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Simple Summary: Renal cancer (RC) is ranked tenth among all types of cancer in men and women
worldwide. Artificial intelligence (AI) and radiomics have allowed the development of AI-based
computer-aided diagnostic/prediction (AI-based CAD/CAP) systems for noninvasive and precise
diagnosis of RC and prediction of clinical outcome at an early stage. This, in turn, can conserve
time, effort, and resources, ultimately benefiting both patients and healthcare providers. This
review summarizes the studies from the last decade that used AI and radiomic markers for the
early diagnosis of RC and prediction/assessment of clinical outcome/treatment response. Finally, a
deep discussion, suggestions, and possible future avenues for improving diagnostic and treatment
prediction performance is introduced, which might help fill the research gap.

Abstract: Globally, renal cancer (RC) is the 10th most common cancer among men and women.
The new era of artificial intelligence (AI) and radiomics have allowed the development of AI-based
computer-aided diagnostic/prediction (AI-based CAD/CAP) systems, which have shown promise
for the diagnosis of RC (i.e., subtyping, grading, and staging) and prediction of clinical outcomes at
an early stage. This will absolutely help reduce diagnosis time, enhance diagnostic abilities, reduce
invasiveness, and provide guidance for appropriate management procedures to avoid the burden of
unresponsive treatment plans. This survey mainly has three primary aims. The first aim is to highlight
the most recent technical diagnostic studies developed in the last decade, with their findings and
limitations, that have taken the advantages of AI and radiomic markers derived from either computed
tomography (CT) or magnetic resonance (MR) images to develop AI-based CAD systems for accurate
diagnosis of renal tumors at an early stage. The second aim is to highlight the few studies that have
utilized AI and radiomic markers, with their findings and limitations, to predict patients’ clinical
outcome/treatment response, including possible recurrence after treatment, overall survival, and
progression-free survival in patients with renal tumors. The promising findings of the aforementioned
studies motivated us to highlight the optimal AI-based radiomic makers that are correlated with
the diagnosis of renal tumors and prediction/assessment of patients’ clinical outcomes. Finally, we
conclude with a discussion and possible future avenues for improving diagnostic and treatment
prediction performance.

Keywords: renal cancer; artificial intelligence; radiomic markers; computer-aided diagnostic
techniques; clinical outcome prediction
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1. Introduction

Renal cancer (RC) is ranked tenth among all types of cancer in men and women
worldwide. The number of renal cancer patients increases dramatically each year. In the
USA, around 81,800 new cases of RC are expected to be diagnosed in 2023 [1,2], with ap-
proximately 14,890 patients expected to die [1,2]. Approximately, 67% of RC patients are
diagnosed before developing metastasis and have a 5-year survival chance of 93%. The
development of metastatic disease reduces the 5-year survival chance to 72% for local
metastases and 15% for distant metastases, which becomes a serious life-threatening prob-
lem [1,2]. In 2022, the National Cancer Institute estimated an expenditure of USD 5.1 billion
for RC care in the USA [3].

Renal cancer is a heterogeneous group of tumors which develop from different cell
types within the kidney. Renal cell carcinoma (RCC) is considered the most common
and aggressive type of RC, representing around 70% of all RC cases [4,5]. The clear-cell
subtype of RCC (ccRCC) represents around 70% of RCCs, while non-clear-cell subtypes
(nccRCC) make up the remaining proportion. These include papillary RCC (paRCC) and
chromophobe RCC (chrRCC), which account for 15% and 5% of all RCCs, respectively [6].
According to the World Health Organization (WHO) [6], this taxonomy is of immense im-
portance, as each RCC subtype has its own prognosis [6–8]. Using conventional diagnostic
techniques, benign lesions such as angiomyolipoma (AML) and oncocytoma (ONC) can be
easily misclassified as RCC [9–13], especially lipid-poor AML [14]. Misdiagnosis of such
benign lesions can result in unnecessary surgical procedures. One estimate suggests that
approximately 15–20% of tumors resected for a preoperative diagnosis of RCC might be
AML [15]. Therefore, early and precise diagnosis of such renal tumors is critical to properly
administer the optimal treatment plan.

Traditional methods to detect RC include complete blood count (CBC), in which
red blood cells are counted; urine tests to check for blood, bacteria, or malignant cells;
and blood tests which measure markers of renal function. Although these tests have the
ability to suggest the presence of RC, they cannot provide an accurate diagnosis, subtype,
grade, or stage. Biopsy remains the gold standard for a definitive diagnosis of RC [1,2].
However, it is not favorable due to its invasive nature, high cost, and relatively long
recovery and diagnostic reporting time. Therefore, current research aims to find a reliable,
cheap, fast, and noninvasive diagnostic technique which can accurately diagnose and
precisely characterize RC at an early stage [16–19].

Multiphasic (Phase 1: unenhanced or precontrast, Phase 2: arterial or corticomedullary,
Phase 3: portal venous or nephrographic, and Phase 4: delayed or excretory) contrast-
enhanced computed tomography (CECT) [20,21], multiphasic contrast-enhanced magnetic
resonance imaging (CEMRI) [22], and diffusion-weighted MRI (DW-MRI) [23] are widely
used for renal tumor diagnostic purposes. Radiomics techniques have been widely per-
formed on CT and MR images to extract quantitative markers in different aspects, such as
texture, morphology, and function, that characterize disease states [24,25] and could be used
to improve diagnostic and prognostic accuracy for RC [26] at an early stage (see Figure 1).
The new era and advances in the artificial intelligence (AI) field, including various machine
learning (ML) and deep learning (DL) techniques, have demonstrated an important role,
along with radiomics, in many clinical applications/practices. An illustrative example of
an AI-based computer-aided diagnostic/prediction (AI-based CAD/CAP) pipeline to diag-
nose RC/predict treatment response is shown in Figure 2. Better diagnostic and predictive
capabilities will allow for earlier intervention with an optimized management plan.

This survey reviews the studies from the previous decade that used AI and radiomic-
based markers derived from CECT, CEMR, multiparametric MR, or DW-MR imaging modal-
ities to produce AI-based CAD systems for diagnosing RC at an early stage. Specifically,
the included studies aimed to identify a given renal tumor malignancy status [14,27–33], spec-
ify the associated subtype [22,33–36], and grade/stage the malignant tumors
(I–IV) [22,37–41]. In addition to accurate diagnosis, treatment follow-up protocol is crucial
to evaluate patients’ clinical outcome/treatment response, including the recurrence rate,
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overall survival (OS), and progression-free survival (PFS) rate. Therefore, we also review
studies that were investigated in the same decade that use AI and/or radiomic markers
to develop an AI-based and/or radiomic-based CAP system for prediction/assessment of
treatment response for early stage tumors [42–51]. Lastly, we highlight the optimal radiomic
markers that correlate with the diagnosis of renal tumors and prediction/assessment of
clinical outcome/treatment responses that might help fill the research gap.

Figure 1. Taxonomy for different types of radiomic-based markers. Let MRI, CT, GLCM, GLDM,
GLRLM, NGTDM, GLSZM, SHREs, STD, SRHGLE, HGLZE, LDHGLE, LBP, LTE, FFT, DCT, and IVIM
denote magnetic resonance imaging, computed tomography, gray-level co-occurrence matrix, gray-
level dependence matrix, gray-level run-length matrix, neighboring gray-tone difference matrix,
gray-level size zone matrix, spherical harmonics reconstruction errors, standard deviation, short-
run high gray-level emphasis, high gray-level-zone emphasis, large-dependence high gray-level
emphasis, local binary pattern, Law’s texture energy, fast Fourier transform, discrete cosine transform,
and intravoxel incoherent motion, respectively.

Figure 2. An illustrative example of an AI-based CAD/CAP pipeline for diagnosing renal tu-
mors/prediction of treatment response using CT or MR images at an early stage.
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To identify such studies, we used different databases and search engines, including
Google Scholar, PubMed, Web of Science, and ResearchGate. The following keywords were
used individually or in combination, and our search was limited to the last decade: “Renal
Tumors”, “Renal cancer”, “Renal Cell carcinoma”, “Clear Cell RCC”, “Non-Clear Cell RCC”,
“Artificial Intelligence”, “Machine Learning”, “Computer-Aided Diagnosis”, “Diagnosis”,
“Radiomics”, “Radiomic Markers”, “Texture Markers”, “Shape Markers”, “Functional Mark-
ers”, “Morphology”, “Histological Findings”, “Malignant”, “Benign”, “Angiomyolipoma”,
“Oncocytoma”, “Chromophobe”, “Papillary”, “Subtyping”, “Grading”, “Staging”, “Com-
puted Tomography”, “Magnetic Resonance Imaging”, “CT”, “CECT”, “MRI”, “CEMRI”,
“DWMRI”, “Computer-Aided Prediction”, “Prediction”, “Treatment Response”, “Clinical
Outcome”, “Recurrence”, “Overall Survival”, “Progression”, and “Therapy”. We found a
total of 73 radiomic and AI-based studies, of which N = 64 concern the diagnosis of renal
tumors and N = 9 concern the prediction of clinical outcome/treatment responses.

To the best of our knowledge, there is no agreement on the most reliable radiomic
markers that can be used to develop a comprehensive AI-based system for the purposes
of diagnosing renal tumors and predicting clinical outcome/treatment response simulta-
neously. After reviewing the state-of-the-art studies that have been developed in the last
decade, we highlight the most common radiomic markers that can be correlated with both
the diagnosis and treatment response prediction of renal tumors, potentially opening the
door for future investigation and development of comprehensive diagnostic and predictive
radiomic/AI-based systems.

2. AI-Based Diagnostic Studies
2.1. Computed Tomography (CT) Studies

In the differentiation of benign and malignant renal tumors, Hodgdon et al. and
Yang et al. [14,27] discovered that first- and second-order texture markers of unenhanced
CT (Phase 1) yielded an accuracy range of 82% to 91% and an area under the curve (AUC)
range of 0.73 to 0.90 when using support vector machine (SVM) classifiers. A number of
studies by You et al., Cui et al., Lee et al., and Feng et al. [28,52–54] found that first- and
second-order texture markers of multiphasic CECT, along with SVM classifiers, achieved an
accuracy range of 72% to 94% and an AUC range of 0.75 to 0.97. Yan et al. [55], Ma et al. [56],
and Tang et al. [57] achieved comparable results with texture markers from multiphasic
CECT. For instance, Yan et al. [55] employed artificial neural networks (ANNs) in conjunc-
tion with texture markers and attained 97% accuracy on a relatively small, unbalanced
dataset (N = 50). Ma et al. [56] and Tang et al. [57] reported an AUC range of 0.67 to 0.93 us-
ing logistic regression (LR) classifiers in combination with texture markers. An expanded
study by Ma et al. [56] found high accuracy using the nephrographic phase (Phase 3) of
CECT with an AUC range of 0.74 to 0.89.

Nassiri et al. [58] extracted higher-order texture markers and shape markers from
Phase 3 CECT and attained an accuracy range of 74% to 79% and an AUC range of 0.77 to
0.84 using Adaboost and random forests (RF) classifiers. Yap et al. [59] used the same
markers extracted from multiphasic CECT and reported an AUC range of 0.65 to 0.75.
Without the need for higher-order markers, Uhlig et al. [36] yielded an 84% accuracy and
an AUC of 0.83 employing an RF classifier. Coy et al. [60] yielded the highest diagnostic
accuracy of 74% using deep learning (DL) on Phase 4 (delayed phase) of CECT. Entropy
as a first-order texture marker was extracted from unenhanced CT by Kim et al. [61] and
was employed to distinguish between RCC and benign cysts using logistic regression (LR),
achieving an AUC of 0.92.

Tanaka et al. [62] implemented a DL pipeline using the Inception-V3 convolutional
neural network (CNN) and reported an accuracy range of 41% to 88% and an AUC range
of 0.49 to 0.85, favoring Phase 2 CECT over other contrast phases. Li et al. [63] successfully
distinguished benign ONC from malignant chrRCC by employing first- and second-order
texture markers of multiphasic CECT along with an SVM classifier, resulting in 95% accu-
racy and an AUC of 0.85. The authors suggested that phases 2 and 3 outperformed other
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contrast phases for the specific task. In subsequent studies with larger datasets [64,65],
they discovered that incorporating clinical factors improved the overall diagnostic accu-
racy. Meanwhile, Zabihollahy et al. [66] employed 2D and 3D CNNs in conjunction with
semiautomated and automated tumor segmentation methods, reporting an accuracy range
of 77% to 84%.

For RCC subtyping, Deng et al. and Yu et al. [34,67] demonstrated the efficacy of
first-order texture markers, namely mean, standard deviation (STD), kurtosis, skewness,
entropy, and median of Phase 3 CECT. Deng et al. [34] achieved 47% accuracy and an AUC
between 0.80 and 0.84 using LR, while Yu et al. [67] yielded an AUC ranging from 0.86 to
0.92 using SVM. Furthermore, Shehata et al. [68] integrated shape, texture, and functional
radiomic markers and obtained an accuracy between 79% and 98%, sensitivity from 0.89 to
0.95, and specificity from 0.91 to 1.00 using a multilayer perceptron artificial neural network
(MLP-ANN). They also identified Phase 3 as the most useful phase for RCC subtyping.
Zhang et al. [35] concurred with the significance of these markers but extracted them
from Phase 2, achieving an accuracy of 78% to 87% and an AUC of 0.94 to 0.96 using an
SVM classifier.

Verghase et al. [69] demonstrated that multiphasic CECT first-, second-, and higher-
order texture markers are extremely important. They performed statistical analysis using
stepwise LR and achieved an AUC range of 0.80 and 0.98. Uhlig et al. [36,70], in two
subsequent studies, suggested first- and second-order texture markers, as well as shape
markers obtained from Phase 3 CECT, demonstrating an accuracy range of 54% to 92% and
an AUC of 0.45 to 0.85 using XGBoost and RF classification models. Finally, Chen et al. [71]
promoted second-order texture markers of Phase 3 CECT and used LR to obtain an accuracy
range of 82% to 88% and an AUC range of 0.86 to 0.90.

For RCC grading and staging purposes, Feng et al. [37] found that first-order texture
markers such as entropy, STD, and kurtosis extracted from CECT are statistically significant.
They reported an accuracy ranging from 70% to 79% and an AUC between 0.74 and 0.83.
Shu et al. [38] found that first- and second-order texture markers, along with shape markers
derived from CECT phases 2 and 3, could serve as valuable radiomic markers. Using the
LR classification model, they yielded an accuracy of 72% to 78% and an AUC of 0.77 to
0.82. The same group extended their study by including a slightly larger cohort, excluding
shape markers, and replacing the LR classifier with SVM and RF classifiers, resulting in an
enhanced diagnostic accuracy of 92% to 94% and an AUC of 0.96 to 0.98. Two studies [72,73]
focused on extracting second-order texture markers from CECT phases 2 and 3.

Ding et al. [72] achieved an AUC ≥ 0.67 after using LR classifiers, whereas Yin et al. [73]
used SVM instead and yielded an enhanced AUC of 0.86. Second- and higher-order textures
of Phase 3 CECT were reported particularly useful by Bektas et al. [74]. They relied on the
evidence of achieving 85% accuracy and an AUC of 0.86 upon employing SVM classifiers.
Lin et al. [75] determined that multiphasic CECT first- and second-order texture markers are
useful in identifying renal tumors with 74% accuracy and an AUC of 0.87 using gradient
boosting decision tree classifiers. Momenian et al. [76] posited that first-order texture
markers in Phase 2 CECT have the potential to grade ccRCC tumors, achieving 97%
accuracy using RF classifiers. Lai et al. [77] reported that first-order texture markers and
shape markers of unenhanced CT can sufficiently classify ccRCC tumors using a Bagging
classifier, resulting in an AUC of 0.75.

Luo et al. [78] achieved 81% accuracy and an AUC of 0.87 using RF classifiers on
the derived first-order texture markers and shape markers from CECT phases 1 and 4,
while first-, second-, and higher-order texture markers obtained from unenhanced CT were
suggested by Yi et al. [79] to sufficiently grade ccRCCs, using an SVM classification model,
with 90% accuracy and an AUC of 0.91. In line with Yi et al. [79], He et al. [80] agreed
on the marker types, while disagreeing on the CECT phases from which they should be
derived, instead recommending phases 2 and 3 of CECT and attaining an accuracy range
of 91% to 94% using ANNs. Xu et al. [81] utilized an ensemble of various DL networks on
2D regions of interest (ROIs) of Phase 2 CECT and achieved 82% accuracy and an AUC



Cancers 2023, 15, 2835 6 of 43

of 0.88. Demirjian et al. [39] carried out a comprehensive investigation focused on both
the grading and staging of ccRCC tumors. For grading, they employed multiple second-
order texture markers in conjunction with the mean intensity, which served as a first-order
texture marker, extracted from CECT. For the staging process, they relied exclusively on
second-order texture markers. In both cases, they utilized RF classification models and
attained AUC values of 0.73 and 0.77 for grading and staging, respectively.

Table 1 summarizes the above-mentioned AI-based CAD systems from the last decade
that utilized CECT imaging in terms of the following attributes: study, main goal, data,
radiomics, methods, results, and findings. Studies with the same main goal are grouped
together for comparison purposes.

To sum up, the AI-based CAD systems that utilized CECT images demonstrated
promising findings in the early diagnosis of RCC. These systems have effectively differenti-
ated malignant from benign tumors with an accuracy range of 41% to 98% and an AUC
range of 0.49 to 0.97, classified RCC tumor subtypes with an accuracy range of 47% to 92%
and an AUC range of 0.49 to 0.92, and graded and staged RCC tumors with an accuracy
range of 70% to 97% and an AUC range of 0.67 to 0.98. Entropy, a first-order texture marker,
has frequently been identified as a crucial radiomic marker extractable from multipha-
sic CECT. Phases 2 and 3, namely the arterial phase/corticomedullary phase and portal
venous/nephrographic phase, have been the most commonly used and recommended.
Furthermore, machine learning classifiers such as LR, RF, SVM, and ANN have yielded
the best classification results. While CECT has proven sufficient in RCC diagnosis, it is not
the preferred modality when radiation exposure is contraindicated (e.g., in pregnant or
pediatric patients). This has prompted researchers to explore the capabilities of alternative
imaging modalities, such as MRI, to avoid radiation exposure whenever possible. Our
search within the last decade revealed a limited number of studies on this topic, which we
discuss in detail below.

2.2. Magnetic Resonance Imaging (MRI) Studies

In the differentiation of benign and malignant renal tumors, Xu et al. [29] investigated
the potential of DL and ML using T2-weighted MRI and DW-MRI. Their study included
a total of 217 patients with renal tumors, allocating 173 patients to the training set and
44 patients to the testing set. Following manual identification of ROIs, the investigators
used three distinct DL ResNet-18 models and three separate handcrafted-based RF models,
incorporating a total of 96 radiomic markers. The first model used T2-weighted imag-
ing, the second model used DW-MRI, and the third model combined both modalities.
The ResNet-18 models demonstrated accuracies of 77%, 80%, and 81.3%, while the hand-
crafted RF models attained accuracies of 77%, 71%, and 82%. Oostenburgge et al. [30]
conducted a study to evaluate texture markers derived from 3D ADC maps of DW-MR
images for distinguishing benign ONC from malignant RCC. The dataset comprised 39 re-
nal tumors, including 32 RCCs and 7 ONCs. The authors found that entropy, STD, tumor
volume, and gender demonstrated statistical significance among the different tumor groups.
By integrating these markers, they achieved an AUC of 0.91 with 86% sensitivity and 84%
specificity using the LR classification model. Furthermore, they discovered that entropy and
the 25th percentile were statistically significant when comparing healthy cortical regions
with tumor tissue.
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Table 1. Summary of the last decade’s CT-based studies on early diagnosis of renal tumors.

Study Data Radiomics Methods Results Findings

Main Goal(s): Benign vs. Malignant

Yang et al. [27]
• AMLwvf vs. RCC
• (N = 163)
• Multiphasic CECT

• Shape: 12
• 1st-Order Statistics: 17
• 2nd-Order Statistics: 74

– GLCM: 23
– GLRLM: 16
– GLSZM: 16
– NGTDM: 5
– GLDM: 14

• ROI: 2D
• Radiomics: Pyradiomics
• Classification: SVM, 5-fold

CV

• Acc: 0.82
• Sen: 0.83
• Spe: 0.78
• AUC: 0.90

Radiomics extracted from
unenhanced CT phase can be used
to precisely discriminate AMLwvf
from RCC using SVM

You et al. [28]
• AMLwvf vs. RCC
• (N = 67)
• Multiphasic CECT

• 1st-Order Statistics: 3

– Phase 1: 2
– Phase 4: 1

• 2nd-Order Statistics: 2

– Phase 2:
1 (GLCM)

– Phase 3:
1 (GLRLM)

• ROI: 2D
• Radiomics: In-house soft-

ware, SFS
• Classification: SVM, k-fold

CV

• Acc: 0.85
• Sen: 0.82
• Spe: 0.76
• AUC: 0.85

Radiomics of small renal masses
extracted from multiphasic CECT
can accurately differentiate between
AMLwvf and ccRCC using SVM

Coy et al. [60]
• AMLwvf vs. RCC
• (N = 179)
• Multiphasic CECT

• RGB encoding of the whole tu-
mor volume in Phase 4

• ROI: 3D
• Radiomics: TL of GTf
• Classification: TL of GTf, k-

fold CV

• Acc: 0.74
• Sen: 0.86
• Spe: 0.44
• AUC: —

Radiomics extracted from 3D VOI of
the entire tumor shown a reasonable
diagnostic accuracy using Phase 4
CECT and TL of GTf

Deng et al. [82]
(Study 1)

• Benign vs. RCC
• (N = 501)
• Phase 3 CECT

• 1st-Order Statistics: 5

– entropy
– kurtosis
– skewness
– mean
– max

• ROI: 2D
• Radiomics: TexRAD soft-

ware, LSSF
• Classification: Binary LR

(Statistical analysis only)

• Acc: 0.47
• Sen: 0.31
• Spe: 0.86
• AUC: 0.62

Entropy had shown higher
statistically significant values
(p < 0.05) in RCC tumors and is a
sufficient discriminatory
radiomic marker
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Zhou et al. [83]

• Benign vs. RCC
• (N = 192)
• At least one phase of

CECT

• Axial Multichannel (RGB) 2D
ROI images

• ROI: 2D
• Radiomics: TL of pre-

trained ImageNet
• Classification: InceptionV3,

softmax, 5-fold CV

• Acc: 0.97
• Sen: 0.95
• Spe: 0.97
• AUC: —

Deep learning can potentially be
used to identify malignant renal
tumors using deep transfer learning

Kim et al. [61]
• Renal Cysts vs. RCC
• (N = 501)
• Unenhanced CT

• 1st-Order Statistics: 3

– entropy
– kurtosis
– MGLA

• ROI: 2D
• Radiomics: TexRAD soft-

ware
• Classification: LR (Thresh-

old)

• Acc: 0.84
• Sen: 0.81
• Spe: 0.89
• AUC: range

(0.89–0.92)

Entropy ≥ 4 differentiated RCC
from benign renal tumors
(AUC = 0.89). A better AUC of
0.92 is obtained using a
combined model

Nie et al. [84]
• AMLwvf vs. RCC
• (N = 99)
• Multiphasic CECT

• Shape: 2

– Phase 2: 1
– Phase 3: 1

• 1st-Order Statistics: 3

– Phase 2: 1
– Phase 3: 2

• 2nd-Order Statistics: 9

– Phase 2:
3 (GLCM),
3 (GLDM),
1 (GLRLM)

– Phase 3:
2 (GLRLM)

• ROI: 3D
• Radiomics: RadCloud soft-

ware, LASSO
• Classificiation: Nomogram,

Rad-score ≥ 0.017, 20% val-
idation

• Acc: 0.84
• Sen: 0.85
• Spe: 0.83
• AUC: 0.85

Radiomics of multiphasic CECT
distinguish AMLwvf from ccRCC.
A combined model that integrates
clinical factors, with a
Nomo-score ≥ 1.451, provided
higher diagnostic performance
(Acc = 0.89, AUC = 0.95)
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Tang et al. [57]
• AMLwvf vs RCC
• (N = 115)
• Multiphasic CECT

• 1st-Order Statistics: 24
• 2nd-Order Statistics: 52

– GLCM: 23
– GLRLM: 11
– GLSZM: 13
– NGTDM: 5

• Higher-Order Statistics: 120

– LTE: 120

• ROI: 2D
• Radiomics: In-house soft-

ware, 100% Data Augmen-
tation, LASSO

• Classification: LR

• Acc: range
(0.8–0.92)

• Sen: —
• Spe: —
• AUC: range

(0.67–0.92)

Integrating different radiomic
markers is potentially helpful in
distinguishing AMLwvf from RCC
renal tumors

Lee et al. [53]
(Study 1)

• AMLwvf vs. ccRCC
• (N = 50)
• Multiphasic CECT

• 1st-Order Statistics: 3
• 2nd-Order Statistics: 1

– GLCM: 1

• ROI: 2D
• Radiomics: ImageJ soft-

ware, ReliefF
• Classification: kNN, SVM,

5-fold CV

• Acc: 0.72
• Sen: 0.72
• Spe: 0.73
• AUC: 0.75

Proper selection and integration of
optimal radiomic markers and
machine learning-based classifiers
could sufficiently differentiate
between AMLwvf and ccRCC

Lee et al. [85]
(Study 2)

• AMLwvf vs. ccRCC
• (N = 80)
• Multiphasic CECT

• Shape: 7
• 1st-Order Stats: 18
• 2nd-Order Stats: 53

– GLCM: 14
– GLDM: 22

• Higher-Order Stats: 10

– LBP: 10

• 1000–4000 dimensional deep
markers extracted from Im-
ageNet pretrained models
(GoogleNet, AlexNet, VG-
GNet, and ResNet) with image
patches of small renal masses.

• ROI: 2D
• Radiomics: ImageNet pre-

trained
• Classification: RF, k-fold

CV

• Acc: range
(0.75–0.77)

• Sen: range
(0.73–0.79)

• Spe: range
(0.75–0.77)

• AUC: range
(0.79–0.82)

A combined model integrating
hand-crafted with deep radiomic
markers provided an enhanced
diagnostic performance than
individual models and thus; has the
potential to distinguish AMLwvf
from ccRCC
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Feng et al. [54]
(Study 1)

• AMLwvf vs. RCC
• (N = 58)
• Multiphasic CECT

• 1st-Order Statistics: 8
• 2nd-Order Statistics: 3

– GLCM: 3

• ROI: 2D
• Radiomics: CT Kinetics

software, SMOTE, RFE
• Classification: SVM, 5-fold

CV

• Acc: 0.94
• Sen: 0.88
• Spe: 1.00
• AUC: 0.96

Combination of SVM, RFE,
and SMOTE can help selecting
optimal radiomics that could
accurately distinguish AMLwvf
from RCC

Yan et al. [55]

• AMLwvf vs. ccRCC
and paRCC

• (N = 50)
• Multiphasic CECT

• 1st-Order Statistics: 11
• 2nd-Order Statistics: 220

– GLCM: 220

• ROI: 2D
• Radiomics: MaZda soft-

ware, NDA
• Classification: kNN, ANN,

5-fold CV

• Acc: range
(0.97–1.00)

• Sen: —
• Spe: —
• AUC: —

Optimal radiomics of multiphasic
CECT images can potentially be
used to discriminate between
AMLwvf, ccRCC, and paRCC

Hodgdon et al. [14]
• AMLwvf vs. RCC
• (N = 100)
• Unenhanced CT

• 1st-Order Statistics: 2
• 2nd-Order Statistics: 7

– GLCM: 5
– GLRLM: 2

• ROI: 2D
• Radiomics: MaZda soft-

ware
• Classification: SVM, 10-

fold CV

• Acc: range
(0.83–0.91)

• Sen: —
• Spe: —
• AUC: range

(0.73–0.90)

Radiomic markers of unenhanced
CT images can differentiate between
AMLwvf and RCC

Tanaka et al. [62]
• Benign vs. Malignant
• (N = 168)
• Multiphasic CECT

• 2D ROI images around the le-
sion (299 × 299)

• Data were augmented using ro-
tation, mirroring, and addition
of Gaussian noise techniques.

• ROI: 2D
• Radiomics: Inception-V3

CNN
• Classification: Inception-

V3 CNN, 20% testing

• Acc: range
(0.41–0.88)

• Sen: range
(0.29–0.96)

• Spe: range
(0.33–1.00)

• AUC: range
(0.49–0.85)

Deep learning can be used to
identify malignant tumors,
especially in Phase 2 CECT

Kunapuli et al. [86]
• Benign vs. Malignant
• (N = 150)
• Multiphasic CECT

• 1st-Order Statistics: 2
• 2nd-Order Statistics: 8

– GLCM: 7
– GLDM: 1

• ROI: 2D/3D
• Radiomics: In-house soft-

ware, RFE
• Classification: RFGB, 10-

fold CV

• Acc: 0.82
• Sen: —
• Spe: —
• AUC: 0.83

RFGB machine learning classifier
and radiomic markers have the
potential to identify the malignancy
status of renal tumors
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Yap et al. [59]
• Benign vs. Malignant
• (N = 735)
• Multiphasic CECT

• Total: top 10% (79)
• Shape: —
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLDM: —

• Higher-Order Statistics: —

– FFT: —

• ROI: 3D
• Radiomics: PyRadiomics,

Gini
• Classification: RF, Ad-

aBoost, 10-fold CV

• Acc: —
• Sen: —
• Spe: —
• AUC: range

(0.65–0.75)

Combining shape and texture
radiomic markers of multiphasic
CECT can improve the overall
diagnostic performance

Ma et al. [56]
(Study 1)

• AMLwvf vs. ccRCC
• (N = 84)
• Multiphasic CECT

• Total: 6
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —

• ROI: 3D
• Radiomics: AI-Kit, LASSO
• Classification: LR, 30% test-

ing

• Acc: —
• Sen: —
• Spe: —
• AUC: range

(0.83–0.93)

Combined model integrating
radiomics from different phases of
CECT enhanced the final diagnostic
performance when compared with
individual models as well as
unenhanced CT

Ma et al. [87]
(Study 2)

• AMLwvf vs. ccRCC
• (N = 230)
• Multiphasic CECT

• Total: 396
• Shape: —
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLRLM: —
– GLSZM: —

• ROI: 3D
• Radiomics: AI-Kit, LASSO
• Classification: LR, 30% val-

idation

• Acc: range
(0.69–0.80)

• Sen: range
(0.66–0.79)

• Spe: range
(0.76–0.85)

• AUC: range
(0.74–0.89)

The perirenal model that extracts
radiomic markers from Phase 3
CECT is superior to other phases to
distinguish between AMLwvf
and ccRCC
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Nassiri et al. [58]

• Benign vs. Malignant
• (N = 684)
• Multiphasic CECT

• Shape: —
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLDM: —
– GLRLM: —
– NGTDM: —
– GLSZM: —

• Higher-Order Statistics: —

– DCT: —
– FFT: —
– LTE: —

• ROI: 3D
• Radiomics: Pyradiomics,

Gini
• Classification: RF, Ad-

aboost, and 10-fold CV

• Acc: range
(0.74–0.79)

• Sen: range
(0.73–0.80)

• Spe: 0.75
• AUC: range

(0.77–0.84)

Radiomic markers of Phase 3 CECT
can sufficiently identify malignancy
status. When combined, some
clinical factors can improve the
overall diagnostic performance

Zabihollahy et al. [66] • Benign vs. RCC
• (N = 315)
• Multiphasic CECT

• 2D ROI images around the tu-
mor (512 × 512)

• ROI: 2D
• Radiomics: CNN
• Classification: CNN, MJV,

50% testing

• Acc: range
(0.77–0.84)

• Sen: range
(0.84–0.92)

• Spe: range
(0.26–0.52)

• AUC: —

Semiautomated CNN showed the
highest diagnostic performance in
distinguishing RCC from benign
renal tumors using CECT

Uhlig et al. [36]
(Study 1)

• Benign vs. Malignant
• (N = 94)
• Phase 3 CECT

• Total: 120
• Shape: —
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLDM: —
– GLRLM: —
– NGTDM: —
– GLSZM: —

• ROI: 3D
• Radiomics: PyRadiomics,

RFE, and LR
• Classification: RF, 10-fold

CV

• Acc: 0.84
• Sen: 0.88
• Spe: 0.67
• AUC: 0.83

Radiomic markers derived from
Phase 3 CECT can successfully
differentiate benign from malignant
renal tumors using RF machine
learning classifier
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Li et al. [63]
(Study 1)

• ONC vs. chrRCC
• (N = 61)
• Multiphasic CECT

• 1st-Order Statistics: 3

– Phase 2 and 3: 2
– Phase 4: 1

• 2nd-Order Statistics: 5

– Phase 2 and 3:
3 (GLCM)

– Phase 2 and 3:
2 (wavelet)

• ROI: 3D
• Radiomics: PyRadiomics,

LASSO
• Classification: SVM, 5-fold

CV

• Acc: 0.95
• Sen: 0.99
• Spe: 0.80
• AUC: 0.85

Radiomics derived from
multiphasic CECT can accurately
differentiate chrRCC from ONC
using SVM

Li et al. [64]
(Study 2)

• ONC vs. ccRCC
• (N = 122)
• Multiphasic CECT

• 1st-Order Statistics: 5

– Phase 2: 2
– Phase 3: 3

• 2nd-Order Statistics: 6

– Phase 2:
2 (GLCM),
1 (GLSZM)

– Phase 3:
1 (GLCM)

– Phase 4:
2 (GLCM)

• ROI: 3D
• Radiomics: PyRadiomics,

LASSO, and LR
• Classification: Nomogram,

Rad-score, and 30% valida-
tion

• Acc: 0.81
• Sen: 0.86
• Spe: 0.83
• AUC: 0.84

Radiomics of multiphasic CECT can
differentiate ONC from ccRCC.
By integrating clinical factors,
enhanced diagnosis is obtained
(Acc = 0.87, Sen = 0.86, Spe = 0.87,
and AUC = 0.90)

Li et al. [65]
(Study 3)

• ONC vs. chrRCC
• (N = 141)
• Multiphasic CECT

• 1st-Order Statistics: 5

– Phase 2: 1
– Phase 3: 2
– Phase 4: 2

• 2nd-Order Statistics: 7

– Phase 2:
2 (GLCM),
1 (GLSZM)

– Phase 3:
2 (GLCM)

– Phase 4:
2 (GLCM)

• ROI: 3D
• Radiomics: PyRadiomics,

LASSO, LR
• Classification: Nomogram,

Rad-score ≥ -0.55, and 40%
validation

• Acc: 0.91
• Sen: 0.84
• Spe: 0.95
• AUC: 0.96

Radiomics of multiphasic CT can
differentiate ONC from chrRCC.
Clinical factors, when combined,
with a Nomo-score ≥0.19 can
enhance the diagnosis (Acc = 0.95,
Sen = 0.90, Spe = 0.97, and
AUC = 0.99)
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Main Goal(s): Malignant Subtyping

Uhlig et al. [70]
(Study 2)

• Subtyping
• (N = 201)
• Phase 3 CECT

• Total: 127
• Shape: —
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLDM: —
– GLRLM: —
– NGTDM: —
– GLSZM: —

• ROI: 3D
• Radiomics: PyRadiomics,

SMOTE, and RFE
• Classification: XGBoost, RF,

and 10-fold CV

• Acc: range
(0.54–0.92)

• Sen: range
(0.05–0.80)

• Spe: range
(0.41–0.97)

• AUC: range
(0.45–0.85)

Radiomic markers extracted from
Phase 3 CECT along with machine
learning classifiers, can help
distinguish different subtypes.
Differentiation of ONCs remains
challenging

Uhm et al. [88]
• Subtyping
• (N = 308)
• Multiphasic CECT

• 3D channel image of size
224 × 224 cropped from the
largest segmented tumor at
phases 2, 3, and 4

• ResNet-101 was initialized
with weights obtained from a
pretrained ImageNet.

• ROI: 2D
• Radiomics: CNN
• Classification: ResNet-101,

16% validation, and
(N = 184) external test

• Acc: 0.72
• Sen: range

(0.60–0.89)
• Spe: range

(0.87–0.97)
• AUC: 0.89

Deep learning outperformed
radiological diagnosis of renal
tumors using multiphasic CECT

Kocak et al. [89]

• RCC Subtyping
• (N = 68)
• Phases 1 and 2 of CECT

• 1st-Order Statistics: 9

– Phase 1: 5
– Phase 2: 4

• 2nd-Order Statistics: 16

– Phase 1:
3 (GLCM)

– Phase 2:
13 (GLCM)

• Higher-Order Statistics: 5

– Phase 1:
4 (wavelet),
1 (autoagressive)

• ROI: 2D
• Radiomics: wrapper,

Nested 10-fold CV
• Classification: SMOTE,

SVM, and ANN;
(N = 26) external test

• Acc: range
(0.69–0.85)

• Sen: range
(0.69–0.71)

• Spe: 1.00
• AUC: —

Combined radiomics extracted from
phases 1 and 2 (Phase 2 is superior)
can distinguish RCC major subtypes
using machine learning.
Distinguishing ccRCC, paRCC,
chrRCC remains challenging
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Zhang et al. [35]
• RCC Subtyping
• (N = 127)
• Multiphasic CECT

• 1st-Order Statistics: 4

– mean
– STD
– entropy
– kurtosis

• ROI: 2D
• Radiomics: TexRAD soft-

ware, Catboost
• Classification: SVM, 10-

fold CV

• Acc: range
(0.78–0.87)

• Sen: range
(0.87–0.89)

• Spe: 0.92
• AUC: range

(0.94–0.96)

Radiomic markers of Phase 2 CECT
have the potential for RCC
subtyping using SVM

Chen et al. [71]
• RCC Subtyping
• (N = 197)
• Multiphasic CECT

• 2nd-Order Statistics: 9

– Phase 1:
3 (GLCM),
1 (GLRLM)

– Phase 2:
1 (GLCM)

– Phase 3:
1 (GLCM),
1 (GLSZM)

– Phase 4:
2 (GLCM)

• ROI: 3D
• Radiomics: PyRadiomics,

LASSO
• Classification: SMOTE, LR

• Acc: range
(0.82–0.88)

• Sen: range
(0.81–0.89)

• Spe: range
(0.81–0.88)

• AUC: range
(0.86–0.90)

Second-order radiomics integrated
with nontexture markers of Phase 3
CECT provide the best RCC
subtyping performance (AUC = 0.9)

Deng et al. [34]
(Study 2)

• RCC Subtyping
• (N = 298)
• Phase 3 CECT

• 1st-Order Statistics: 4

– mean
– entropy
– kurtosis
– skewness

• ROI: 2D
• Radiomics: TexRAD soft-

ware, LSSF
• Classification: LR

• Acc: 0.47
• Sen: 0.31
• Spe: 0.86
• AUC: range

(0.80–0.84)

Entropy had shown higher
statistically significant values in
ccRCC (p < 0.05) with high values
being correlated with RCC’s
high grade
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Main Goal(s): Benign vs. Malignant and Malignant Subtyping

Shehata et al. [68]

• AML vs. RCC
• ccRCC vs. nccRCC
• (N = 140)
• Multiphasic CECT

• Shape: 70

– 70 SHREs

• 1st-Order Statistics: 16
• 2nd-Order Statistics: 6

– GLCM: 6

• Functional: 2

– wash-in slope
– wash-out slope

• ROI: 3D
• Radiomics: In-house Soft-

ware
• Classification: MLP-ANN,

k-fold, 10-fold CV

• Acc: range
(0.79–0.98)

• Sen: range
(0.89–0.95)

• Spe: range
(0.91–1.00)

• AUC: –

A MLP-ANN diagnostic model
integrating shape, texture,
and functional radiomic-based
markers can identify malignant
renal tumors as well as
their subtypes.

Yu et al. [67]

• Benign vs. Malignant
• RCC Subtyping
• (N = 119)
• Phase 3 CECT

• 1st-Order Statistics: 14
• 2nd-Order Statistics: 20

– GLCM: 5
– GLRLM: 11
– GLGM: 4

• Higher-Order Statistics: 9

– LTE: 9

• ROI: 2D
• Radiomics: In-house Soft-

ware
• Classification: SVM, 5-fold

CV

• Acc: —
• Sen: —
• Spe: —
• AUC: range

(0.86–0.92)

Machine learning and 1st-Order
radiomic markers (e.g., skewness,
kurtosis, and median) demonstrates
high diagnostic performance of
different renal tumors’ types.

Varghese et al. [69]

• Benign vs. Malignant
• RCC Subtyping
• (N = 174)
• Multiphasic CECT

• 1st-Order Stats: 8
• 2nd-Order Stats: 20

– GLCM: 13
– GLDM: 7

• Higher-Order Stats: 3

– FFT: 3

• ROI: 3D
• Radiomics: PyRadiomics
• Classification: Stepwise LR

(Statistical analysis only)

• Acc: —
• Sen: —
• Spe: —
• AUC: range

(0.80–0.98)

With a significance level
(p < 0.05), various radiomic
markers are helpful in
discriminating benign from
malignant renal tumors as well as
RCC subtypes
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Cui et al. [52]

• AMLwvf vs. RCC
• RCC Subtyping
• (N = 168)
• Multiphasic CECT

• AMLwvf vs. RCC: 17
• AMLwvf vs. ccRCC: 21
• AMLwvf vs. nccRCC: 12
• 1st-Order Statistics: —
• 2nd-Order Statistics: —

– GLCM: —
– GLRLM: —
– GLSZM: —
– NGTDM: —
– GLDM: —

• ROI: 3D
• Radiomics: PyRadiomics,

RFE
• Classification: SMOTE,

SVM, and 5-fold CV

• Acc: range
(0.84–0.93)

• Sen: range
(0.83–0.95)

• Spe: range
(0.85–0.96)

• AUC: range
(0.89–0.97)

Machine learning-based radiomics
techniques are comparable to
radiological assessment and can
precisely distinguish AMLwvf from
RCC and its subtypes

Main Goal(s): Malignant Grading

Sun et al. [90]
• ccRCC Grading
• (N = 227)
• Multiphasic CECT

• 1st-Order Statistics: 1

– Phase 2 and 3: RMS

• 2nd-Order Statistics: 6

– Phase 2 and 3:
1 (GLCM),
3 (GLSZM),
2 (GLRLM)

• ROI: 2D
• Radiomics: RadCloud soft-

ware, LASSO, and ICC
• Classification: SVM, 20%

validation

• Acc: 0.87
• Sen: 0.83
• Spe: 0.89
• AUC: 0.91

Radiomics extracted and combined
from phases 2 and 3 of CECT have
the potential to successfully grade
ccRCC renal tumors using SVM

Feng et al. [37]
(Study 2)

• ccRCC Grading
• (N = 131)
• Multiphasic CECT

• 1st-Order Statistics: 5

– mean
– entropy
– STD
– skewness
– kurtosis

• ROI: 2D
• Radiomics: In-house soft-

ware
• Classification: t-test (Statis-

tical analysis only)

• Acc: range
(0.70–0.79)

• Sen: range
(0.76–0.95)

• Spe: range
(0.54–0.77)

• AUC: range
(0.74–0.83)

Statistically significant
(p < 0.05) radiomics markers, such
as entropy, STD, and kurtosis are
superior to grade ccRCC
renal tumors
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Shu et al. [38]
(Study 1)

• ccRCC Grading
• (N = 260)
• Phases 2 and 3 of CECT

• Shape: 5

– Phase 2: 1
– Phase 3: 4

• 1st-Order Statisitcs: 9

– Phase 2: 3
– Phase 3: 6

• 2nd-Order Statistics: 21

– Phase 2:
2 (GLCM),
3 (GLSZM),
2 (GLRLM)

– Phase 3:
3 (GLCM),
8 (GLSZM),
3 (GLRLM)

• ROI: 3D
• Radiomics: In-house soft-

ware, ICC, and LASSO
• Classification: LR, 5-fold

CV

• Acc: range
(0.72–0.78)

• Sen: range
(0.60–0.69)

• Spe: range
(0.83–0.84)

• AUC: range
(0.77–0.82)

Combined radiomic markers
extracted from phases 2 and 3 of
CECT are sufficient for
ccRCC grading

Shu et al. [91]
(Study 2)

• ccRCC Grading
• (N = 271)
• Phases 2 and 3 of CECT

• 1st-Order Statistics: 4

– Phase 2: 1
– Phase 3: 3

• 2nd-Order Statistics: 8

– Phase 2:
1 (GLCM),
3 (GLRLM)

– Phase 3:
2 (GLCM),
1 (GLRLM),
1 (GLSZM)

• ROI: 3D
• Radiomics: RadCloud soft-

ware, ICC, and LASSO
• Classification: SVM, RF,

and MLP; 40% validation

• Acc: range
(0.92–0.94)

• Sen: range
(0.92–0.97)

• Spe: range
(0.86–0.95)

• AUC: range
(0.96–0.98)

Combined radiomic markers
extracted of phases 2 and 3 of CECT
along with machine learning could
be sufficiently used for
ccRCC grading
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Ding et al. [72]
• ccRCC Grading
• (N = 114)
• Phases 2 and 3 of CECT

• 2nd-Order Statistics: 4

– Phase 2:
1 (GLRLM)

– Phase 3:
3 (GLCM)

• ROI: 2D
• Radiomics: IBEX software,

LASSO
• Classification: LR, (N = 92)

external test

• Acc: —
• Sen: —
• Spe: —
• AUC: ≥0.67

Radiomic markers of phases 2 and 3
of CECT are helpful in
ccRCC grading

Bektas et al. [74]
• ccRCC Grading
• (N = 54)
• Phase 3 CECT

• 2nd-Order Statistics: 8

– Phase 3:
5 (GLCM),
3 (GLRLM)

• Higher-Order Stats: 5

– Phase 3:
4 (wavelet),
1 (gradient)

• ROI: 2D
• Radiomics: MaZda soft-

ware, wrapper, and Nested
10-fold CV

• Classification: SVM

• Acc: 0.85
• Sen: 0.91
• Spe: 0.80
• AUC: 0.86

SVM machine learning classifier
and radiomic markers of Phase 3
CECT can be used in ccRCC grading

Lin et al. [75]
• ccRCC Grading
• (N = 232)
• Multiphasic CECT

• 1st-Order Stats: 6
• 2nd-Order Stats: 16

– GLCM: 4
– GLDM: 4
– GLRLM: 4
– NGTDM: 1
– GLSZM: 3

• ROI: 2D
• Radiomics: PyRadiomics
• Classification: GBDT, 5-

fold CV

• Acc: 0.74
• Sen: 0.14
• Spe: 0.88
• AUC: 0.87

Using machine learning, combined
radiomic markers from phases 1, 2,
and 3 of CECT can sufficiently
grade ccRCCs
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He et al. [80]
• ccRCC Grading
• (N = 227)
• Multiphasic CECT

• 1st-Order Statistics: 6

– Phase 2: 4
– Phase 3: 2

• 2nd-Order Statistics: 14

– Phase 2:
7 (GLCM),
3 (GLRLM)

– Phase 3:
3 (GLCM),
1 (GLRLM)

• Higher-Order Statistics: 9

– Phase 2:
1 (gradient),
4 (wavelet)

– Phase 3:
1 (gradient),
3 (wavelet)

• ROI: 2D
• Radiomics: MaZda soft-

ware, LASSO
• Classification: ANN, 15%

validation, 15% testing, and
10-fold CV

• Acc: range
(0.91–0.94)

• Sen: —
• Spe: —
• AUC: —

Combined radiomic markers of
phases 2 and 3 of CECT have the
potential for RCC grading
using ANN

Momenian et al. [76]
• ccRCC Grading
• (N = 103)
• Phases 2 and 3 of CECT

• 1st-Order Statistics: 18

– Phase 1: 6
– Phase 2: 6
– Phase 3: 6

• 2nd-Order Statistics: 93

– Phase 1:
20 (GLCM),
11 (GLRLM)

– Phase 2:
20 (GLCM),
11 (GLRLM)

– Phase 3:
20 (GLCM),
11 (GLRLM)

• ROI: 2D
• Radiomics: In-house soft-

ware
• Classification: RF, 10-fold

CV

• Acc: 0.97
• Sen: —
• Spe: —
• AUC: —

First-order radiomic markers
extracted from Phase 2 CECT
showed the best diagnostic
performance in ccRCC grading
using the RF classifier when
compared with 2nd-order radiomic
markers alone as well as combined
radiomic markers.
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Yin et al. [73]
• ccRCC Grading
• (N = 78)
• Phase 2 CECT

• 2nd-Order Statistics: 10

– Phase 2:
7 (GLCM),
3 (GLRLM)

• ROI: 2D
• Radiomics: AI-Kit, ICC,

SMOTE
• Classification: SVM, 10-

fold CV, 32% testing

• Acc: 0.88
• Sen: 0.80
• Spe: 0.90
• AUC: 0.86

2nd-Order radiomic markers of
Phase 2 CECT provided the highest
ccRCC grading performance
using SVM

Lai et al. [77]
• ccRCC Grading
• (N = 137)
• Multiphasic CECT

• Shape: 5

– Phase 1: 5

• 1st-Order Statistics: 5

– Phase 1: 5
mean,
median,
RMS,
10th Pctl,
90th Pctl

• ROI: 2D
• Radiomics: PyRadiomics,

CMIM, and SMOTE
• Classification: Bagging, 10-

fold CV

• Acc: —
• Sen: —
• Spe: —
• AUC: 0.75

Shape and 1st-Order radiomics
extracted from Phase 1 CECT along
with a Bagging classifier provided
the highest ccRCC grading
performance (AUC = 0.75)

Yi et al. [79]

• ccRCC Grading
• (N = 264)
• Phases 1 and 3 of CECT

• 1st-Order Statistics: 6

– Phase 1: 6

• 2nd-Order Statistics: 9

– Phase 1: 9 (GLRLM)

• Higher-Order Stats: 4

– Phase 1: 4 (wavelet)

• ROI: 2D
• Radiomics: MaZda soft-

ware, ICC, LASSO
• Classification: SVM, 25%

validation

• Acc: 0.90
• Sen: 0.94
• Spe: 0.89
• AUC: 0.91

Radiomic markers of Phase 1 CECT
can successfully grade ccRCCs
using SVM (AUC = 0.91)

Xu et al. [81]
• ccRCC Grading
• (N = 706)
• Phase 2 CECT

• 2D ROI images (224 × 224 × 3)
as input to VGG-16 pretrained
on ImageNet for segmentation.

• Self-supervised pretraining
using RegNetY400MF,
RegNetY800MF, SE-ResNet50,
ResNet101, and Ensamble.

• ROI: 2D
• Radiomics: VGG-16
• Classification: Ensamble,

16% validation

• Acc: 0.82
• Sen: 0.86
• Spe: 0.75
• AUC: 0.88

Deep learning applied on Phase 2
CECT images has the potential to
grade ccRCC renal tumors with an
AUC of 0.88 using the combined
(Ensamble) model outperforming all
other individual models.
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Table 1. Cont.

Study Data Radiomics Methods Results Findings

Luo et al. [78]
• ccRCC Grading
• (N = 177)
• Multiphasic CECT

• Shape: 7

– Phase 1 and 4: 7

• 1st-Order Statistics: 4

– Phase 1 and 4: 4
median,
RMS,
10th Pctl,
90th Pctl

• ROI: 3D
• Radiomics: PyRadiomics,

CIFE, and SMOTE
• Classification: RF, 5-fold CV

• Acc: 0.81
• Sen: 0.67
• Spe: 0.87
• AUC: 0.87

Shape and 1st-Order radiomics
extracted from phase 1 and 4 of
CECT along with an RF classifier
demonstrated the highest diagnostic
performance in ccRCC grading
(AUC = 0.87)

Main Goal(s): Malignant Grading and Staging

Demirjian et al. [39]

• ccRCC Grading
• ccRCC Staging
• (N = 587)
• Multiphasic CECT

• Grading:

– 1st-Order Statistics:
intensity

– 2nd-Order Statistics:
2D GLCM,
3D GLCM,
3D GLRLM

• Staging:

– 2nd-Order Statistics:
2D GLCM,
3D GLCM,
2D GLDM,
3D GLDM

• ROI: 3D
• Radiomics: In-house software,

ICC, and Gini index
• Classification: RF, 32% testing

• Acc: —
• Sen: —
• Spe: —
• AUC: 0.73

and 0.77

Radiomic markers of multiphasic
CECT have the potential to grade
and stage ccRCCs using RF
(AUC = 0.73 and 0.77)

Notes: Phase 1, unenhanced or precontrast; Phase 2, arterial or corticomedullary; Phase 3, portal venous or nephrographic; Phase 4, delayed or excretory; SFS, sequential feature selection;
TL, transfer learning; GTf, Google Tensorflow; LSSF, Laplacian spatial scaling factor; MGLA, mean gray-level attenuation; LTE, Law’s texture energy; LBP, local binary pattern; SMOTE,
synthetic minority oversampling technique; NDA, nonlinear discriminant analysis; RFE, recursive feature elimination; RFGB, relational functional gradient boosting; FFT, fast Fourier
transform; DCT, discrete cosine transform; MJV, majority voting; ICC, interclass correlation coefficient; MLP-ANN, multilayer perceptron artificial neural networks; RMS, root mean
squared; IBEX, Imaging Biomarker EXplorer; GBDT, gradient boosting decision tree; Pctl, percentile; CMIM, conditional mutual information maximization; RMAD, robust mean absolute
difference; CIFE, supervised feature selection methods.
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Li et al. [31] included 92 DW-MRI renal tumors, with malignant tumors including
(ccRCC, N = 38), (paRCC, N = 16), and (chrRCC, N = 18) and benign tumors comprising
(AML, N = 13) and (ONC, N = 7). The authors constructed 3D ADC maps and calculated
10 distinct first-order texture markers. Following statistical analysis to identify significant
markers, they evaluated diagnostic performance using ROC analysis. They reported that the
mean, median, 75th percentile, 90th percentile, STD, and ADC entropy of malignant tumors
were significantly higher than those of benign tumors. They reported 80% sensitivity, 86.1%
specificity, and an AUC of 0.85%. Razik et al. [23] investigated multiparametric MRIs of
54 renal masses, including (RCC, N = 34), (AML, N = 14), and (ONC, N = 6), obtained
from 42 patients. The researchers placed 2D ROIs on the maximum area of each tumor
and extracted six first-order texture markers. Through ROC analysis, the mean of positive
pixels (MPP) demonstrated the best diagnostic performance in separating RCC from AML
(AUC = 0.89) on b500 s/mm2 of DW-MRI. Furthermore, the mean value was identified as
the best marker for distinguishing between RCC and ONC (AUC = 0.94) on b1000 s/mm2

of DW-MRI.
Nikpanah et al. [92] explored the potential of deep CNNs along with T2-weighted

MRI and multiphasic CEMRI for differentiating ccRCC from ONC. Their study included
74 patients with a total of 243 renal masses, comprising 203 ccRCC and 40 ONC tumors.
The researchers placed 2D ROIs around the tumors and input them into an AlexNet
CNN model, achieving 91% accuracy and an AUC of 0.9. Arita et al. [93] analyzed the
texture of 3D ADC maps derived from DW-MRI to distinguish between benign AML and
malignant nccRCC. They encompassed a training dataset of 67 tumors (AML = 46 and
nccRCC = 21) and a validation dataset of 39 tumors (AML = 24 and nccRCC = 15). A total
of 45 texture markers were extracted, and the long-zone high gray-level emphasis, as a
second-order texture marker, was reported as the most dominant marker for identifying
AML. Their RF classification model yielded an AUC of 0.82, which was comparable to the
radiologic assessment.

Gunduz et al. [94] used texture analysis of ADC maps for distinguishing benign
ONC from malignant chrRCC in a small cohort of 14 patients (ONC = 6 and chrRCC = 8).
The study identified six texture markers, with five being second-order (run variance, short-
run emphasis, normalized run-length nonuniformity, run percentage, long-run emphasis)
and one being first-order (square root of mean ADC). They achieved 87.5% sensitivity and
83% specificity using ROC analysis. Matsumoto et al. [32] explored texture analysis on
DW-MRI for differentiating between AMLs and ccRCCs. Their study consisted of two
datasets. The first dataset comprised 83 tumors (AML = 18 and ccRCC = 65) that were
used for the development of the diagnostic model, while, the second dataset included
39 tumors (AML = 13 and ccRCC = 17), serving as external validation. From the ADC
maps, they extracted 39 texture markers and employed an RF model to determine the
importance of these markers. They identified the mean ADC value as a significant first-
order texture marker and both long-run low gray-level enhancement and gray-level run
emphasis as dominant second-order texture markers in the diagnostic process, achieving
an AUC of 0.87.

For RCC subtyping and grading, Goyal et al. [22] examined the power of texture
markers derived from multiparametric MRI techniques, including T1-weighted MRI, T2-
weighted MRI, multiphasic CEMRI, and DW-MRI. Using a total of 34 renal masses, consist-
ing of 29 ccRCCs (low-grade = 19, high-grade = 10) and 5 nccRCCs, they placed 2D ROIs on
the maximum viable tumor area. Then, they extracted multiple first-order texture markers,
including mean, entropy, STD, skewness, MPP, and kurtosis, from each MRI sequence for
further investigation. For RCC subtyping, using ROC analysis, entropy attained an AUC
of 0.81 on T2-weighted MRI, STD yielded AUCs of 0.81 and 0.88 on DW-MRI at b500 and
b1000 s/mm2, respectively, mean yielded an AUC of 0.848 on ADC maps, and skewness
reached an AUC of 0.85 on T1-weighted MRI and 0.91 on Phase 2 CEMRI. In the grading of
ccRCC tumors, entropy yielded an AUC of 0.82 on DW-MRI at b1000 s/mm2, mean attained
an AUC of 0.89 on Phase 2 CEMRI, and MPP achieved an AUC of 0.87 on Phase 3 CEMRI.
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The authors suggested that various first-order texture markers derived from multipara-
metric MRIs could serve as valuable diagnostic tools for both subtyping and grading renal
tumors. Sun et al. [40] explored the power of texture analysis on susceptibility-weighted
magnetic resonance imaging (SW-MRI) to grade ccRCCs. The study encompassed 45 pa-
tients, comprising 29 low-grade and 16 high-grade ccRCC tumors. The total number of
derived texture markers was reduced from 396 to 10. Using multivariable logistic regres-
sion, the authors constructed a diagnostic model which produced 77.3% accuracy, 80.5%
sensitivity, and 71.4% specificity.

Chen et al. [41] aimed at grading ccRCC using Phase 2 CEMRI. Their study included
99 tumors, with 61 low-grade and 38 high-grade cases. They placed 2D ROIs, then extracted
and analyzed various first-, second-, and higher-order texture markers. Using RF impor-
tance analysis, six texture markers, namely entropy, sum of entropy, kurtosis, horizontal
gray-level nonuniformity, gray-level nonuniformity, and run-length nonuniformity, were
selected. Subsequently, they achieved 86.2% accuracy, 72.7% sensitivity, 94.4% specificity,
and an AUC of 0.76 on the validation dataset (N = 29) using a modeled MLP-ANN classifier.
Despite high specificity, the sensitivity was relatively low, which could be attributed to class
imbalance. The utility of various radiomic markers, including shape markers and first- and
second-order texture markers, extracted from T2-weighted and multiphasic CEMRI was
explored by Choi et al. [95] to grade ccRCC. Their study encompassed 364 renal tumors, of
which 272 were low-grade and 92 were high-grade. Their RF classification model demon-
strated 98% accuracy, 72% sensitivity, 95% specificity, and an AUC of 0.89. Although the
overall diagnostic performance was satisfactory, the relatively low sensitivity was likely
attributable to data imbalance.

Hoang et al. [96] explored diagnosing renal RCC using texture analysis of multiphasic
MRI. Their study involved 212 renal lesions, of which 96 were normal, 11 were ONC,
87 were cRCC, and 8 were paRCC. These lesions were divided into two halves for training
and validation purposes. Following the placement of 2D ROIs, first-order texture mark-
ers, including mean, skewness, STD, and kurtosis, were extracted. Using an RF classifier
among all phases, Phase 1 CEMRI demonstrated the best diagnostic accuracy of 79.1%.
However, integrating texture markers from different phases raised the final diagnostic
accuracy to 83.7%. In a following study by the same researchers [33], the utility of multi-
phasic CEMRI for differentiating benign from malignant renal tumors and distinguishing
major subtypes of RCCs was investigated. The study included 140 renal lesions, of which
30 were ONC, 90 were RCC, and 22 were paRCC. After placing 2D ROIs on the slices en-
compassing the largest cross-section in each contrast phase, multiple first- and second-order
texture markers were extracted using histogram analysis, gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone matrix (GLSZM),
and neighborhood gray-tone difference matrix (NGTDM). Least absolute shrinkage and
selection operator (LASSO) regression was then applied to select the optimal markers
for classification. The study concluded that first-order texture markers were useful to
identify malignancy, while adding second-order texture markers improved the accuracy of
subtyping. In terms of classification, they used RF classification models and reported 77.9%
accuracy in distinguishing between paRCC and ccRCC, 79.3% accuracy in differentiating
between ONC and ccRCC, and 77.9% accuracy in discriminating between ONC and paRCC.

Table 2 summarizes the above-mentioned AI-based CAD systems from the last decade
that utilized different MRI modalities in terms of the following attributes: study, main
goal, data, radiomics, methods, results, and findings. Studies with the same main goal are
grouped together for comparison purposes.
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Table 2. Summary of last decade MRI-based studies to early diagnose renal tumors.

Study Data Radiomics Methods Results Findings

Xu et al. [29]

• Benign vs. Malignant
• (N = 217)
• T2-weighted MRI and

DW-MRI

• Shape: —
• 1st-Order Statistics: 1
• 2nd-Order Statistics: 7

– GLCM: 2
– GLRLM: 3
– GLSZM: 1
– GLDM: 1

• ROI: 2D
• Radiomics: PyRadioimcs,

LASSO
• Classification: ResNet-18,

RF, 10-fold CV

• Acc: range
(0.70–0.82)

• Sen: range
(0.81–0.94)

• Spe: range
(0.33–0.92)

• AUC: range
(0.74–0.93)

Combined radiomic markers of
multimodal MRIs can sufficiently
identify the malignancy status of
renal tumors by utilizing
handcrafted-based RF or DL-based
classification models

Oostenburgge
et al. [30]

• ONC vs. RCC
• (N = 39)
• 3D ADCs of DW-MRIs

• 1st-Order Statistics: 2

– entropy
– STD

• Tumor volume

• ROI: 2D
• Radiomics: In-house soft-

ware
• Classification: ICC, U-test,

ROC, and LR

• Acc: 0.87
• Sen: 0.86
• Spe: 0.84
• AUC: 0.91

Radiomics extracted from 3D ADCs
such as standard deviation and
entropy can discriminate ONC from
RCC when combined with tumor
volume and gender

Li et al. [31]
• Benign vs. Malignant
• (N = 92)
• 3D ADCs of DW-MRIs

• 1st-Order Statistics: 6

– mean
– median
– STD
– entropy
– 75th pctl
– 90th pctl

• ROI: 2D
• Radiomics: PASW IBM soft-

ware
• Classification: ANOVA,

t-test, and ROC (Statistical
analysis only)

• Acc: 0.82
• Sen: 0.80
• Spe: 0.86
• AUC: 0.85

Radiomic markers extracted from
3D ADCs of DW-MRIs are
significantly higher (p < 0.05) in
malignant than benign tumors

Razik et al. [23]

• Benign vs. Malignant
• (N = 54)
• Multiparametric MRIs

• 1st-Order Statistics: 2

– mean
– MPP

• ROI: 2D
• Radiomics: TexRAD soft-

ware
• Classification: U-test, ROC

(Statistical analysis only)

• Acc: range
(0.79–0.95)

• Sen: range
(0.71–0.97)

• Spe: range
(0.80–1.00)

• AUC: range
(0.89–0.94)

MPP and the mean value can
distinguish RCC from AML as well
as RCC from ONC with an AUC of
0.89 and 0.94 at b500 s/mm2 and
b1000 s/mm2 of
DW-MRI, respectively
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Table 2. Cont.

Study Data Radiomics Methods Results Findings

Nikpanah et al. [92]

• ONC vs. ccRCC
• (N = 243)
• T2-weighted MRI and

multiphasic CEMRI

• Local ROI patch was automat-
ically extracted, with a size of
100 × 100 mm.

• RGB image patches were re-
sized to 224 × 224 to fit the pre-
trained AlexNet configuration.

• ROI: 2D
• Radiomics: AlexNet CNN
• Classification: AlexNet, 5-

fold

• Acc: 0.81
• Sen: 0.88
• Spe: 0.75
• AUC: 0.90

Using multiphasic MRIs, DL-based
system can provide high diagnostic
performance that differentiates
ONC from ccRCC renal tumors

Arita et al. [93]
• AML vs. nccRCC
• (N = 106)
• 3D ADCs of DW-MRIs

• 1st-Order Statistics: 7
• 2nd-Order Statistics: 13

– GLCM: 4
– GLRLM: 4
– GLSZM: 4
– GLDM: 1

• ROI: 3D
• Radiomics: LIFEx software
• Classification: RF, 37% vali-

dation

• Acc: 0.77
• Sen: 0.87
• Spe: 0.69
• AUC: 0.82

Long-zone high grey-level emphasis
is the most informative radiomic
marker to distinguish between AML
and nccRCC using an RF classifier
with (AUC = 0.82)

Gunduz et al. [94]
• ONC vs. chrRCC
• (N = 14)
• 3D ADCs of DW-MRIs

• 1st-Order Statistics: 1

– squared root of mean
ADC

• 2nd-Order Statistics: 5

– GLRLM: 5

• ROI: 3D
• Radiomics: PyRadiomics
• Classification: ICC, ROC

(Statistical analysis only)

• Acc: 0.86
• Sen: 0.88
• Spe: 0.83
• AUC: 0.94

Squared root of mean ADC and
GLRLM radiomic markers of ADC
maps can sufficiently differentiate
between ONC and chrRCC

Matsumoto et al. [32]
• AML vs. ccRCC
• (N = 122)
• 3D ADCs of DW-MRIs

• 1st-Order Statistics: 3

– mean ADC
– skewness
– entropy

• 2nd-Order Statistics: 9

– GLCM: 3
– GLRLM: 4
– GLZLM: 1
– GLDM: 1

• ROI: 3D
• Radiomics: LIFEx software
• Classification: RF, 32% vali-

dation

• Acc: —
• Sen: —
• Spe: —
• AUC: 0.87

Mean ADC, grey-level run
emphasis, and long-run low
grey-level, are the most dominant
and important radiomic markers in
distinguishing AML from ccRCC
with an AUC of 0.87
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Table 2. Cont.

Study Data Radiomics Methods Results Findings

Hoang et al. [96]
(Study 1)

• Benign vs. RCC
• (N = 212)
• Multiphasic CEMRI

• 1st-Order Statistics: 4

– mean
– STD
– skewness
– kurtosis

• ROI: 2D
• Radiomics: In-house soft-

ware
• Classification: RF, 50% vali-

dation

• Acc: 0.84
• Sen: —
• Spe: —
• AUC: —

Using an RF classification model,
first-order radiomic markers of
multiphasic CEMRI have the
potential to identify RCC
renal tumors

Main Goal(s): Benign vs. Malignant and Malignant Subtyping

Hoang et al. [33]
(Study 2)

• ONC vs. ccRCC and
paRCC

• ccRCC vs. paRCC
• (N = 140)
• Multiphasic CEMRI

• 1st-Order Statistics: 5
• 2nd-Order Statistics: 40

– GLCM: 9
– GLRLM: 13
– GLSZM: 13
– NGTDM: 5

• ROI: 2D
• Radiomics: Radiomics-

developed package,
LASSO

• Classification: RF, 5-fold
CV

• Acc: range
(0.78–0.79)

• Sen: range
(0.67–0.70)

• Spe: range
(0.86–0.89)

• AUC: —

First-order radiomic markers are
important for identifying the
malignancy status, while adding
second-order markers helps in
RCC subtyping

Main Goal(s): Malignant Grading

Sun et al. [40]
• ccRCC Grading
• (N = 45)
• SW-MRI

• Shape: 2
• 2nd-Order Statistics: 8

– GLCM: 2
– GLRLM: 1
– GLSZM: 2
– GLDM: 3

• ROI: 2D
• Radiomics: AI-Kit, ICC,

U-test
• Classification: LR, 30% val-

idation

• Acc: 0.77
• Sen: 0.81
• Spe: 0.71
• AUC: 0.81

Radiomic markers of SW-MRI can
reliably differentiate low-grade
from high-grade ccRCC

Chen et al. [41]
• ccRCC Grading
• (N = 99)
• Phase 2 CEMRI

• 1st-Order Statistics: 2

– entropy
– kurtosis

• 2nd-Order Statistics: 4

– GLCM: 1
– GLRLM: 3

• ROI: 2D
• Radiomics: MaZda, ICC,

RF
• Classification: MLP-ANN,

30% validation

• Acc: 0.86
• Sen: 0.73
• Spe: 0.94
• AUC: 0.76

First- and second-order radiomic
markers of Phase 2 CEMRI along
with MLP-ANN classification model
have the potential to grade ccRCC
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Table 2. Cont.

Study Data Radiomics Methods Results Findings

Choi et al. [95]

• ccRCC Grading
• (N = 364)
• T2-weighted MRI and

multiphasic CEMRI

• Shape: 5
• 2nd-Order Statistics: 15

– GLDZM: 15

• ROI: 3D
• Radiomics: Radiomics-

developed package,
ANOVA

• Classification: RF, 30%
testing

• Acc: 0.98
• Sen: 0.72
• Spe: 0.95
• AUC: 0.89

Proper selection and integration of
optimal radiomic markers of MRIs
can potentially help grade ccRCCs

Main Goal(s): Malignant Subtyping and Grading

Goyal et al. [22]

• ccRCC vs. nccRCC
• ccRCC grading
• (N = 34)
• Multiparametric MRIs

• 1st-Order Statistics: 6

– mean
– STD
– MPP
– entropy
– skewness
– kutrosis

• ROI: 2D
• Radiomics: TexRAD
• Classification: U-test, ROC

(Statistical analysis only)

• Subtyping:
AUC range
(0.81–0.91)

• Grading:
AUC range
(0.82–0.89)

Multiple first-order radiomic
markers of multiparametric MRIs
are beneficial tools in both
subtyping and grading of
renal tumors

Notes: LASSO, least absolute shrinkage and selection operator; ADCs, apparent diffusion coefficients; SW-MRI, susceptibility-weighted MR imaging; LIFEx, local image feature
extraction; ANOVA, analysis of variance; MPP, mean positive pixels; MLP-ANN, multilayer perceptron artificial neural network.
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To sum up, the AI-based CAD systems that utilized various types of MRIs demon-
strated interesting results and findings in the early diagnosis of RCC. These systems
achieved an accuracy range of 77% to 91% and an AUC range of 0.82 to 0.91 for differen-
tiating malignant from benign tumors. Furthermore, they attained an accuracy range of
77% to 98% and an AUC range of 0.76 to 0.89 for subtyping and/or grading RCC tumors.
First-order texture markers such as entropy, MPP, mean, skewness, and kurtosis have
been frequently identified as the most dominant and important radiomic markers derived
from multiparametric MRIs. These markers are useful for differentiating between benign
and malignant renal tumors. The addition of second-order texture markers derived from
GLRLM has also proven valuable. Notably, texture analysis of ADCs derived from DW-MRI
was the most commonly used technique among the reviewed MRI studies. Additionally,
RF classifiers were chosen by the majority of these studies, yielding superior classification
results. In spite of MRIs being useful for identifying malignancy status, subtyping RCCs,
and grading RCCs, there is a lack of research investigating the staging of RCCs. Staging
is crucial for determining a tumor’s spread, size, and location, making it a vital area for
future investigation.

3. AI-Based Prediction Of Clinical Outcome/Treatment Response Studies

A limited number of studies have explored the role of AI and/or radiomics derived from
CT and/or MRI in predicting clinical outcomes and treatment responses in RCC patients.
Focusing on MRI studies, Bharwani et al. [43] investigated the potential correlation between
various radiomic markers extracted from DW-MRI and dynamic contrast-enhanced MRI
(DCE-MRI) and the response to neoadjuvant sunitinib therapy, specifically overall survival
(OS), in metastatic RCC (mRCC). Their study included 20 mRCC patients who survived after
completing three treatment cycles. By placing 3D ROIs on DW-MR images, they calculated
tumor volume, constructed ADC maps, and generated ADC histograms. They then deter-
mined mean ADC, AUClow (ADC 25th percentile), kurtosis, and skewness before and after
treatment. Using 2D ROIs on DCE-MR images, they computed the maximum signal intensity
and the wash-in rate before and after treatment. Using the Kaplan–Meier (KM) method,
they analyzed OS by dividing mRCC patients into two groups based on the median of the
aforementioned descriptive statistics as a cutoff. Their findings revealed that patients with
a tumor volume below the median at baseline experienced a prolonged OS. An increase in
AUClow of ADCs greater than the median was indicative of reduced OS, whereas a decrease
in AUClow suggested a prolonged OS. Moreover, a positive correlation was found between
mean ADC in the primary tumor and metastases.

Antunes et al. [44] conducted a study aiming to identify the optimal radiomic markers
on an integrated positron emission tomography (PET)/MRI that best describe early treatment
responses and changes in advanced mRCC patients (N = 2) undergoing sunitinib therapy.
They extracted a total of 66 radiomic markers, including raw T2w signal, postprocessed T2w,
30 postprocessed T2w textures, raw ADC map, 30 ADC textures, standard uptake value
(SUV), and 2 PET textures. Subsequently, they employed a scoring function to determine the
top 25 ranked radiomic markers in the two patients under study. They found that SUV from
PET, T2w difference average from T2w, and ADC energy from DW-MRI ADC maps were
ranked the highest among the 25 radiomic markers in terms of reproducibility and capturing
treatment-related changes or responses. Furthermore, the integration of these radiomic
markers resulted in improved prediction performance. However, they acknowledged that
their findings are limited due to a small sample size of only two patients and emphasized the
need for further investigation in a larger cohort to validate their results.

Reynolds et al. [51] conducted a study to investigate the potential of radiomic mark-
ers derived from DW-MRI (N = 12) and DCE-MRI (N = 10) as predictors of early treat-
ment response in RCC patients following stereotactic ablative body radiotherapy (SABR).
For shape markers, 3D ROIs from CT images were utilized to contour the tumor, and tumor
volume was calculated at baseline and after three different follow-up scans to estimate
tumor volume change. For textural markers, ADC maps were derived from 3D ROIs of
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DW-MR images, and an ADC histogram was constructed. Mean ADC, median, kurto-
sis, and skewness were subsequently calculated. Employing DCE-MR images, various
functional markers were estimated, including mean Tonset, mean IRE, mean MaxE, mean
Twout, mean IRW, mean Ktrans, iAUCAC60, % washout voxels, % plateau voxels, % persis-
tent voxels, and % nonenhancing voxels. Spearman rank correlation coefficients (ρ) were
computed to compare changes in the aforementioned parameters against the % change
in tumor volume. Statistically significant correlations were observed between the change
in percentage washout, change in mean IRE, and mean Ktrans and the change in tumor
volume (p < 0.05). Changes in ADC kurtosis also demonstrated statistically significant
positive correlations with % tumor volume change (p < 0.05).

For CT studies, Lubner et al. [50] conducted a study to identify radiomic texture
markers that can be extracted from phases 1 and 3 of CECT images in RCC patients (N = 157)
and might be correlated with histological findings and treatment response. From 2D ROIs,
and after applying various texture filters, they extracted six different first-order texture
markers: mean, STD, MPP, entropy, skewness, and kurtosis. Their study found that entropy,
STD, and MPP were correlated with histologic type, nuclear grade, and clinical outcomes
(time to recurrence and OS) in patients with RCC.

Boos et al. [45] assessed the ability of mean and median intensity attenuation, repre-
sented by Hounsfield units (HU) and estimated from CECT images, in predicting treatment
responses (response, stable, and progression) in patients with RCC tumors (N = 19) who
received targeted therapy, specifically vascular endothelial growth factor receptor (VEGFR)
tyrosine kinase inhibitors (TKI). After estimating the mean and median HUs, they per-
formed the Wilcoxon signed-rank test to compare the change between the baseline and
consecutive post-treatment scans for overall outcome assessment. They concluded that
the median HU attenuation shift provided better prediction accuracy (79%) than the mean
(74%) and thus is preferable. Moreover, a shift in median <–44 HU indicated a partial
response, while a shift in median >–41 HU indicated progression, and therefore, median
HU shift correlates well with clinical outcomes in mRCC patients.

Haider et al. [46] conducted a study to highlight potential radiomic predictors of PFS
and OS that could be extracted from CECT images in RCC patients (N = 40) undergoing
treatment with sunitinib. After placing 2D ROIs on renal tumors, they extracted various
first-order texture markers, such as MPP, STD, skewness, kurtosis, and size-normalized STD
(nSTD), and entropy as a second-order texture marker. A Cox proportional hazards survival
statistical analysis was employed to determine the predictors of both PFS and OS. Their study
revealed that nSTD extracted at baseline and after treatment is positively correlated with both
OS and PFS, while entropy and tumor size changes are predictors of OS but not PFS.

Mains et al. [47] investigated radiomic functional markers derived from CECT images
that could potentially predict OS and PFS in mRCC patients (N = 69). After placing 2D
ROIs, they identified seven markers that describe functionality, specifically, blood volume
using deconvolution (BVdeconv), blood flow using deconvolution (BFdeconv), standardized
perfusion values using deconvolution (SPVdeconv), blood volume using maximum slope
(BVmax), standardized perfusion values maximum slope (SPVdeconv), blood volume us-
ing the Patlak model (BVpatlak), and permeability surface area product using the Patlak
model (PS). They applied various statistical analysis methods on the histogram data of
the aforementioned markers and found that medians and modes of BVdeconv, BVpatlak,
and BFdeconv are statistically significant (p < 0.05) and have the strongest correlation with
clinical outcomes (PFS and OS).

Khodabakhshi et al. [48] conducted a study to investigate possible radiomic markers
extracted from Phase 2 CECT along with clinical biomarkers for the prediction of OS in RCC
patients after partial or radical nephrectomy (N = 210). The 2D ROIs were manually drawn,
and a total of 225 radiomic markers were extracted, including 29 shape markers, 50 first-
order texture markers, and 136 second-order texture markers. Additionally, 59 clinical
markers were included in the analysis. They employed Cox proportional hazards regression
as a marker selection method, which resulted in a reduced set of 11 radiomic markers and
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12 clinical markers. Then, they applied the accelerated failure time technique to specify
the contribution of the selected markers on OS time. Their study revealed that flatness, area
density, and median were the most significant radiomic markers (p < 0.05), while tumor
heterogeneity, grade, and stage were the most significant clinical markers (p < 0.05). Therefore,
all of these markers combined were significant predictors for OS in RCC patients.

Zhang et al. [49] investigated the prediction potential of radiomic markers extracted
from CECT images and clinical markers linked to PFS after partial or radical nephrectomy
in ccRCC (N = 175). After manual segmentation of tumors using 3D ROIs, they extracted
a total of 428 radiomic markers (107 per CT phase). They then applied the least abso-
lute shrinkage and selection operator with 5-fold cross-validation (LassoCV) to select the
dominant markers, resulting in six markers (four shape-based markers and two second-
order texture markers) as follows: least axis length (Phase 2), maximum 2D diameter row
(Phase 4), surface volume ratio (Phase 1), maximum 2D diameter slice (Phase 3), size-zone
nonuniformity (Phase 2), and complexity (Phase 2). Subsequently, they established a mul-
tivariate Cox regression model using a training dataset (N = 125) for PFS prediction and
saved the other 50 subjects for validation. This model depended on a weighted sum of
the selected markers. In addition, they integrated statistically significant clinical markers
(age, clinical stage, and Karnofsky performance status (KPS) score), resulting in a PFS
prediction model encompassing both clinical and radiomic markers. After validating their
model on the validation dataset (N = 50), they achieved an accuracy of 70%, sensitivity of
58%, specificity of 74%, and an AUC of 0.71. They concluded that radiomic-based markers
extracted from CECT, especially Phase 2, demonstrated better prediction performance of
PFS in ccRCC patients when combined with clinical markers.

Table 3 provides a summary of the aforementioned radiomic-based CAP systems
developed in the last decade using different CT and/or MRI modalities. The Table includes
the following details: study, main goal, radiomics, methods, results, and findings.

In summary, these few studies investigated the potential of developing radiomics-
based CAP systems utilizing various types of CT and MRI scans, showing promising results
in early prediction of treatment response, including overall survival rate, progression-free
survival, and time to recurrence. Most of these studies relied on statistical analyses to
identify statistically significant radiomic markers correlated with specific clinical outcomes
or treatment responses. Histogram measures of ADC maps extracted from DW-MR images,
particularly changes in mean ADC, ADC energy, and ADC kurtosis, were significant
predictors of clinical outcomes (p < 0.05) [43,44,51]. Additionally, changes in radiomic-
based functional parameters extracted from DCE-MR images, namely changes in percentage
washout, mean IRE, and mean Ktrans, demonstrated significant correlations with changes
in tumor volume (p < 0.05) and thus are potential indicators for clinical outcomes or
treatment responses [51]. First-order texture markers, specifically entropy, STD, and MPP,
are correlated with time to recurrence and OS [46,50], while nSTD is positively correlated
with both OS and PFS [46]. Functional-based radiomic markers, such as median HU, are
potential predictors of partial response and progression [45], while medians and modes
of BVdeconv, BVpatlak, and BFdeconv are strong predictors of OS and PFS. Moreover, shape-
based radiomic markers, namely flatness and area density, extracted from Phase 2 CECT
are strong predictors of OS [48], while least axis length extracted from the same phase of
CECT is a potential indicator of PFS [49]. Some clinical markers can be combined with
radiomic markers for enhanced prediction performance of PFS, such as age, stage, and KPS
score [49], and for improved prediction of OS, such as grade and stage [48]. Despite
these promising findings, there is considerable heterogeneity and diversity in the number
of patients included in each study, the type of treatment administered before or after
nephrectomy (e.g., radiation therapy, targeted therapy, neoadjuvant therapy, etc.), and the
final goals or endpoints of these studies (e.g., type of clinical outcome). Furthermore,
most of these studies were primarily statistical-based in nature and were not aimed at the
development of a comprehensive automated AI-based CAP system.
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Table 3. Summary of the last decade’s CT- and/or MRI-based studies for predicting/assessing patient outcomes (e.g., treatment response, recurrence, and overall
survival (OS), and progression-free survival (PFS)).

Study Main Goal Radiomics Methods Results Findings

Bharwani et al. [43]

To find the radiomic markers
extracted from
diffusion-weighted MR
(DW-MR) and dynamic
contrast-enhanced MR
(DCE-MR) images that
correlate with responses to
neoadjuvant sunitinib
therapy, in particular overall
survival (OS), in metastatic
renal cell carcinoma (mRCC)
patients (N = 20)

• Shape:

– median
tumor volume

• 1st-Order Statistics (DW-MRI):

– mean ADC
– AUClow (ADC 25th Pctl.)
– kurtosis
– skewness

• Functional DCE-MRI:

– max signal intensity
– wash-in rate

• 2D and 3D ROIs
• KM (Statistical analysis

only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

Patients with a tumour volume < me-
dian at baseline had a prolonged OS.
A greater than median increase in
AUClow of ADCs indicates reduced
OS while a decrease in AUClow indi-
cates a prolonged OS in mRCC.
A positive correlation between mean
ADC was found between the pri-
mary tumor and metastases

Antunes et al. [44]

To find the optimal radiomic
markers on an integrated
positron emission
tomography (PET)/MRI that
best describe early treatment
response/changes in
advanced mRCC
undergoing sunitinib
therapy (N = 2)

• Total: 66 (raw T2w signal,
postprocessed T2w, 30 postpro-
cessed T2w textures, raw ADC
map, 30 ADC textures, stan-
dard uptake value (SUV), and
2 PET textures)

• 2D ROI
• Scoring function

• Acc: –
• Sen: –
• Spe: –
• AUC: –

SUV from PET, T2w difference
average from T2w, and ADC energy
from DW-MRI ADC maps are
ranked highest for reproducibility
and for capturing treatment related
changes/response

Lubner et al. [50]

To determine the
radiomic-based texture
markers extracted from
CECT images on phases 1
and 3 of RCCs patients that
are correlated with the
histological finding and
treatment response (N = 157)

• 1st-Order Statistics: 6

– mean
– STD
– MPP
– entropy
– skewness
– kurtosis

• 2D ROI
• SLR, LR
• CPHR, KM (statistical anal-

ysis only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

1st-Order texture markers (entropy,
STD, and MPP) extracted from
phases 1 and 3 of CECT are
correlated with histologic type,
nuclear grade, and clinical
outcomes (time to recurrence and
OS) in patients with RCC
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Table 3. Cont.

Study Main Goal Radiomics Methods Results Findings

Boos et al. [45]

To assess the ability of mean
and median intensity
attenuation (HU) using
CECT images for predicting
treatment response
(response, stable, and
progression) in patients with
RCC tumors who received
targeted therapy, namely
VEGFR TKI (N = 19)

• Functional:

– median HU
– mean HU

• 2D ROI
• WRST (statistical analysis

only)

• Acc: range
(0.63 - 0.79)

• Sen: –
• Spe: –
• AUC: –

Median HU attenuation shift rather
than mean yields better prediction
accuracy and thus is preferable. It
correlates well with clinical outcome
in mRCC patients. A shift of median
<–44 HU indicates a partial response
while a shift of median >–41 HU
indicates progression

Haider et al. [46]

To highlight potential
radiomic predictors of
progression-free survival
(PFS) and overall survival
(OS) that could be extracted
from CECT images in RCC
patients undergoing
treatment with sunitinib
(N = 40)

• Shape: 1

– size change

• 1st-Order Statistics: 5

– MPP
– STD
– skewness
– kurtosis
– nSTD

• 2nd-Order Statistics: 1

– entropy

• 2D ROI
• CPHR (statistical analysis

only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

nSTD extracted from CECT before
and after sunitinib treatment is
positively correlated with both OS
and PFS, while entropy and % size
change are predictors of OS in RCC
patients

Mains et al. [47]

To identify radiomic
functional markers derived
from CECT to act as
potential predictors of OS
and PFS in mRCC patients
(N = 69)

• Functional: 7

– BVdeconv
– BFdeconv
– SPVdeconv
– BVmax
– SPVdeconv
– BVpatlak
– PS

• 2D ROI
• MLEMD
• KM, LR, and Spearman ρ

(statistical analysis only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

Medians and modes of BVdeconv,
BVpatlak, and BFdeconv are
statistically significant (p < 0.05)
and provide the strongest
correlation with clinical outcome
(PFS and OS)
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Table 3. Cont.

Study Main Goal Radiomics Methods Results Findings

Reynolds et al. [51]

To investigate the ability of
radiomic markers extracted
from DW-MRI (N = 12) and
DCE-MRI (N = 10) as
potential predictors of early
treatment responses in RCC
patients after stereotactic
ablative body radiotherapy
(SABR)

• Shape:

– tumor volume

• 1st-Order Statistics (DW-MRI):

– mean ADC
– median ADC
– kurtosis
– skewness

• Functional DCE-MRI:

– mean Tonset
– mean IRE
– mean MaxE
– mean Twout
– mean IRW
– mean Ktrans
– % wout
– % plateau
– % presistent
– % noenhance
– iAUCAC60

• 3D ROI
• Spearman ρ (statistical anal-

ysis only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

Statistically significant correlations
between the change in percentage
washout, change in mean IRE, and
mean Ktrans, and the change in
tumour volume (p < 0.05).
Changes in ADC kurtosis showed
statistically significant positive
correlations with the percentage
tumour volume change (p < 0.05)

Khodabakhshi et al. [48]

To explore the potential
radiomic markers extracted
from Phase 2 CECT and
clinical biomarkers for the
prediction of OS in RCC
patients after partial or
radical nephrectomy
(N = 210)

• Total: 225
• Shape: 29
• 1st-Order Statistics: 50
• 2nd-Order Statistics: 136

– GLCM: –
– GLRLM: –
– GLSZM: –
– GLDZM: –
– NGTDM: –
– NGLDM: –

• 2D ROI
• CPHR, AFT, bootstrapping,

and KM (statistical analysis
only)

• Acc: –
• Sen: –
• Spe: –
• AUC: –

Besides tumor heterogeneity, grade,
and stage as clinical indicators for
OS, flatness, area density, and
median are the most significant
radiomic-based predictors
(p < 0.05) of OS
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Table 3. Cont.

Study Main Goal Radiomics Methods Results Findings

Zhang et al. [49]

To investigate the prediction
potentials of
radiomics-based markers
extracted from CECT images
and clinical markers that are
linked to progression-free
survival (PFS) after partial or
radical nephrectomy in
ccRCC patients (N = 175)

• Total: 6
• Shape: 4

– Phase 1: 1
– Phase 2: 1
– Phase 3: 1
– Phase 4: 1

• 2nd-Order Statistics: 2

– Phase 2:
1 (GLSZM),
1 (NGTDM)

• 3D ROI
• LASSO, CPHR
• 29% validation

• Acc: 0.70
• Sen: 0.58
• Spe: 0.74
• AUC: 0.71

Radiomic-based markers extracted
from CECT, especially Phase 2,
demonstrated better prediction
performance of PFS in ccRCC
patients when combined with
clinical markers (age, stage, and
KPS score)

Notes: OS, overall survival; mRCC, metastatic renal cell carcinoma; KM, Kaplan–Meier; PFS, progression-free survival; SLR, simple linear regression; CPHR, Cox proportional hazards
regression; HU, Hounsfield unit; VEGFR, vascular endothelial growth factor receptor; TKI, tyrosine kinase inhibitors; WRST, Wilcoxon signed-rank; nSTD, size-normalized standard;
BVdeconv, blood volume using deconvolution; BFdeconv, blood flow using deconvolution; SPVdeconv, standardize perfusion values using deconvolution; BVmax, blood volume using
maximum slope; SPVdeconv, standardize perfusion values maximum slope; BVpatlak, blood volume using the Patlak model; PS, permeability surface area product using the Patlak
model; MLEMD, maximum likelihood expectation maximization deconvolution; ρ, Spearman’s rank correlation coefficient; Tonset, time of onset of the contrast agent; IRE, initial rate of
enhancement; MaxE, maximum enhancement; Twout, time of washout of the contrast agent; IRW, initial rate of washout; Ktrans, volume transfer constant between blood plasma and the
extravascular extracellular space; iAUCAC60, initial area under the contrast agent concentration curve for the first 60 s postinjection; AFT, accelerated failure time; KPS, Karnofsky
performance status.
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4. Discussion and Future Directions

The success of accurate and timely diagnosis of renal tumor malignancy status, specific
subtype, and associated grade (I–IV) and stage (I–IV) holds significant clinical importance,
as it directly influences the determination of appropriate treatment and management
plans. As a result, precise prediction of clinical outcomes or treatment responses, including
recurrence rate, overall survival rate, and progression-free survival rate, is essential to
avoid the burden of unnecessary treatment strategies. This, in turn, can conserve time,
effort, and resources, ultimately benefiting both patients and healthcare providers.
Suggested Diagnostic Radiomic Markers:

• In terms of differentiating malignant from benign renal tumors, CT studies have
demonstrated a slightly higher diagnostic accuracy [52,54,55,63,68,83] when compared
with the results obtained by MRI studies [29,31,92,93]. This can be partially attributed
to the superior resolution provided by CT in comparison with MRI. In both imaging
modalities, first-order texture markers, including entropy, mean, MPP, skewness,
and kurtosis, were reported to be sufficient for the intended purpose.

• For subtyping and grading, both CT [68,71,73,74,76,79,80,88–91] and MRI [22,41,95,96]
studies exhibited adequate diagnostic performance, suggesting that second-order
texture markers, particularly those derived from the GLCM and GLRLM, should be
combined with first-order texture markers. A limited number of studies have relied on
morphological or functional markers, which, if integrated, could significantly enhance
diagnostic performance [68]. In this context, both imaging modalities can be utilized
for subtyping and grading purposes. However, MRIs are preferable in cases involving
pediatric patients or pregnant women [97] to prevent exposure to ionizing radiation.
For staging, a few CT studies demonstrated promising diagnostic performance [39],
while MRI studies did not investigate radiological staging.

Suggested Diagnostic Radiomic Techniques: Generally, handcrafted radiomic techniques
were more commonly investigated in both CT [14,27,28,34,35,37,54,62,68,74,82,86] and
MRI [22,23,29,30,32,93,94] studies, as opposed to deep learning radiomic techniques, which
were less frequently utilized in CT [66,81,83,88,95] and MRI [92] studies. Handcrafted
techniques have proven efficient, as evidenced by high diagnostic accuracy, sensitivity,
and specificity, as well as being well-understood (i.e., explainable AI), making them desir-
able and dependable.
Suggested Diagnostic Classifiers: The RF, SVM, and ANN classifiers were the most fre-
quently utilized AI-based classification models in CT studies [14,27,28,35,36,38,39,52–55,58,
59,67,68,70,74,76,78–80,85,86,89,90], while the RF classifier was predominantly selected in
MRI studies [29,32,33,41,93,95,96]. These classifiers have provided impressive diagnostic
results and have been widely accepted by researchers in the field due to their ability to
handle nonlinear and multiclass classification problems.
Suggested Imaging Modalities/Phases: Contrast-enhanced phases 2 and 3 (corticomedullary/,
arterial phase, and nephrographic/portal venous phase) were reported to be the most informative
phases for extracting radiomic markers in both CT [35,36,38,58,62,64,68,70–76,80,81,87,89–91]
and MRI [41] studies. Meanwhile, texture analysis of ADCs on DW-MRI was the most
commonly employed technique to extract radiomic markers in MRI studies [29–32,94].
Suggested Prediction Radiomic Markers: In terms of treatment response prediction, en-
tropy, mean, skewness, kurtosis, STD, and median have been identified by most CT stud-
ies [46,50] as potential radiomic markers for predicting OS and PFS. On the other hand,
histogram measures of ADC maps extracted from DW-MR images, specifically changes
in mean ADC, ADC energy, and ADC kurtosis, were the most promising predictors of
clinical outcome in MRI studies [43,44,51]. To the best of our knowledge, no studies have
employed AI, ML, or DL for the purpose of predicting treatment response; rather, they
have relied on statistical analyses to identify significant markers correlated with clinical
outcome/treatment response. A limited number of studies have depended on morpho-
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logical or functional markers, which, if integrated, could significantly enhance clinical
outcome/treatment response prediction [43,46,48,49,51].

It is worth noting that one study [50] attempted to identify optimal radiomic-based
markers correlated with both histological findings and treatment responses. The authors
concluded that first-order texture markers, specifically entropy, STD, and MPP extracted
from phases 1 and 3 of CECT, were correlated with histological type, nuclear grade, and clin-
ical outcomes (time to recurrence and OS) in patients with RCC. However, this study did not
attempt to incorporate these radiomic markers into a comprehensive AI-based CAD/CAP
system capable of simultaneously diagnosing RC and predicting treatment response, which
is the ultimate goal of this survey. Consequently, the research gap remains and warrants
further investigation.
Future Directions: While renal cancer diagnosis is a well-established research area, with
numerous CT and MRI studies having developed radiomic and AI-based CAD systems
for determining malignancy status, subtyping, grading, and staging, some investigations
still suffer from low sensitivity or specificity [36,38,40,53,58,60,66,78,82,87,89,93,96]. Conse-
quently, integrating radiomic markers extracted from multiple imaging modalities, such as
CT and MRI, may improve diagnostic performance. Furthermore, as radiological-based anal-
ysis may not be sufficient for predicting clinical outcome/treatment responses, incorporating
histopathological image analysis that captures characteristics such as cell color, shape, size,
and staining could enhance prediction capabilities. Identifying robust AI models may reduce
subjectivity by pinpointing optimal markers for treatment response prediction purposes. It
is worth noting that a new trend in predicting treatment response using radiogenomics has
recently emerged in a few studies and requires further investigation [98–103].

In conclusion, more investigative studies are still ongoing for both CT and MRI for
the purpose of diagnosing renal tumors, as well as predicting clinical outcome/treatment
responses for optimal management plans. Progress in the early diagnosis of renal tu-
mors and treatment response prediction depends mainly on the identification of optimal
discriminating markers for the intended diagnostic/prediction problems, as well as the
development of robust, reproducible, and generalizable AI-based diagnosis/prediction
models. By providing these future directions and suggestions, we aim to encourage in-
vestigators and researchers to address this research gap and achieve the intended goal
of establishing a comprehensive, unified CAD/CAP system that can be reliably used for
both renal tumor diagnosis and clinical outcome/treatment response prediction, ultimately
leading to improved healthcare outcomes.
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Abbreviations
The following summarizes the list of abbreviations that are used in this survey:
RC Renal Cancer
RCC Renal Cell Carcinoma
ccRCC Clear-Cell RCC
nccRCC Non-Clear-Cell RCC
paRCC Papillary RCC
ChrRCC Chromophobe RCC
AMLwvf Angiomyolipoma without visible fat
ONC Oncocytoma



Cancers 2023, 15, 2835 38 of 43

CECT Contrast-Enhanced Computed Tomography
CEMRI Contrast-Enhanced Magnetic Resonance Imaging
DW-MRI Diffusion-Weighted MRI
ADC Apparent Diffusion Coefficient
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
CAD Computer-Aided Diagnosis
CAP Computer-Aided Prediction
ROI Region of Interest
AUC Area Under the Curve
OS Overall Survival
PFS Progression-Free Survival
ANNs Artificial Neural Networks
LR Logistic Regression
RF Random Forests
SVM Support Vector Machine
CNN Convolutional Neural Network
ROC Receiver Operating Characteristics
MPP Mean of Positive Pixels
SW-MRI Susceptibility-Weighted MRI
GLCM Gray-Level Co-occurrence Matrix
GLRLM Gray-Level Run-Length Matrix
GLSZM Gray-Level Size-Zone Matrix
NGTDM Neighboring Gray-Tone Difference Matrix
GLDZM Gray-Level Distance Zone Matrix
NGLDM Neighboring Gray-Level Dependence Matrix
mRCC Metastatic RCC
KM Kaplan–Meier
PET Positron Emission Tomography
SUV Standard Uptake value
SABR Stereotactic Ablative Body Radiotherapy
IRE Initial Rate of Enhancement
MaxE Maximum Enhancement
IRW Initial Rate of Washout
iAUCAC60 Initial Area Under Contrast Agent Concentration Curve for 60 s postinjection
HUs Hounsfield Units
VEGFR Vascular Endothelial Growth Factor Receptor
LassoCV Least Absolute Shrinkage and Selection Operator Cross-Validation
KPS Karnofsky Performance Status
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