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Abstract

:

Simple Summary


Clinical oncology urgently needs more specific and helpful new biomarkers to improve the diagnosis and prognosis of cancer. Research of the last decade proposes extracellular vesicles, particularly exosomes, as a natural source of new biomarkers; since tumors massively release them, they circulate through the body and can be detected and characterized in plasma samples of tumor patients. After a decade of up-and-coming pre-clinical research, the results of the few clinical studies have provided some exciting data supporting the use of exosomes, at least in the follow-up of tumor patients. However, the most convincing data have taught us that, on the one hand, circulating exosomes deliver known tumor markers, such as PSA; on the other hand, the exosome plasmatic levels in tumor patients consistently exceed those of normal controls. This information will be extremely useful in the clinical management of tumor patients.




Abstract


Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels’ clinical relevance and well-known biomarkers’ overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in influencing both the amount and the characteristics of the exosome released by tumor cells. In fact, acidity significantly increases exosome release by tumor cells, which correlates with the number of exosomes that circulate through the body of a tumor patient.
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1. Introduction


Virtually any cell, during its lifespan (from embryonic development to senescence), releases extracellular vesicles (EVs). EVs range in size from 30 nm to 1 μm, and the size distinguishes microvesicles (from 200 nm to 1 μm) from exosomes (from 30 nm to 150 nm) under both physiological and pathological conditions [1,2,3,4,5,6].



Exosome generation processes include a membrane shedding-like phenomenon (for microvesicles) and multivesicular body (MVB) formation (for exosomes) [5,6,7,8]. Other mechanisms cannot be excluded and are currently under investigation worldwide. EVs, particularly nanovesicles (exosomes), are a natural delivery system for a wide array of substances. Exosomes travel the body through both hematic and lymphatic circulations. Between the molecules that may be detected in exosome preparations, there are housekeeping proteins, including tetraspanins (i.e., CD63, CD9, and CD81), heat shock proteins (such as HSP-70), members of the Rab family, as well as other proteins, including Tsg101 and Alix. These markers have been used to characterize and quantify exosomes [9,10]. However, exosomes, during their formation, involve internal cell structures and the plasma membrane; this may lead to the acquisition of markers of the cellular source [5,6,7,8].



Overall, exosomes purified from body fluids may contain typical tags that help distinguish exosomes from other particles and markers indicating the cellular source and often the body compartment from which they are released. The above reasons make EVs, particularly exosomes, a potential source of disease biomarkers with possible use as a liquid biopsy in clinical oncology. In addition, exosomes have been shown to contain a series of nucleic acids, including DNAs, mRNAs, and miRNAs, that may represent an additional source of disease biomarkers [5,6,11]. However, exosomes also remove unnecessary molecules poorly degraded by the lysosomal system [12,13], thus emphasizing the broad and complex function of these nanovesicles in our body [1,4,5,6,12,13,14,15,16,17,18,19,20].



Exosomes can be found in many biological fluids, including blood, urine, saliva, stools, cerebrospinal, epididymal, amniotic, serous fluids (including pleural, pericardial, and peritoneal fluids), bronchoalveolar lavage fluid, synovial fluid, and breast milk [6,21,22,23,24,25,26]. Exosomes are released in a paracrine way within tissues, from where they are spilled into the bloodstream, often ending in tissues of body compartments far from the production site. For example, scientific evidence has shown that exosomes containing a reporter gene are released from a tumor, found in the blood, and end in the germ line of the gonads, with the potential to transfer the acquired genetic material to the progeny [27]. It is, therefore, conceivable that exosomes may well participate in the continuous genome remodeling that occurs in our body. The matter of fact is that exosomes are considered a natural source of disease biomarkers [5,6,11,25,26,27,28,29,30,31,32,33,34,35,36,37]. A series of exciting molecules have been identified in the plasma of both patients and healthy donors [5,6,7,11,29,32,38]. Clinical studies, while still very few as compared to pre-clinical information, are providing exciting information while often not entirely fitting with the aim of the studies [11,39,40,41], challenging the use of these data in clinical settings. The future goal of translational oncology is and will be to define the molecules’ cargo of body fluid-derived exosomes in tumor patients, also based on the evidence that tumor-released exosomes are involved in both tumor progression and metastasis [1,4,11,15]. Some unexpected but interesting findings propose the simple measurement of exosome plasmatic levels as a key prognostic value [41,42]. The clinical data show that, independently from the cancer histology (i.e., melanoma, prostate cancer, or oral cancers) and the technique used in the experimental protocol (e.g., immunocapture ELISA, nanoparticle tracking analysis (NTA), or nanoscale flow cytometry), patients displayed higher plasmatic exosome levels as compared to healthy donors [24,41,42,43]. Other interesting issues are the expression on plasmatic exosomes from tumor patients of acknowledged tumor markers (e.g., PSA and CEA) [44,45] and a series of surrogate tumor markers (e.g., Cav-1, HSP60, and carbonic anhydrase, such as CA IX) [24,43,46,47]. This review will introduce and discuss these issues to propose the best use of exosomes in clinical oncology.




2. A Technical Insight


A general discussion is given of the techniques used to purify and characterize exosomes from patient samples [5]. Currently, Nanoparticle Tracking Analysis (NTA) allows the determination of the number and size of the obtained EVs from either cell culture supernatant or body fluids. NTA acquires the Brownian movement of nanoparticles in a liquid suspension, analyzing the EVs’ concentration and size distribution in the sample. This is based on a single particle analysis with a serial correlation with the particle size [47,48]. The NTA analysis covers a broad range of particle sizes, ranging from 30 nm to 400–500 nm, thus distinguishing nanovesicles from microvesicles. NTA is, to date, considered the most reliable technique to analyze a mixed population of submicroscopical vesicles in human body fluids.



A preliminary analysis that might be performed on an EVS sample is transmission electron microscopy (TEM). While not allowing a quantitative evaluation, TEM is an integral approach to verifying whether samples under investigation contain submicroscopical vesicles and whether a round shape and the typical bilayer membrane are maintained after repeated centrifugation and ultracentrifugation. Moreover, vesicles may be phenotyped by immuno-TEM using immuno-gold-labeled antibodies. A disadvantage of TEM is that the samples undergo sequential rounds of fixing and dehydration before analysis, thus potentially inducing morphological damage [47,48]. However, it is advisable to evaluate exosomes by TEM analysis.



A rough evaluation of exosomes may also be performed by measuring the amount and type of exosomal proteins present in the sample. The last accepted guidelines (MISEV2018) have agreed on the following points that are required to establish that the sample under investigation contains exosomes: (i) enrichment in at least one transmembrane protein associated with the exosomal plasma membrane (e.g., tetraspanins CD9, CD63, CD81); (ii) enrichment in cytosolic proteins (e.g., TSG101, ALIX) [5,49]. The most commonly used techniques allowing this analysis are (i) Western blot, which is only a semi-quantitative approach not valid for the study of clinical samples. Moreover, it is expensive in terms of both the volumes required for the analysis and the time needed to obtain the results; it is undeniably a qualitative analysis, allowing the detection of many proteins at the same time; and (ii) flow cytometry allows simultaneous analysis of phenotyping (through labeling with fluorescent antibodies) and physical parameters (e.g., size and structure of particles). However, conventional cytometers could underestimate particles smaller than 300 nm, and a new generation of flow cytometers has been provided with both multi-angle lasers to improve particle resolution [50,51,52] and nanoscale equipment to include analysis of nanosized particles, also called nanoscale-flow cytometry, recently used in clinical studies [44,53].



A technical approach that allows us to simultaneously provide quantitative and qualitative data is the immunocapture-based ELISA. It was shown for the first time that immunocapture-based ELISA exosomes could be quantified and characterized from either cell culture supernatants or human plasma [24]. This technique was exploited in clinical investigations, including melanoma, prostate, and oral cancer patients [24,43,44]. This approach allows the analysis of the whole EV population, including exosomes. Fluorescence Activated Cell Sorter (FACS), while equipped with nanoscale flow cytometry, does not allow a broad spectrum of analysis or simultaneous analysis of different samples. Immunocapture-based ELISA looks ideal for this purpose since it will enable the detection and quantification of both exosome-specific antigens and tumor antigens on EVs isolated from small quantities of plasma simultaneously [24,43,44,53]. Recent data support the high level of versatility of the technique, with the identification of a series of housekeeping proteins, such as Rab5b, CD81, and CD63, and tumor-specific markers, such as PSA, but also surrogate tumor markers, such as Cav-1 and carbonic anhydrase [24,43,44,46,47,53].



Furthermore, this approach has been recently reported for characterizing urinary exosomes [25], thus representing a new approach for the follow-up of patients affected by urinary tract cancers. However, the goal will be to implement immunocapture-based ELISA with other methods, such as nanoscale flow cytometry (NFC) and NTA, as proposed in prostate cancer patients [41]. In the above study, statistical analysis of the results showed that immunocapture-based ELISA allows exosomal PSA detection and discriminates prostate cancer patients from both healthy subjects and benign prostate hypertrophy (BPH) patients with significantly higher sensitivity and specificity than serum PSA. Moreover, immunocapture-based ELISA allows for quantifying and characterizing several clinical samples simultaneously and in a broader population of EVs compared to nanoscale flow cytometry [53,54,55].




3. A Role of Exosomes in Cancer: From Preclinical to Clinical Data


Scientific evidence is accumulating that exosomes have a crucial role in tumor metastasis, passing through either the generation of a metastatic niche or a tumor-like transformation of mesenchymal stem cells in organs that are targets of metastasis [4,15,56,57,58]. However, the acidic pH of the tumor microenvironment plays a determinant role in at least three essential features: (i) the increased exosome release by tumor cells; (ii) determining the exosome cargo, including some tumor biomarkers [2,46,53]; and (iii) it is associated with a reduced size as compared to the heterogeneous size of those released at physiological pH [2,53]. The increased exosome release in acidic conditions correlates to the high plasmatic exosome levels compared to controls [44,53]. The reason why tumor cells increase the release of exosomes in acidic conditions may be related to the attempt to eliminate toxic molecules that tend to accumulate in the tumor microenvironment; the molecules to stop include antitumor drugs such as cisplatin [59]. This is further supported by the observation that antitumor medications contained in the exosomes released by tumors are in their native/active form, thus potentially being released into the bloodstream and getting into unaffected organs, contributing to the heavy side effects that sadly often occur in cancer patients. Between the molecules delivered by tumor exosomes, there are ion transporters (e.g., CAIX) that, together, are significantly increased in exosomes released in acidic conditions and conserve their full enzymatic function [46]. The CA has also been shown in the plasmatic exosomes of cancer patients; the same plasmatic exosomes have shown increased acidity compared to healthy subjects [47].



Another hurdle was the claim for the specificity of some markers identified on circulating exosomes of tumor patients that turned out not to be so specific for a given tumor. One example is glypican-1, which has been proposed as a specific marker of pancreatic cancer but also showed a high expression level in exosome purification from other cancers [56]. Too often, the specificity of an exosome-related tumor biomarker was not tested by comparing different cancer patients [60].




4. Exosomes Deliver Enzymatic Activity


One of the most effective mechanisms by which exosomes may up-load their content into target cells is the fusion between their membrane and the plasma membrane of a target cell [61]. Through the above mechanism, exosomes released by a primary tumor may contribute to the metastatic process once they get to a metastatic organ via the bloodstream [15,58]. This is further supported by a recent report showing that exosomes obtained from cancer patients’ plasma deliver proteins and molecules with evident enzymatic activity and an intraluminal pH suitable for enzyme activation [47]. Notably, it was also shown that in vitro, the acidic condition increases the expression of exosomes and proteins with enzymatic activity, such as carbonic anhydrase [46]. This information, on the one hand, further highlights the importance of exosomes as a natural delivery system for a broad array of molecules; on the other hand, it suggests that the research of disease biomarkers should also be directed to functional molecules rather than the mere expression of a protein.




5. Exosomes Deliver Nucleic Acids


At the time, exosomes were considered vesicles released by the cells with a significant commitment to scavenging cells from either toxic or unwanted material. Of course, this remains a function of extracellular vesicles, as witnessed by EVs in the stools and urine [6]. However, the discovery that EVs deliver nucleic acids has changed how these vesicles have been considered [19]. It has been shown that EVs, purified from either cell culture supernatant or human body fluids, contain mRNA, miRNA, long non-coding RNA (lncRNA), and DNA [11,62,63]. Most clinical studies reporting the nucleic acid cargo of body fluid-derived exosomes have been performed in tumor patients. The results suggest significant differences exist between tumor patients and healthy individuals, particularly in exosomal miRNA composition [32,64,65,66,67,68,69,70,71]. Currently, there is some inconsistency primarily due to technical and analytical issues, which too often create inhomogeneity between the samples, which in turn affects miRNA’s yield, integrity, and purity [5]. One important issue is the evidence that miRNAs are not always associated with exosomes, often being associated with either RNA-binding proteins (e.g., Argonaute 2) or lipoproteins (e.g., HDL and LDL) [5,65,66]. More recently, a commercially available isolation kit (MACS Exosome Isolation Kit, Miltenyi Biotec, Germany) is starting to be exploited to obtain a more purified exosome population, thus providing a more certain exosome-associated miRNA yield [72]. Comparably to the MACS method, immunocapture-based exosome purification may greatly help in obtaining exosomes from the ultracentrifuged material using antibodies directed against the proteins that are overexpressed on the exosome membrane (e.g., CD9, CD63, CD81, ALIX). The same approach may be exploited using plastic wells and magnetic beads as primary substrates [73]. This approach allows us to obtain a highly enriched exosome preparation, thus analyzing only the vesicles captured by the antibodies in terms of characterization of either miRNAs or RNAs present in the immunocaptured material. The immunocapture-based methodology has also been described and used in clinical trials [53,54,55]. However, it needs to be extensively exploited in analyzing the presence of exosome-associated nucleic acids in clinical samples using different approaches [74]. Another interesting area is related to the analysis of the presence of genomic DNA mutations in exosomes purified from clinical samples. DNA mutations are involved in many tumor advantages, most notably resistance to therapies, and represent a potential tumor biomarker [71]. Detecting exosomal DNA in clinical samples is receiving a large consensus in cancer patients [75,76,77,78] and other diseases, including viral-related pathological conditions [79]. In addition, recent reports have shown that exosomes purified and concentrated from body fluids, such as ascites, may express high levels of protein glycosylation [80]. While the data reporting critical roles of exosome associated RNAs is becoming bulky, we need more convincing evidence that they may represent helpful and reliable tumor biomarkers to be diffusely used in oncology laboratories worldwide. Therefore, it appears mandatory that it should need central management of the available data to get to a conclusive analysis.




6. Conclusions


To date, we have considerable data supporting the use of exosomes and EVs for the clinical management of tumor patients (Table 1). However, of course, it needs clinical validation to be considered an accurate diagnostic/prognostic tool in clinical oncology. What was an exciting hypothesis for the scientists involved in the field a decade ago is now scientific evidence that exosomes are a source of new biomarkers. However, while the discovery of new biomarkers still needs time to be translated into the clinic, some unexpected findings promise to need a shorter path to clinical use: (1) The evaluation of the number of circulating exosomes that are proven to be higher in patients with cancer as compared to healthy controls; (2) Plasmatic exosomes hyperexpress known tumor biomarkers (e.g., PSA, CEA).



Additional information is that plasmatic exosomes are smaller in tumor patients than in healthy and diseased controls and more acidic in tumor patients than controls. Thus, quantifying and characterizing exosomes in human body fluids represents a new tool for clinical oncologists and a non-invasive diagnostic/prognostic approach.



We have three methods that, when implemented, may offer a solid approach to using these methods together to quantify and characterize exosomes: Nanoparticle Tracking Analysis (NTA), immunocapture-based ELISA, and nanoscale flow cytometry (NFC). Using all these methodologies to describe exosome purification in clinical samples may represent a real advance in the clinical management of tumor patients. Another interesting approach is to use immunocapture of exosomes to optimize the detection of tumor biomarkers, particularly in detecting and validating tumor-specific miRNA. Possible future directions could be: (i) to identify physical-chemical properties of exosomes associated with some tumor phenotypes (e.g., intraluminal pH); (ii) to include the expression of active molecules within exosomes (e.g., carbonic anhydrase). Clinical studies are also needed to validate the existing data in a broader range of body fluids, with considerable advantages for patients by avoiding or limiting unnecessary invasive procedures and hopefully significantly reducing public health costs. In this sense, the data from studies performed in the urines of patients look very promising [25,26,64,80,81,82,83]. Most of all, we need to tidy up the increasing amount of clinical and pre-clinical data supporting the use of exosomes as a source of tumor biomarkers, using too often different technologies and different ways to obtain exosomes from other body fluids [84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111]. This review asks for a more strategic approach to obtaining data on exosomes from clinical samples of tumor patients. As challenging news, it has been recently reported that exosomes may deliver therapeutic antibodies that have been shown to maintain their full activity when expressed on exosomes [112]. This finding might be of paramount importance not only for therapeutic use but also for its potential as a new family of biomarkers for both the diagnosis and prognosis of cancer patients. Table 2 summarizes the ongoing clinical trials using exosomes as diagnostic/prognostic tumor biomarkers. It is straightforward from the table that the number of clinical trials is increasing, and the current number is awe-inspiring, up to 65. This means that in the following years, we will have more data to reason about the future directions of clinical research on exosomes. The current clinical research covers a broad panel of exosome-associated potential tumor biomarkers that will hopefully represent a promising future for clinical oncology.
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Table 1. Data from clinical investigations on extracellular vesicles.
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Tumor

	
Biomarkers

	
Source

	
References






	
Breast cancer

	
Breast cancer resistance protein (BCRP)

	
Plasma

	
[113]




	
Her2

	
Plasma

Serum

	
[114,115]




	
Glypican-1

	
Serum

	
[56]




	
Fibronectin

	
Plasma

	
[116]




	
Periostin

	
Plasma

	
[117]




	
Del-1

	
Plasma

	
[118,119]




	
miR-101, miR-372, and miR-373

	
Serum

	
[84]




	
miR-1246 and miR-21

	
Plasma

	
[85]




	
Colorectal cancer

	
Hsp60

	
Plasma

	
[38]




	
TSAP6/CEA

	
Plasma

	
[86]




	
Glypican-1

	
Plasma

	
[28]




	
CEA

	
Serum

	
[45,87]




	
CD147

	
Serum

	
[87]




	
Plasma

	
[89]




	
let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a

	
Serum

	
[90]




	
miR-19

	
Serum

	
[91]




	
miR-4772-3p

	
Serum

	
[92]




	
miR-21

	
Serum

	
[87]




	
miR-221

	
Serum

	
[94]




	
Esophageal squamous sell sarcinoma

	
miR-21

	
Serum

	
[95]




	
Gastric cancer

	
GKN1

	
Serum

	
[96]




	
TGF-β1

	
Plasma

	
[97]




	
RNA

	
Bile

	
[98]




	
miR-423-5p

	
Serum

	
[99]




	
Hematological tumors

	
CD9, CD13, CD19, CD30, CD38, and CD63

	
Serum

	
[100]




	
Hepatocellular carcinoma

	
miR-18a, miR-221, miR-222, and miR-224

	
Serum

	
[101]




	
miR-718

	
Serum

	
[102]




	
Laryngeal squamous cell carcinoma

	
miR-21 and HOTAIR (lncRNA)

	
Serum

	
[103]




	
Lung cancer

	
NY-ESO-1

	
Plasma

	
[104]




	
miR-125a-5p, miR-145, and miR-146a

	
Serum

	
[105]




	
miR-151a-5p, miR-30a-3p, miR-200b-5p, miR-629, miR-100, and miR-154-3p

	
Plasma

	
[106]




	
Melanoma

	
Caveolin-1

	
Plasma

	
[24]




	
HSP70 and HSP90

	
Plasma

	
[120]




	
MIA and S100B

	
Serum

	
[121]




	
Oral squamous cell carcinoma

	
CAV-1

	
Plasma

	
[43]




	
Ovarian cancer

	
EpCAM, CD24, and

CA-125

	
Plasma

	
[122,123,124]




	
TGF-beta1 and MAGE3/6,

	
Plasma

	
[125]




	
miR-21, miR-214, miR-200a, miR-200b, miR-200c, miR-203, miR-205, and miR-141

	
Serum

	
[126]




	
miR-21, miR-100, miR-200, miR-320, and

miR373

	
Serum

	
[107]




	
Pancreatic cancer

	
CD44v6, Tspan 8, EpCAM, and CD104

miR-1246

miR-3976

miR-4306

miR-4644

	
Serum

Urine

	
[64]




	
KRAS

P53 mutations

	
Serum

	
[71]




	
miR-17-5p and miR-21

	
Serum

	
[108]




	
miR-10b, miR-21, miR-30c, miR-181a, and miR-let7a

	
Serum

	
[127]




	
Glypican-1

	
Plasma

	
[109]




	
miR-191, miR-21, and miR-451a

	
Serum

	
[110]




	
miR-451a

	
Plasma

	
[111]




	
Prostate cancer (PCa)

	
PSA

	
Plasma

	
[44,53]




	
Urine

	
[25]




	
CA IX

	
Plasma

	
[47]




	
Survivin

	
Plasma

	
[128]




	
Exosome levels

	
Plasma

	
[41]




	
PTEN

	
Plasma

	
[129]




	
miR-141 and miR-375

	
Serum

	
[130]




	
miR-1290 and miR-375

	
Plasma

	
[131]




	
miR-141

	
Serum

	
[132]
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Table 2. Ongoing clinical trials using exosomes in tumor diagnosis.
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	NCT Number
	Status
	Disease
	Characteristics
	Ref.





	NCT03235687
	Active, not reciting
	Prostate Cancer
	Year: 2017

Population: n = 1000; Age: 50 years and older; Sex: male

Phase: Not applicable
	[133]



	NCT03974204
	Withdrawn
	Breast Cancer

Leptomeningeal Metastasis
	Year: 2019

Population: n = 0; Age: 18 years and older; Sex:

female

Phase: Not applicable
	[134]



	NCT05286684
	Recruiting
	Breast Cancer
	Year: 2023

Population: n = 30; Age: 18 years and older; Sex: female

Phase: Not applicable
	[135]



	NCT04781062
	Active, not recruiting
	Breast Cancer
	Year: 2021

Population: n = 367; Age: 18 years and older; Sex: female

Phase: Not applicable
	[136]



	NCT02662621
	Completed
	Cancer (Solid Tumors)
	Year: 2015

Population: n = 71; Age: 18 years and older; Sex: all

Phase: Not applicable
	[137]



	NCT04530890
	Recruiting
	Breast Cancer

Digestive Cancer

Gynecologic Cancer

Circulating Tumor DNA

Exosomes
	Year: 2021

Population: n = 1000; Age: 18 years and older; Sex: all

Phase: Not applicable
	[138]



	NCT04258735
	Recruiting
	Metastatic Breast Cancer
	Year: 2019

Population: n = 300; Age: 18 years and older; Sex: all

Phase: Not applicable
	[139]



	NCT04556916
	Recruiting
	Prostate Cancer
	Year: 2021

Population: n = 320; Age: 40 years and older; Sex: male

Phase: Not applicable
	[140]



	NCT03711890
	Recruiting
	Pancreatic Carcinoma

Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary Type
	Year: 2019

Population: n = 75; Age: 18 years and older; Sex: all

Phase: Not applicable
	[141]



	NCT02507583
	Completed
	Malignant Glioma

Neoplasms
	Year: 2015

Population: n = 33; Age: 18 years and older; Sex: all

Phase: Phase 1
	[142]



	NCT05218759
	Not yet recruiting
	Non-Small Cell Lung Cancer
	Year: 2022

Population: n = 30; Age: 18 to 75 years; Sex: all

Phase: Not applicable
	[143]



	NCT04427475
	Unknown status
	NSCLC Patients
	Year: 2020

Population: n = 200; Age: 18 years and older; Sex: all

Phase: Not applicable
	[144]



	NCT04636788
	Unknown status
	Pancreas Adenocarcinoma
	Year: 2020

Population: n = 102; Age: 18 years and older; Sex: all

Phase: Not applicable
	[145]



	NCT03542253
	Unknown status
	Early Lung Cancer
	Year: 2018

Population: n = 80; Age: child, adult, and older adult; Sex: all

Phase: not reported
	[146]



	NCT04529915
	Active, not recruiting
	Lung Cancer
	Year: 2020

Population: n = 470; Age: 40 years and older; Sex: all

Phase: not reported
	[147]



	NCT03821909
	Unknown status
	Pancreatic Cancer
	Year: 2018

Population: n = 30; Age: 18 to 80 years; Sex: all

Phase: not repoted
	[148]



	NCT03830619
	Completed
	Lung Cancer (Diagnosis)
	Year: 2017

Population: n = 1000; Age: 18 to 75 years; Sex: all

Phase: not reported
	[149]



	NCT04394572
	Completed
	Colorectal Cancer
	Year: 2021

Population: n = 80; Age: 18 years and older; Sex: all

Phase: not reported
	[150]



	NCT04155359
	Recruiting
	Bladder Cancer
	Year: 2020

Population: n = 3000; Age: 45 to 85 years; Sex: all

Phase: not reported
	[151]



	NCT01344109
	Withdrawn
	Breast Neoplasms
	Year: 2011

Population: n = 0; Age: 18 years and older; Sex: female

Phase: not reported
	[152]



	NCT05587114
	Recruiting
	Lung Cancer

Diagnosis
	Year: 2022

Population: n = 150; Age: 40 years and older; Sex: all

Phase: not reported
	[153]



	NCT05270174
	Not yet recruiting
	Explore Whether lncRNA-ElNAT1 in Urine Exosomes Can be Used as a New Target for Preoperative

Diagnosis of Lymph Node Metastasis
	Year: 2023

Population: n = 75; Age: 18 years and older; Sex: all

Phase: not reported
	[154]



	NCT03032913
	Completed
	Pancreatic Ductal Adenocarcinoma (PDAC)
	Year: 2017

Population: n = 52; Age: 18 years and older; Sex: all

Phase: not reported
	[155]



	NCT02702856
	Completed
	Prostate Cancer
	Year: 2014

Population: n = 2000; Age: 50 years and older; Sex: male

Phase: not reported
	[156]



	NCT04523389
	Unknown status
	Colorectal Cancer
	Year: 2020

Population: n = 172; Age: 18 years and older; Sex: all

Phase: not reported
	[157]



	NCT03694483
	Suspended
	Prostate Cancer
	Year: 2018

Population: n = 600; Age: 18 years and older; Sex: male

Phase: not reported
	[158]



	NCT04661176
	Active, not recruiting
	Prostate Cancer
	Year: 2020

Population: n = 500; Age: 22 years and older; Sex: male

Phase: not reported
	[159]



	NCT02393703
	Recruiting
	Pancreatic Cancer

Benign Pancreatic Disease
	Year: 2015

Population: n = 111; Age: 18 years and older; Sex: all

Phase: not reported
	[160]



	NCT01779583
	Unknown status
	Gastric Cancer
	Year: 2013

Population: n = 80; Age: 18 years and older; Sex: all

Phase: not reported
	[161]



	NCT04081194
	Unknown status
	New Tumor Diagnostics From Human Plasma Samples
	Year: 2016

Population: n = 15; Age: 50 to 90 years; Sex: all

Phase: not reported
	[162]



	NCT03236688
	Suspended
	Metastatic Castrate-Resistant Prostate Cancer
	Year: 2016

Population: n = 30; Age: 18 years and older; Sex: male

Phase: not reported
	[163]



	NCT04629079
	Recruiting
	Lung Cancer
	Year: 2020

Population: n = 800; Age: 18 years and older; Sex: all

Phase: not reported
	[164]



	NCT04939324
	Active, not recruiting
	Lung Cancer

Exosomes

Non-Small Cell Lung Cancer
	Year: 2021

Population: n = 30; Age: 18 years and older; Sex: all

Phase: Not Applicable
	[165]



	NCT04288141
	Recruiting
	HER2-positive Breast Cancer
	Year: 2019

Population: n = 40; Age: 18 years and older; Sex: all

Phase: not reported
	[166]



	NCT03874559
	Unknown status
	Rectal Cancer
	Year: 2018

Population: n = 30; Age: 18 years and older; Sex: all

Phase: not reported
	[167]



	NCT03738319
	Unknown status
	High-Grade Serous Carcinoma

Ovarian Cancer

Exosomes

Prognosis

Early Diagnosis
	Year: 2018

Population: n = 160; Age: 18 years and older; Sex: female

Phase: not reported
	[168]



	NCT04720599
	Completed
	Urologic Cancer
	Year: 2020

Population: n = 120; Age: 50 years and older; Sex: male

Phase: not reported
	[169]



	NCT05101655
	Completed
	Osteosarcoma

Pulmonary Metastases
	Year: 2020

Population: n = 60; Age: 12 to 60 years; Sex: all

Phase: not reported
	[170]



	NCT04315753
	Unknown status
	Lung Cancer
	Year: 2018

Population: n = 2000; Age: 55 years and older; Sex: all

Phase: not reported
	[171]



	NCT03895216
	Completed
	Bone Metastases
	Year: 2018

Population: n = 34; Age: 18 years and older; Sex: all

Phase: not reported
	[172]



	NCT04960956
	Terminated
	Prostate Cancer

Urothelial Carcinoma
	Year: 2016

Population: n = 13; Age: 18 years and older; Sex: male

Phase: not reported
	[173]



	NCT03911999
	Completed
	Prostate Cancer
	Year: 2018

Population: n = 180; Age: 45 years and older; Sex: male

Phase: not reported
	[174]



	NCT05572099
	Recruiting
	Prostate Cancer
	Year: 2018

Population: n = 750; Age: 45 years and older; Sex: male

Phase: not reported
	[175]



	NCT04323579
	Unknown status
	Lung Cancer
	Year: 2018

Population: n = 2000; Age: 55 years and older; Sex: all

Phase: not reported
	[176]



	NCT04357717
	Terminated
	Prostate Cancer
	Year: 2020

Population: n = 150; Age: 50 years and older; Sex: male

Phase: not reported
	[177]



	NCT04100811
	Recruiting
	Prostate Cancer
	Year: 2020

Population: n = 4000; Age: 45 years and older; Sex: male

Phase: not reported
	[178]



	NCT05463107
	Not yet recruiting
	Thyroid Cancer

Follicular Thyroid Cancer
	Year: 2022

Population: n = 50; Age: 20 to 80 years; Sex: all

Phase: not reported
	[179]



	NCT04653740
	Recruiting
	Advanced Breast Cancer
	Year: 2020

Population: n = 25; Age: 18 years and older; Sex: female

Phase: Not applicable
	[180]



	NCT02147418
	Recruiting
	Oropharyngeal Cancer
	Year: 2015

Population: n = 30; Age: 18 years and older; Sex: all

Phase: Not reported
	[181]



	NCT03432806
	Recruiting
	Colon Cancer

Liver Tumors
	Year: 2017

Population: n = 80; Age: 18 years and older; Sex: all

Phase: Not reported
	[182]



	NCT05397548
	Recruiting
	Gastric Cancer
	Year: 2022

Population: n = 700; Age: 18 to 80 years; Sex: all

Phase: Not reported
	[183]



	NCT03811600
	Completed
	Sleep Apnea Syndromes, Obstructive Cancer
	Year: 2019

Population: n = 90; Age: 18 years and older; Sex: all

Phase: not reported
	[184]



	NCT03108677
	Active, not recruiting
	Lung Metastases

Osteosarcoma
	Year: 2017

Population: n = 90; Age: 12 to 60 years; Sex: all

Phase: not reported
	[185]



	NCT04499794
	Recruiting
	Untreated Advanced NSCLC Patients

FISH-Identified ALK Fusion (Positive or Negative)
	Year: 2020

Population: n = 75; Age: 18 years and older; Sex: all

Phase: not reported
	[186]



	NCT04182893
	Unknown status
	Pulmonary Nodules
	Year: 2019

Population: n = 400; Age: 18 years and older; Sex: all

Phase: not reported
	[187]



	NCT02464930
	Unknown status
	Barrett’s Esophagus

Gastroesophageal Reflux

Esophageal Adenocarcinoma
	Year: 2015

Population: n = 220; Age: 18 years and older; Sex: all

Phase: not reported
	[188]



	NCT05625529
	Not yet recruiting
	Pancreas Cancer

Exosomes

Extracellular Vesicles

Pancreatic Neoplasms
	Year: 2022

Population: n = 1000; Age: 18 years and older; Sex: all

Phase: not reported
	[189]



	NCT03581435
	Unknown status
	Proteinosis

Gallbladder Carcinoma
	Year: 2018

Population: n = 50; Age: 18 years and older; Sex: all

Phase: not reported
	[190]



	NCT03102268
	Unknown status
	Cholangiocarcinoma

Benign Biliary Stricture
	Year: 2017

Population: n = 80; Age: 18 years and older; Sex: all

Phase: not reported
	[191]



	NCT05705583
	Recruiting
	Renal Cell Carcinoma
	Year: 2023

Population: n = 100; Age: 18 years and older; Sex: all

Phase: not reported
	[192]



	NCT03334708
	Recruiting
	Pancreatic Cancer

Pancreatic Diseases

Pancreatitis

Pancreatic Cyst
	Year: 2017

Population: n = 700; Age: 18 years and older; Sex: all

Phase: not reported
	[193]



	NCT03800121
	Recruiting
	Sarcoma
	Year: 2018

Population: n = 30; Age: 18 years and older; Sex: all

Phase: not reported
	[194]



	NCT05744076
	Active, not recruiting
	Melanoma
	Year: 2019

Population: n = 150; Age: 18 years and older; Sex: all

Phase: not reported
	[195]



	NCT04053855
	Recruiting
	Clear Cell Renal Cell Carcinoma
	Year: 2020

Population: n = 100; Age: 18 years and older; Sex: all

Phase: not reported
	[196]
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