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Simple Summary: Although remarkable progress in the treatment of acute lymphoblastic leukemia
(ALL) has been observed, some patients (~20%) relapse. Resistance to therapies is a hallmark of
relapses and treatment failure in ALL. Such resistances may involve different cellular mechanisms,
including the modulation by therapeutic drugs of cell survival signaling pathways that may lead
to therapy-induced resistance. This article will begin by providing an update of mechanisms of
resistance that may lead to therapy-induced resistance in ALL. It also provides proof of concept for
the therapeutic exploitation of these signaling pathways to improve treatments.

Abstract: Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to
drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL
cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Gluco-
corticoids (GCs) are one of the most important agents used in the treatment of ALL due to their
ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and
intense research is currently focused on this topic. Such resistance can involve different cellular and
molecular mechanisms, including the modulation of signaling pathways involved in the regulation
of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors.
Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead
to therapy-induced resistance in ALL cells, which we called “paradoxical corticosensitivity”. In this
review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs
with an emphasis on previous and current knowledge on gene expression and signaling pathways.
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1. Introduction

Acute lymphoblastic leukemias (ALL) are diseases resulting from transformations
and mutations of hematopoietic cells. These mutations occur during cell development
driving aberrant proliferation and survival of B and T cells [1]. Pediatric ALL developed in
children until the age of 12 and present a peak prevalence between 2 and 5 years old [2].
The exact causes remain unclear, but some genetic, immunologic, viral and environmental
factors seem to be implicated. Less than 5% of cases have been associated with inherited
predisposing genetic syndromes such as Down’s syndrome, Bloom’s syndrome, ataxia-
telangiectasia or Nijmegen breakage syndrome or with ionizing radiation [3,4]. ALL is
the most common childhood malignancy with 80% of childhood leukemias and 25% of
all childhood cancers [3]. Huge strides have been made over the past 50 years in the
understanding of management of childhood ALL resulting in improvement in cure rates
from approximately 10% to approximately 90% [3,5–7]. It has been shown that 85% of the
cases of childhood ALL are of the B–lineage [3,8]. At the same time, T–ALL accounts for
10%–15% of the cases of childhood ALL and the outcome is more severe [9,10].
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2. Glucocorticoids in Leukemia Treatment

Glucocorticoids (GCs) are small compounds derived from cortisol which is produced
by the adrenal gland. Upon binding with GC, the glucocorticoid receptor, GR, encoded
by the NR3C1 gene, dimerizes and migrates to the nucleus where it functions as a tran-
scription factor and regulates the expression of multiple steroid-response genes [11,12].
GCs are involved in many biological processes including metabolism, development, dif-
ferentiation and neural activity [13]. Because of their plural activity capacity, they became
used as therapeutic agents in the treatment of many diseases. For example, GCs are used
as anti-inflammatory or anti-proliferative treatments in immunopathies or leukemias, re-
spectively. [13]. Nowadays, ALL patient care is based on chemotherapy protocols, in
which GC take an important place (Tables 1 and 2) [14]. At the beginning, prednisone
was used in treatment. Protocols consisted of 4 weeks of prednisone in association with
other drugs [14]. In recent years, dexamethasone, a synthetic analog of cortisol, which
differs molecularly from prednisone by several atoms, has been increasingly used to treat
ALL for its superior efficacy (for review see ref. [14]). For example, dexamethasone has
an additional fluorine atom and an additional methyl group. These changes slow the
metabolism of dexamethasone and lead to an extension of plasma half-life (200 min vs.
60 min for prednisolone) and biological half-life (36–54 h vs. 24–36 h) [14]. Nevertheless,
while dexamethasone has increased efficiency, its cytotoxic effects are much more important
than those of prednisone [14] and they should be considered.

Table 1. GC used in leukemia therapy.

Name GC Potency
Mineral

Corticoid
Potency

Plasma
Half-life

Dosing in
Treatment References

Prednisone 3.5–4 0.8 12–36 h 40–60
mg/m2 [14,15]

Dexamethasone 25–80 0 36–54 h 6–10 mg/m2 [14]

Table 2. Clinical trials utilizing GC.

Trials n GC Dose Duration of
Treatment Disease Study

Arm/Group Results Refs

NCT00613457 2039
Dex

Pred

10 mg/m2/day

60 mg/m2/day

14 days

20 days

ALL Pred vs. Dex

Dex reduced the
incidence of better

salvageable relapses
Significant survival

benefit from dex only
for patients with

T-cell ALL [16]

NCT03390387 4000

Dex

Pred

6 mg/m2/day

60 mg/m2/day

28 days or
day 1–15

and 22–29

28 days ALL

Dex intermittent
vs Dex continue

vs. Pred Recruiting NA

NCT00002816
Phase 3 120 Dex - - Relapsed ALL

Early relapse vs.
late relapse
for drugs

association

After reinduction, LPC
counts were lower than
in patients treated for

an overt BM
first relapse.

[17,18]

NCT00707083
Phase 3 2231 Dex - Days 1–5

and 29–33 ALL

Bone marrow
suppression and

liver toxicity [19]

(CCG)-1922 1060

Dex

Pred

6 mg/m2/day
40 mg/m2/day

28 days
28 days ALL

6 MP + Oral Pred
vs. 6 MP +

Intravenous Pred
vs. 6 MP + Oral
dex vs. 6 MP +

Intravenous Dex

Dex provided a
34% reduction in risk

of relapse [20]
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Table 2. Cont.

Trials n GC Dose Duration of
Treatment Disease Study

Arm/Group Results Refs

AALL0232
3154

Dex

Pred

10 mg/m2/day
60 mg/m2/day

14 days
28 days High risk B-ALL Pred vs. Dex

Higher rate of
subsequent

osteonecrosis with
Dex-treated patient [21]

NCT00003728 1947

Dex

Pred

6 mg/m2/day
60 mg/m2/day - ALL

Pred vs. Dex

EVS similar
Decreased cumulative

incidence of CNS
relapse with dex. [22]

NCT01324180 14 Dex 10 mg/m2/day - Relapsed/
refractory ALL Met + VPLD - NA

NCT03613428 12 Pred 1 mg/kg 28 days
Re-

lapse/refractory
T-ALL

Rux + Pred - NA

NCT03817320

31 Dex 10 mg/m2/day 14 days
Relapsed

/refractory ALL Ixa + VXLD Recruiting NA

n: number of patients; Dex: Dexamethasone; Pred: Prednisone; Met: Metformin; Rux: Ruxolitinib; VLPD: Vin-
cristine, Dexamethasone, Doxorubicin, and PEG-asparaginase; Ixa: Ixazomib; VXLD: Vincristine, Dexamethasone,
Asparaginase, and Doxorubicin; EFS: Event free survival; CNS: central nervous system; NA: no publication
available; LPC: leukemic progenitor cell.

Furthermore, the essential role of endogenous GC in normal cell physiology has been
demonstrated, in particular via the interaction of the GR with the T cell receptor (TCR) to
modulate T cell development [23,24] and homeostasis [25].

3. Glucocorticoids and Leukemic Cell Death: Mechanisms

GCs have a cytotoxic effect by binding to GR in the cytoplasm. Binding of GC to
the GR triggers the dissociation of proteins bound to the receptor such as hsp and BAG-
1 [26]. This activates the nuclear localization signal (NLS) domains of the receptor. After
that, receptors are dimerized and translocate to the nucleus where they can interact with
glucocorticoid-response elements, GRE. This interaction leads to the activation, inactivation
or modulation of responsive genes and repress mostly the transcriptional activation of
the activating protein-1 (AP-1), the nuclear factor (NF-kB) and even the GR itself [13].
Receptors can also stay in monomeric form and repress directly, by interaction, the activity
of transcription factors AP-1 and NF-kB. The inhibition of these pathways induced cell-
cycle arrest and apoptosis [13,14,27]. The pro-apoptotic response following GC binding
to their receptors depends on their capacity to induce transcription of BCL2L11 which
encodes the pro-apoptotic BH3-only factor BIM [28].

Two major apoptosis pathways can be distinguished: an intrinsic or mitochondrial
pathway characterized by disruption of membrane potential, release of cytochrome c and
activation of caspases [29] and pathways induced by membrane death receptors, such as
TNFR1 or Fas, which bind their ligand (TNF-α, FasL etc.) and recruit a series of downstream
factors, such as caspase 8, which leads to cell death. Importantly, these two pathways can
be activated or modulated by GC [29]. In addition, GC might induce apoptosis indirectly
by gene deregulation, which drives distress and cellular damage, such as production of
oxygen radicals, alteration of metabolic pathways and Ca2+ fluxes [29]. However, many
key components that associate Ca2+ signaling in GC sensitivity are not fully understood, as
discussed below.
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4. Glucocorticoids Stimulate Leukemic Cell Resistance: The Paradox

Despite its strong anti-inflammatory capacity, GC therapy is limited by two major
drawbacks. First, GCs are well-known to be associated with side effects, particularly when
it is administrated in high doses for long time periods. The toxic effects of the major
GCs (prednisone and dexamethasone) are still investigated in ALL patients but are most
often reported with dexamethasone causing sides effects such as myopathy, obesity or
bone fracture [14].

In the meantime, some patients are refractory to the therapy and become GC-resistant.
Yet, the mechanistic basis of GC resistance remain elusive [30]. Resistance can either be
inherited, mostly via mutations [30] in the GR, NR3C1 gene [31] or other loss-of-functions
mutations in the GR [32,33]. Resistance can also be induced after relapse; it has been
shown that relapsed leukemia cells are more resistant to GC [34]. In addition to this
secondary resistance observed during relapses, treatment of ALL by GCs is also limited
by primary resistance, i.e., from the upfront GC treatment [35,36], and this initial response
to GC therapy is a major predictor of response to chemotherapy and long-term B-ALL
patient outcomes.

Theoretically, resistance to GC treatment is manifested by the absence of a cell response
(i.e., no cell death) or by genetic changes involved in the induction of cell death. We believe
that this view is incomplete; indeed, the absence of cell death in response to GC treatment
does not mean that the cells do not respond to GC. Here, we rather propose a “paradoxical
corticosensitivity” because it turns out that, in addition to the absence of response to GC
treatment, this treatment also activates cell survival pathways, contrary to the expected
effect. Thus, this underlines a paradox in which GCs stimulate leukemic cell growth
and resistance, rather than induce cell death. The activation of one or several pathways
could be the cause of GC resistance in ALL. These pathways can act directly on the GR
function, or indirectly by interfering with the GC-induced apoptosis signaling (Figure 1).
A few pathways that play a role in GC-stimulated tumor ALL cell survival (Table 3) have
been highlighted.
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Figure 1. Proposed model for ALL cell fate following GC treatment. In this model, GC, by directly
regulating crucial death or survival genes, leads to apoptotic cell death, but at the same time,
paradoxically promotes ALL cell survival via several pathways (for other details see text).
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Table 3. GC-activated signaling pathways in ALL whose inhibition overcomes GC resistance or
increases GC sensitivity.

Pathways Drug Activation Mode Inhibitor (s) Leukemic Cells Consequences References

Ca2+ signaling Dex intracellular
release

BAPTA-AM
Pyr3

thapsigargin

Reh

Nalm-6 increases GC sensitivity [37,38]

IL7R signaling Dex IL-7R
upregulation

Ruxolitinib
JAK3i

CCRF-CEM
Patient samples

PDX samples
overcomes GC resistance [39,40]

BCL2 signaling Dex BCL2
upregulation

ABT-199
Ruxolitinib
Tofacitinib

PDX samples
Patient samples overcomes GC resistance [39,41,42]

LCK signaling Dex/Pred
LCK

phosphorylation

Dasatinib
Bosutinib

Nintedanib
WH-4-023

shRNA

Patient samples
CCRF-CEM

Jurkat
TALL-1
SUPT1
LK203

PDX samples

overcomes GC resistance [2,43–47]

AKT signaling Dex AKT
phosphorylation

MK2206
Akt inhibitor IV

Patient samples
CCRF-CEM

MOLT3
PF382 increases GC sensitivity [11,48]

ERK signaling

JNK signaling Dex
ERK, JNK

phosphorylation

U0126

SP600125
ip

CEM-C1-15
R3F9 overcomes GC resistance [49,50]

Hedgehog
signaling Dex

Hh activation via
GLI1 and PTCH

mRNAs

mPKI
GANT61

CEM-C7-14
T-ALL cell lines

PDX samples increases GC sensitivity [51,52]

Ca2+: Calcium; ip: JNK inhibitory peptide; Dex: dexamethasone; Pred: prednisolone; PDX: Patient-
derived xenografts.

4.1. Calcium Signaling

Ca2+ is a versatile secondary messenger that regulates many cellular functions (cell pro-
liferation, invasiveness, angiogenesis, migration and metastasis) by activating or inhibiting
a variety of signaling pathways through Ca2+-dependent proteins [53–55]. Several reports
have shown transient increases in intracellular Ca2+ signaling in multiple models after
dexamethasone administration [37,38,56,57], but many key elements of that association are
not fully understood, especially in the sensitivity or resistance of target cells to GC. It would
be tempting to consider that this Ca2+ signaling, induced after stimulation of GC, could be
involved in the destruction of cells treated by GC. However, this view would be reductive
with respect to Ca2+ signaling, a very early event that occurs in the first seconds or even
minutes after stimulation of cells with GC. As a second messenger, Ca2+ represents a key
regulator in survival and cell death. Indeed, we previously reported evidence that chelation
of this intracellular Ca2+ mobilization would increase the sensitivity of leukemic cells to
GC. This suggests its involvement in a cell survival pathway that is therefore resistant to
the devastating effect of GC. Furthermore, we and others have provided evidence that Ca2+

signaling might induce GC resistance in ALL. In fact, GC-induced Ca2+ increases are greater
in resistant cells compared to sensitive cells [37,56].An additional pathway by which GC
induces its own resistance is through serum GC-inducible kinase-1 (SGK1). In addition to
promoting tumor growth, SGK1 signaling contributes to GC resistance [58,59], consistent
with its aberrant upregulation found in GC-resistant ALL [60]. Remarkably, SGK1 activates
several Ca2+ channels and modulators, including Orai1 and Stim [61,62], the main Ca2+

pathway involved in lymphocyte activation. SGK1 phosphorylates the protein ubiquitin
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ligase Nedd4-2, then binds with the protein 14-3-3, and blocks its ability to ubiquinate
Orai-1 [62], resulting in increased Orai1 activity, which confers survival of tumor cells [63].
The voltage-sensitive K+ channel, Kv1.3, underlies sustained Ca2+ entry via Orai1/STIM1
caused by membrane repolarization [64,65]. Kv1.3 is robustly expressed in ALL [66,67] and
upregulated by SGK signaling [68]. Given these observations, a possible hypothesis is that
SGK1-mediated activation of Kv1.3 by GC may reflect a mechanism of GC resistance in
ALL via a promotion of Ca2+ entry [65].

4.2. IL-7 Dependent Pathway

IL-7 is a critical actor in the ALL microenvironment. In fact, it promotes the survival
and differentiation of thymocytes and the IL-7 receptor/ JAK/STAT5 (IL-7R/JAK/STAT5)
signaling pathway contributes to ALL pathogenesis [69,70]. IL-7 positively regulates the ex-
pression of the anti-apoptotic gene, BCL2, which promotes thymocyte survival. Conversely,
GCs are known to downregulate expression of BCL2 [29,71] leading to pro-apoptotic factors.
Recently, At the mechanistic level, the relationship between steroid resistance and IL7R-
driven cell survival has recently been proposed in ALL patients [40,72]. Thus, it was shown
that GCs elicit their own resistance [39] in the presence of IL-7, by promoting upregulation of
IL-7 receptor (IL-7R) expression, resulting in increased STAT5 activation, which consequen-
tially enhances the upregulation of the pro-survival gene BCL-2 [39,40,73–75] and the PIM1
kinase gene [76,77]. In addition to the downstream activation of the PI3K-AKT and STAT5
pathways, IL7R signaling also results in the activation of MAPK-ERK signaling [72,78–82]. It
has been demonstrated that these signaling pathways can individually contribute to steroid
resistance in pediatric ALL via different mechanisms. Activation of STAT5 promotes cell
survival through a Bcl-2-independent mechanism [69], instead of activating Bcl-2, STAT5
can activate the PI3K/AKT/mTOR intracellular signaling pathway and leads to leukemia
progression [69,70]. As recently suggested, upon GC treatment, strong upregulation of BIM,
a pro-apoptotic target gene of GR, may counteract GR/STAT5-induced BCL-XL and BCL2
activation downstream of IL-7-induced or pathogenic IL7R signaling, [40,83]. Consistent
with this, recent studies show that JAK-STAT overexpression inhibits GC hypersensitivity
by increasing Bcl-2 transcription in ALL cells [84].

4.3. PI3K/AKT/mTOR Signaling

The phosphoinositide 3-kinase (PI3K)/Akt pathway plays a huge role in integration
of survival signals including cell metabolism, cell cycle progression and proliferation [85].
PI3Ks transduce signals subsequent to growth factors and cytokines; they transform these
signals into intracellular messages by generating phosphatidylinositol-3,4,5 trisphosphate
(PIP3) from phosphatidylinositol-3,4 bisphosphate (PIP2) at the membrane. PIP3 activates
the phosphoinositide-dependent kinase-1 (PDK-1) and the serine–threonine protein kinase
(AKT) [86]. Following activation, AKT controls expression of several apoptotic genes. For ex-
ample, AKT inhibits a pro-apoptotic Bcl-2 family member (BAD)-mediated apoptosis [87,88],
prevents XIAP (an anti-apoptotic factor) autoubiquitination and degradation and drives
cell survival [87]. AKT activation may result in an increased metabolism which can antago-
nize the metabolic inhibition induced by GC [89]. mTOR activation by AKT compromises
GC-induced apoptosis by increasing the expression of anti-apoptotic MCL1, a Bcl-2 family
member [1]. It was demonstrated that FoxO transcription factors can regulate lymphocyte
apoptosis and, therefore, play a huge role in GC-induced apoptosis in these cells [48]. BIM
is usually induced after GC treatment of cells but an abnormal activation of Akt results in
an inhibition of the FoxO3a/Bim pathway leading to downregulation of BIM expression
and a defective GC-induced transcription [48]. C-MYC oncogene activation has also been
shown to be a signaling pathway associated with GC resistance [90].

In ALL, stimulation of tumor cell viability and proliferation, resulting from constitutive
activation of the PI3K pathway, has been shown to counteract drug sensitivity in vitro [81,91].
Interestingly, it has been demonstrated that activation of the GR by GC promotes its interaction
with PI3K, resulting in TNF-α activation [92], which, by activating the nuclear factor kappa
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B (NF-KB), promotes ALL cell development and survival [93]. Disruption of GR/PI3K
interaction reduces GC effects, suggesting that some functions regulated by GR might occur
through kinase interaction [92]. Furthermore, as a determinant of GC resistance, the AKT
pathway induces GR phosphorylation (non-functional form) at S134 to prevent its nuclear
translocation and result in blockage of transcriptional regulation of GC targets genes [11]. The
fact that AKT signaling inhibits GR nuclear translocation following GC treatment indicates that
GCs paradoxically activate AKT to regulate GR phosphorylation and prevent GC-mediated
cell death [11]. Indeed, functional studies have shown that AKT inhibition facilitates GC-
mediated translocation of GR to the nucleus, leading to an absence of GC resistance in vitro
and in vivo [11]. Moreover, by activating AKT, GC leads to FoxO3a inhibition [94], activity
which is required for GC-induced cell death [95], resulting in its own resistance [48]. In
another way, as described above, upregulation of IL-7R pathway by GC [39], in turn, via PI3K
stimulation, leads to the activation of Akt/mTOR axes, involved in ALL cell viability, growth,
survival and proliferation [80,96,97].

4.4. MAPK Signaling Pathway

Studies about crosstalk between the GC and MAPK pathways show a direct role
for MAPK for GR signaling [25]. ERK, JNK and p38 are three of the major classes of
MAPK [49]. ERK and JNK seems to protect cells against GC-dependent apoptosis. On the
other hand, p38 promoted GC-mediated apoptosis. In fact, p38 could phosphorylate GR
on serine 211, resulting in enhanced transcriptional and apoptotic activity [49]. Regarding
the ERK and JNK pathways, a GC-resistant T cell line, CEM-C1-15, shows high ERK/JNK
phosphorylation/activity after GC exposure, whose inhibition confers a Dex-sensitive
phenotype [49,50], consistent with the hypothesis that ERK/JNK induce a paradoxical
protective effect against Dex-dependent apoptosis [50,98]. Moreover, MEK1 and MEK2 are
known to phosphorylate ERK and enhance this activity, leading to cell survival [99]. In T-
ALL cells, IL-7 induces activation of the MEK-ERK pathway [80]. Thus, GC, by upregulating
IL-7 signaling through IL-7R [44], leads to activation of the MEK/ERK pathway, a cell
survival pathway [78,82]. Also, Ca2+ signaling is known to phosphorylate ERK [100]. We
showed previously that GCs induce their own resistance in B-ALL cells by paradoxically
eliciting a Ca2+ signaling-mediated pro-survival process that results in activation of ERK
pathway. Thus, this activation counteracts the negative action of GCs in B-ALL [37].

4.5. Lck Signaling Pathway

Lck is a proto-oncogene, which was found to be overexpressed and hyperactivated
in both T-ALL [2] and B-ALL [45,101], where it plays an essential role in cell survival,
proliferation and activation [102]. Consistent with this finding, a correlation has been
observed between higher basal Lck expression and poor clinical response to GCs in ALL,
as measured by phosphoproteomic profiling. This analysis identified that newly diag-
nosed pediatric ALL patients with a poor response to prednisone tended to have higher
Lck expression than did patients with a good response to prednisone [2,103]. Moreover,
supporting these observations, Lck hyperactivation has recently been reported in early
pediatric T-ALL patients with poor response to initial GC therapy [104]. These findings
suggest that LCK-driven oncogenic signaling may be aberrantly activated in ALL, and thus,
may play a role in GC resistance. Interestingly, Dex treatment induces Lck phosphorylation
at Y394, resulting in a profound activation of several downstream mediators (such as
Fyn and ZAP70 kinases) in Jurkat T-ALL cells [44,105]. Maximal Lck phosphorylation
occurs between 5 and 15 min after Dex exposure, suggesting a transcription-independent
mechanism [44]. Similarly, Dex treatment appears to increase the enzymatic activity of LCK
by decreasing its phosphorylation in Y505, resulting in phosphorylation of ZAP70 [44,46].

Other signaling pathways such as IL-7R and PAX5 activated by GC represent addi-
tional LCK-mediated processes that may lead to therapy-induced resistance. Indeed, LCK
activation drives IL-7R signaling, a paradoxical resistance pathway activated by GC [39],
through STAT5 activation and its downstream target genes cMYC and CCND2. Further-
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more, STAT5 signaling is attenuated by LCK inhibition in PAX5 translocated BCP-ALL pa-
tients [101]. PAX5 alterations have been frequently detected in 30% of ALL patients [45,101],
and cases with PAX5 have been found to have a specific driver activity signature and LCK
hyperactivation [45]. This is supported by the observation that Dex exposure increases
PAX5 mRNA expression in ALL cells [50]. This activation of LCK signaling by Dex was
surprising and paradoxical, considering the established role of Dex as therapy and inductor
of cell death in ALL. These findings were confirmed in patients with a good response to
prednisone, whose cells showed that TCR engagement-mediated LCK activation was able
to limit drug sensitivity. [2]. Furthermore, improvements in GC sensitivity or reversal of
GC resistance has been observed following LCK inhibition, both in cell lines and pediatric
primary ALL [2,43,45,46,106].

In addition, others studies show that in chronic lymphocytic leukemia (CLL), GC resis-
tance is mediated by LCK, through the aberrant expression of the lymphocyte cell-specific
tyrosine kinase (Lck), [107]. Activation of LCK leads to its translocation to the membrane to
phosphorylate TCR [108] and BCR. As a result, the phospholipase C signaling pathway is
activated and production of IP3 results in the release of Ca2+ from the endoplasmic reticu-
lum into the cytoplasm through IP3 receptors [109]. Lck can also regulate intracellular Ca2+

signals by directly activating IP3 channels [110]. Following this, calcineurin is activated by
IP3-mediated Ca2+ signaling, leading to translocation and nuclear activation of NF-AT and
proinflammatory cytokines such as Il-4 [2,110]. Importantly, calcineurin activation protects
cells from GC-induced apoptosis [111]. Lck is also hyperactivated in GC-resistant T-ALL
patients which lead to an IL-4 overexpression and resistance to GC [2].

4.6. Hedgehog Signaling

In addition to regulating tissue homeostasis and early T-cell development, the Hedge-
hog (Hh) signaling pathway contributes to cell cycles and stem cell biology maintenance
during embryogenesis [52]. Few studies in the literature have focused on the role and
physiological function of the Hedgehog pathway in ALL. Nevertheless, Hh mutations
and active signaling have been reported in T-ALL patients [112,113]. Interestingly, it has
been shown that Hh pathway contributes to the T-ALL cell growth and survival [51,52]
through BCL-2 activation [114]. Regarding the role of GC in Hh signaling, GC positively
regulates Hh pathway activation in ALL cell line CEM and inhibition of this pathway by a
PKA inhibitor contributes to increased GC-induced cell death [51]. This hypothesis was
confirmed both in T-ALL cell lines and in PDX samples showing that inhibition of GLI,
the key transcription factor of Hh signaling, enhanced GC-induced cytotoxicity [52]. This
protective effect of Hh signaling in GC-induced cytotoxicity has been also demonstrated in
others models [115].

As reviewed by Martelli et al. [116], therapeutically relevant signaling pathways
interacting with Hh signaling have been identified in T-ALL cells such as the Notch pathway.
This plays an important role in leukemic cell growth, survival, and rewired metabolism
in both T-ALL [117,118] and B-ALL cells [119]. Oncogenic Notch1 mutations are common
in T-ALL and can be detected in 50% of cases [118]. Notch1 oncogenic activity controls a
feed-forward loop that promotes cell growth by inducing c-MYC gene expression [118,120]
and confer primary GC resistance [117]. Notch1 also regulates other survival signaling
pathways such as PI3K-AKT [121], Bcl-2 [117] and IL-7Rα [122] pathways.

The Hh pathway is active in T-ALL cells and it crosstalks with Notch and GC signal-
ing pathways [52]. A combination treatment consisting of a Notch inhibitor (γ-secretase
inhibitor or GSI) and a Hh inhibitor (cyclopamine) downregulates the active fragment
of Notch (intracellular NOTC, ICN) expression in suppressing the growth of T-ALL cell
lines [123]. Moreover, GANT61, a Hh/GLI inhibitor, has demonstrated high cytotoxicity in
Notch-dependent T-ALL [124]. Therefore, these studies suggest that crosstalk between the
two signaling pathways, Hh and Notch, contribute to an additive or synergistic effect on
the growth of ALL cells. It cannot be ruled out that part of the effects of GCs on the Hh
pathway leading to GC-resistance are related to activation of the Notch pathway.
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Other signaling pathways (PI3K/Akt/mTOR and MEK/ERK) interact with the Hh
pathway. Inhibition of Akt or ERK pathways decreased GLI1 expression levels, suggesting
that suggesting a positive regulation of GLI1 transcriptional activity and expression by
these two pathways [125], the mechanism of which remains to be explored [116]. However,
regarding ERK pathway, it has been shown that ERK2 phosphorylates GLI1 at three sites
(Ser102, 116, 130), leading to weakening of GLI1 binding to SUFU, thereby increasing GLI1
transcriptional activity [126]. Thus, the activation of the Hh signaling pathway by GC may
be involved in the activation of multiple cell survival signaling pathways.

4.7. Metabolic Reprogramming

In different human tissues, endogenous GC play an essential role in the regulation of
energy metabolism in physiological or pathological conditions. Transcriptional profiling of
GC-resistant leukemia cells revealed additional factors that may contribute to resistance:
glutaminolysis, oxidative phosphorylation (OXPHOS) and glycolysis [89]. Considering
glycolytic metabolism in cancer cell reprogramming, Olivas-Aguirre et al. recently reported
evidence that GCs trigger a pro-survival mechanism in resistant cells. This mechanism
involves a metabolic shift from glycolysis and glutaminolysis to increased lipolysis and fatty
acid oxidation [56]. Accordingly, inhibition of this metabolic pathway greatly increased
ALL cells sensitivity to GC and overcame GC resistance [56].

5. Inhibition of Paradoxical Signaling Nodes to Overcome GC Resistance

Overcoming resistance to GCs has become a necessity to improve ALL patients’ out-
comes, but there are hurdles in finding effective approaches or treatments. It is increasingly
accepted that GR genetic variations are not linked to GC resistance of ALL cells, but rather
through deregulated signaling pathways [127–129]. These signaling pathways involved
in the regulation of proliferation, differentiation, apoptosis, proteostasis, metabolism, au-
tophagy, oncogenes and epigenetic modifications or tumor suppressors represent processes
that may lead to therapy-induced resistance. Indeed, many functional studies as described
in this report support the hypothesis that resistance to GCs is not only mediated by consti-
tutive activity of these signaling pathways, but that they are also paradoxically activated by
the GC themselves, thereby counteracting their therapeutic effect. Thus, it is not surprising
that targeting these paradoxical pathways by promising small molecule inhibitors would
overcome the resistance and increase the response of ALL cells to GCs as presented in Ta-
ble 3. We present hereafter evidence for the modulation of these interconnected paradoxical
pathways (identified in the previous section) as a mechanism for overcoming GC resistance.

5.1. Inhibition of Ca2+ and MAPK Signaling

In healthy lymphocytes as well as in ALL cells, Ca2+ signaling plays an important role
in cell proliferation [53–55]; therefore, Ca2+-mediated survival can be targeted directly or
indirectly to improve GC sensitivity and apoptosis. We have previously shown that GC-
induced intracellular Ca2+ inhibition or chelation with Bapta-AM significantly potentiates,
whereas the increase in cytosolic Ca2+ by thapsigargin suppresses the sensitivity of ALL
cell lines and primary specimens to GC treatment [37]. We further demonstrated that
a specific TRPC3 blocker, Pyr3, leads to a decrease in GC-induced Ca2+ signal, thereby
promoting GC-mediated cell death [38,130]. Furthermore, Ca2+ signal induction is able
to activate ERK1/2 protein and decrease GC responsiveness by limiting mitochondrial-
mediated apoptotic signals [37]. Therefore, inhibition of MAPK pathways is expected to
suppress ALL cell growth. For example, inhibition of a MAPK pathway (ERK1/2, MEK1/2,
MEK2 or MEK4) increased ALL cells sensitivity to GC [37,72,99,131]. In addition, MEK
overexpression induced ALL cells resistance to GC [131]. Furthermore, inhibition of JNK
(another MAPK-signaling pathway), with SP600125 re-sensitizes GC response in ALL [50].



Cancers 2023, 15, 2812 10 of 18

5.2. Inhibitor of PI3/AKT/mTOR Pathway

PI3K/AKT/mTOR modulation is expected to overcome resistance in ALL [48,86,132].
Several ALL cell lines and patients with ALL-derived xenograft samples treated with
PI3K inhibitor AS605240 revealed a synergetic effect with GC [133]. Further experiments
demonstrated that inhibition of AKT can reverse GC resistance by restoring GR translo-
cation to the nucleus [11,132]. Akt2 inhibition has been shown to be more effective in
restoring GC sensitivity than Akt1 inhibition, demonstrated by a higher synergistic effect
with dexamethasone and less hepatic cytotoxicity [48]. Selective mTOR kinase modulators
that target the catalytic subunit of mTor and lead to a pro-apoptotic and anti-proliferative
phenotype [134]. As recently developed in ALL preclinical studies, the dual PI3K-mTOR
inhibitor BEZ235 controls apoptosis markers [135] such as expression of pro-apoptotic BIM
and anti-apoptotic MCL1, thereby restores GC sensitivity [136].

5.3. Inhibitor of IL-7R and BCL-2 Signaling

We previously saw that IL-7-mediated GC resistance involves an increase in pro-
survival BCL-2 signaling via the IL-7R/JAK/STAT5 pathway (Figure 2) [39,75]. In this state
of mind, inhibiting these actors in this pathway can directly antagonize GC-induced apop-
tosis. For example, disruption of the Sec61 translocon, which prevents IL-7R from reaching
the membrane surface, overcomes GC resistance in ALL [137]. Moreover, JAK1/2 inhibition
as well as BCL-2 inhibition can effectively overcome GC resistance in ALL [39,40,69,138,139].
A loss of BCL2 phosphorylation was correlated with JAK3 inhibition with tofacitinib. The
synergy between tofacitinib and conventional chemotherapies, including GC, has been
suggested as a good strategy for ALL, in vitro and in vivo [42]. Consistently, paraoxonase-2
silencing, which expression was correlated with reduction of Bcl-2 expression, inhibits
tumor growth by sensitizing ALL cells to GC in vivo and in vitro [140].
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Figure 2. Proposed model for the mechanism by which GC induce their own resistance ALL cells. Dex
treatment leads to GR translocation, which induces a transcriptional program resulting in lymphoid
cell death (therapeutic effect). Along with this pathway, Dex also provokes cytosolic Ca2+ release as
well as IL-7R upregulation and subsequent triggering of a pro-survival activity (paradoxical effect).
This latter pathway may blunt the anticancer efficacy of chemotherapy (for other details see text).

5.4. Inhibition of Hedgehog Signaling

Recent report demonstrated that inhibition of Hedgehog signaling via GLI inhibitor
GANT61 was shown to exert a synergistic anti-leukemic effect with GC in ALL cell lines
and patient-derived xenografts samples [52]. Moreover, inhibition of Hedgehog activity
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increases ALL cells sensitivity to GC [51]. Likewise, NOTCH1 signaling promotes cell
cycle progression and limits GC sensitivity [141]. Thus, inhibition of this pathway, through
γ-secretase inhibitors (GSI), reverses GC resistance by upregulation of the GR and the
pro-apoptotic BIM proteins [142,143].

5.5. Lck Inhibition

Lck inhibition has shown encouraging results. For example, pharmacological in-
hibitors such as dasatinib, nintedanib, WH-4-023 and bosutinib or specific Lck gene si-
lencing, were shown to induce cell death in GC-resistant ALL cells, and combined treat-
ment with GCs is able to reverse GC resistance in vitro, ex vivo, in vivo and in PDX
samples [2,43,45–47]. This improvement in GC sensitivity is correlated with an increase in
GRs, following inhibition of Lck, which means that Lck exerts a negative action on GR [46].
In addition, inhibition of Lck or aberrantly expressed Lck reverses GC insensitivity in
chronic lymphocytic leukemia [107].

6. What Direction to Go in to Decipher this Paradox and Move the Field Forward

Although outcomes for children with ALL have dramatically improved over the past
decades, some patients are treatment refractory and resistant to GCs. Many studies have
focused on understanding the mechanisms of acquiring GC resistance observed during
treatment, including genetic or epigenetic alterations in ALL cells [1,144]. Upfront detection
of therapy-resistant pathways at the time of diagnosis may allow for treatment adaptation
and relapse prevention. Indeed, treatment of ALL by GCs is also limited by primary
resistance, i.e., from the upfront GC treatment [26,27]. Therefore, the initial behavior of cells
in response to treatment is a major predictor of the efficacy of chemotherapy and the long-
term outcomes of patients with B-ALL [145]. The phenomenon of resistance is responsible,
in about 20–25% of patients, for relapse [146]. Resistance may justify therapeutic escalation
to, for example, hematopoietic stem cell transplantation (HSCT) and/or chimeric antigen
receptor (CAR) T cell transplantation. This resistance is observable from the first phase
of treatment with GCs as monotherapy [35,36,40], suggesting the existence of intrinsic
differences in GC sensitivity in ALL patients at the time of disease diagnosis. These
differences can have long-term prognostic significance. This hypothesis is consolidated by
the Berlin–Frankfurt–Münster (ALL-BFM) 95 trial, in which ALL patients were stratified
into two groups following 7 days of prednisone monotherapy: those who had a prednisone
poor response (PPR) and those who had a prednisone good response (PGR). PPR patients
had an 8-year event-free survival rate of only 55.1%, as opposed to 81.3% for patients with
a PGR [35]. Consequently, understanding the mechanistic basis for intrinsic differential
resistance to GC, preventing or reversing it could mean a real breakthrough in the treatment
of ALL. Among these mechanisms, attention should be paid to the cell survival pathways
paradoxically activated by the GC themselves. Some recent studies have highlighted this
paradoxical behavior of GC by the discovery of certain pathways such as Ca2+ signaling,
IL-7R, PI3/AKT, MAPK/ERK and Hedgehog signaling. Still, further experiments are
needed to identify these activated pathways from the upfront GC treatment. Then, it will
be necessary to identify all the key molecules of these pathways that are paradoxically
activated by the therapy before proceeding to development of a personalized therapy
program in which patients whose cells strongly express these targets are treated by the
combination of treatment with modulators of the identified pathway and first-line GC.

7. Conclusions

The therapy of ALL has been the subject of considerable efforts over the past decades.
Despite this, many children and adult patients relapse. Resistance to corticosteroids is one
of the main causes of major failure of the induction phase and relapse. This indicates an
urgent need to understand the underlying resistance mechanisms and explore ways to
circumvent them. Current efforts have provided valuable knowledge to understand these
mechanisms and to develop small molecule inhibitors specifically to improve GC therapy.
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The best way to improve research on this subject would be to increase the understanding
of cell survival pathways paradoxically activated by the GC themselves in order to prevent
possible relapses. However, other escape mechanisms remain to be discovered. Focus on
rational and feasible combinations of these pathways is essential and necessary to limit
toxicity and to improve patients’ quality of life and the general status of patient outcomes.
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