6.1

Number of
persistent lesions 0.80 (3)

1 19 65.50% 26 55.30% 45 59.20%

2 to 5 9 31.00% 19 40.40% 28 36.80%

6 to 10 1 3.40% 1 2.10% 2 2.60%

>10 0 0.00% 1 2.10% 1 1.30%
(1) Wilcoxon Mann Whitney test. (2) Chi square test. (3) Fisher’s exact test. MD = Missing data. * 1 patient lost to
follow-up after chemotherapy.

Table 2. Pathological characteristics of the residual masses.

Anatomopathology of Residual Masses Train
(N = 99)

Test
(N = 50)

Total
(N = 149)

Malignant lesion

No (Necrosis or fibrosis) 34 34.3% 18 36.0% 52 34.9%

Yes 65 65.7% 32 64.0% 97 65.1%

- Viable tumor 10 10.1% 2 4.0% 12 8.1%

- Teratoma 55 55.6% 30 60.0% 85 57.0%
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3.2. Radiomics Feature Selection and Radiomics Score Construction

We selected a total of 105 relevant radiomics features from 178 radiomics features
extracted per lymph node.

Based on the analysis of their correlations (illustrated in Appendix B), we reduced the
number of radiomics features to 32.

Finally, based on the training dataset, we identified as the best model a regularized
ELASTIC-NET logistic regression (with alpha = 0.5 and lambda = 0.8), including a combi-
nation of eight factors from the thirty-two remaining texture features. The formula for the
resulting radiomics score is detailed in Appendix C. A good performance was observed in
the training dataset with an AUC of 0.856 (95%CI, 0.772–0.939).

3.3. Choice of Probability Threshold to Maximize Sensitivity

To define the probability threshold classifying the predictions as benign versus ma-
lignant, we first selected the value that maximized sensitivity while ensuring a specificity
greater than 65%. If the probability calculated by the model was greater than or equal to
the threshold, the lesion was classified as malignant by the model. The chosen threshold
resulted in a misclassification for 7 of the 65 malignant residual masses (classified as be-
nign) and for 11 of the 34 benign residual masses (classified as malignant). The model
performance is summarized in Table 3.

Table 3. Performance of the final model with selected thresholds on the training dataset and on the
test dataset.

Training Dataset Test Dataset

AUC = 0.856 (0.772–0.939) AUC = 0.823 (0.693–0.953)

Threshold Se
(95% CI)

Sp
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Se
(95% CI)

Sp
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

(1) 0.5621 89.2%
(79.1–95.6)

67.6%
(49.5–82.6)

84.1%
(73.3–91.8)

76.7%
(57.7–90.1)

90.6%
(75.0–98.0)

61.1%
(35.7–82.7)

80.6%
(64.0–91.8)

78.6%
(49.2–95.3)

(2) 0.5966
(Youden)

86.2%
(75.3–93.5)

76.5%
(58.8–89.3)

87.5%
(76.8–94.4)

74.3%
(56.7–87.5)

84.4%
(67.2–94.7)

66.7%
(41.0–86.7)

81.8%
(64.5–93.0)

70.6%
(44.0–89.7)

(3) 0.5095 92.3%
(83.0–97.5)

64.7%
(46.5–80.3)

83.3%
(72.7–91.1)

81.5%
(61.9–93.7)

93.8%
(79.2–99.2)

44.4%
(21.5–69.2)

75.0%
(58.8–87.3)

80.0%
(44.4–97.5)

Threshold (1) = 0.5621 is the threshold maximizing the sensitivity while ensuring a specificity greater
than 65%. Threshold (2) = 0.5966 is the threshold maximizing the Youden index, with equal weight
to sensitivity and specificity. Threshold (3) = 0.5095 is the threshold maximizing the weighted sum
(2 × Sensitivity + 1 × Specificity). Se: Sensitivity; Sp: Specificity; PPV: Positive Predictive Value; NPV: Neg-
ative Predictive Value; CI: Confidence Interval.

Other thresholds were then explored. Using the threshold that maximized the Youden
index, the best compromise between sensitivity and specificity, we determined a sensitivity
of 86.2% (75.3–93.5) and a specificity of 76.5% (58.8–89.3), with nine residual malignant
masses classified as benign and eight residual benign masses as malignant. In contrast,
when using the threshold that maximized a weighted mean of sensitivity and specificity
giving twice the weight to sensitivity, only five residual malignant masses were classified
as benign and twelve residual benign masses as malignant.

3.4. Performance of the Radiomics-Score on the Test Data Dataset

The model was applied to the test sample containing 50 residual masses (18 benign
and 32 malignant). As illustrated by Figure 2, the AUC in the test dataset was good at 0.823
(95%CI, 0.693–0.953), significantly higher than 0.50.
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by ELASTIC-NET logistic regression, estimated on the test dataset. The red line represents the ROC
curve of the model including the radiomics score defined by ELASTIC-NET logistic regression plus
the presence of teratoma in the orchidectomy, estimated on the test dataset.

Estimates of sensitivity, specificity, and positive and negative predictive values are
detailed in Table 3, considering the three thresholds defined on the training dataset. Using
the first threshold, we found a false-negative classification of three malignant residual
masses and a false-positive classification of seven benign residual masses. Using the second
threshold that maximized the Youden index, we found a false-negative classification of five
malignant residual masses and a false-positive classification of six benign residual masses.
When using the third threshold, which maximized the weighted mean giving twice the
weight to sensitivity, we found a false-negative classification of two malignant residual
masses and a false-positive classification of ten benign residual masses. Consequently, we
observed that the sensitivity could be maintained in the test dataset, while the specificity
largely decreased.

3.5. Distribution of the Radiomics Score According to Clinical Factors

As illustrated by Figure 3, we observed a strong association between the presence of
teratoma in the orchidectomy and the radiomics score (p < 0.001). We did not observe any
significant association between the other clinical characteristics (LDH, hCG, and AFP levels
before chemotherapy) and the radiomics score.

3.6. Evaluation of the Value of Adding Clinical Factors to the Radiomics Score

To improve our model, we included the clinico-biological variables validated in other
studies [20]. Unfortunately, we decided to only consider the presence of teratoma in the
orchidectomy specimen, as the other variables had too many missing data. However, this
addition did not improve the performance of the model; in the test sample, as illustrated
by Figure 2, AUC was estimated at 0.830 (95%CI, 0.704–0.956), not significantly different
from the model without the clinical factor (p = 0.13, AUC equality test).
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4. Discussion

The objective of our study was to establish a radiomics score from a training dataset to
distinguish the benign from malignant nature of residual post-chemotherapy masses in
NSGCTs, and to evaluate its performance in a test sample. It is the first study performed in
France on radiomics in the classification of residual masses post-chemotherapy in NSGCTs
aiming at limiting the overtreatment of patients in whom only necrosis remains.

The radiomics score model developed in our study achieved a good performance with
an AUC of 0.823 (0.693–0.953), sensitivity of 90.6% (75.0–98.0), and specificity of 61.1%
(35.7–82.7) in the test sample.

The addition of the validated clinical variable available in our study (presence of
teratoma during orchidectomy) did not significantly improve the discriminative ability of
our score.

Our study has several strengths: the entirety of each mass was delineated, which
allows a global consideration of its texture; all delineations were reviewed by experienced
radiologists; the methods used to extract features and to calculate the radiomics score are
clearly stated, contrary to the two previous studies; and the discriminative capacity of the
score was evaluated on a validation test sample.

The results of our study are similar to those of the two previous studies on the subject
in terms of patient characteristics and discriminative capacity [31,32]. Lewin et al. analyzed
102 residual masses from 77 patients in a retrospective study; their radiomics signature
was associated with an AUC of 0.74 (+/−0.028), without splitting their population and
validation in a test sample, in contrast to our study [31]. Baessler et al. used machine-
learning methods to predict the histology of 204 residual masses from 80 patients. They
also split their population into two samples and obtained in the validation test sample an
AUC of 0.81, sensitivity of 84%, and specificity of 78%. Contrary to our study, the method
used by Baessler et al. is not described enough to be reproduced in daily practice [32].
Our results are also consistent with those of other studies evaluating the discriminative
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ability of radiomics scores for lymph node status in other cancers, such as lung, colon, and
esophageal squamous cell carcinomas (between 76 and 84%) [26–29,38].

However, our study has some limitations. This was a retrospective study, and the
required number of participants was not reached. However, we included 76 patients with a
total of 149 residual masses (about 2 lesions per patient). Larger studies with independent
test datasets are required to increase the external validity. In our sample, we observed 38%
benign lesions, lower than that reported in other studies. In addition, the data analyzed are
not the raw data. They are extracted from different tomography machines; the thickness of
the slides and voxel size may be different according to exams. Harmonization of the data
could have been achieved, and recommendations for good practices were implemented
but without a consensus on such processes [39,40]. However, to generalize the results,
we standardized the image preprocessing [33] and only retained features that conformed
with the definitions of IBSI features [34]. In our analyses, we modeled the risk of residual
malignant lesions assuming that multiple lesions in a single patient were independent,
which can be deemed too simplistic. Lastly, we acknowledge the fact that some other
approaches could have been considered, such as more complex machine-learning tools.
The interest of the method used in our study is to lead to a predictor that can be easily used
by others.

We know that evolution is different between mature and immature teratoma, and it
will be interesting to dissociate these two entities. However, this precision was not available
in most of histopathological results and both subtypes can be mixed.

We chose to find a threshold that favors sensitivity while maintaining a high specificity,
but we could also have chosen to maximize sensitivity at the expense of specificity to
maximize the chances of diagnosing malignant residual masses. However, by decreasing
specificity, we move away from the goal of selecting patients for surgery. Finally, there were
too few clinico-biological factors available in our present study to be correctly evaluated.
Indeed, the patients in our study were operated on at Oscar Lambret Cancer Center (a
reference center for this type of surgery), but their initial management had often been
performed in other centers, and, thus, the radio-clinico-biological data prior to surgery (in
particular, the pre-chemotherapy CT scan) were often missing.

The application of radiomics to post-chemotherapy scans in NSGCTs can be used to
predict the nature of residual masses before surgery (benign/malignant) to avoid overtreat-
ment in a young population. However, these results remain insufficient for better selection
of patients for surgery.

The association with validated clinical factors [20,21] or post-chemotherapy miRNA
concentration (miR-371a-3p) [41] provides new opportunities to improve the discriminatory
capacity of radiomics.

Regarding radiomics, several studies have shown interest in harmonizing image
acquisition, reconstruction, and delineation methods [25,33]. Even if some authors are
currently trying to develop criteria for good practice in this field, in order to promote
the reproducibility of data, there has been little consensus until now. This will likely be
necessary to allow the emergence and reliability of this new tool.
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Appendix A

Table A1. Clinical patient characteristics in the train dataset and in the test dataset.

Characteristics Test
(N = 58)

Train
(N = 35)

Total
(N = 93)

Age at diagnosis N = 58 N = 35 N = 93
Median-(Range) 28.5 (17.0; 46.0) 28.0 (17.0; 44.0) 28.0 (17.0; 46.0)
Mean-SD 29.5 7.5 29.2 7.3 29.4 7.4

Initial anatomopathology of the tumor
Presence of teratoma 19 32.8% 8 22.9% 27 29.0%
Absence of teratoma 39 67.2% 27 77.1% 66 71.0%
Chemotherapy
≥3 cycles of platinum-based chemotherapy 58 100% 35 100% 93 100%
Time between end of chemotherapy and
post- chemotherapy scan (MD = 9) N = 54 N = 30 N = 84

Median-(Range) 4.6 (0.3; 47.3) 4.7 (1.3; 364.9) 4.6 (0.3; 364.9)
Mean-SD 6.3 7.6 18.1 65.8 10.5 39.7

Time between post-chemotherapy scan
and surgery (in weeks) N = 58 N = 35 N = 93

Median-(Range) 6.7 (0.0; 27.9) 6.0 (1.0; 39.9) 6.7 (0.0; 39.9)
Mean-SD 7.6 5.1 7.6 7.0 7.6 5.9

Number of persistent lesions
1 29 50.0% 16 45.7% 45 48.4%
2 à 5 26 44.8% 16 45.7% 42 45.2%
6 à 10 2 3.4% 2 5.7% 4 4.3%
>10 1 1.7% 1 2.9% 2 2.2%

MD = Missing data.

As we split the dataset of lesions between the training and the test datasets, a patient
may have lesions included in both datasets.

Appendix B. Analysis of Correlation between Radiomics Features

This analysis included the 105 features selected from the previous step.
It was performed on the training dataset.
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Appendix C. Equation of the Resulting Elastic-Net Logistic Model

P(residual mass is malignant|X = x) = e f (x)

1+e f (x) , with:

- X = (X 1, X2, X3, X4, X5, X6, X7, X8)

-
f (X) = 0.7910568− 0.4787364× X1 + 0.0041544× X2 − 0.0136558× X3+

0.2026077× X4 + 0.1076146× X5 − 0.0306858× X6 − 0.0081377× X7+
0.4502361× X8

X1 = MORPHOLOGICAL_Surface To Volume Ratio (IBSI:2PR5)
X2 = INTENSITY-BASED_Quartile Coefficient Of Dispersion (IBSI:9S40)
X3 = GLCM (Grey level co-occurrence matrix)_Joint Maximum (IBSI:GYBY)
X4 = GLCM_Normalised Inverse Difference Moment (IBSI:1QCO)
X5 = GLCM_Correlation (IBSI:NI2N)
X6 = NGTDM (Neighbourhood grey tone difference matrix)_Strength (IBSI:1X9X)
X7 = GLSZM (grey level size zone matrix )_ Normalized Grey Level Non Uniformity

(IBSI:Y1RO)
X8 = GLSZM_Zone Size Entropy (IBSI:GU8N)
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