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Simple Summary: Since the introduction of PSMA imaging around a decade ago, the faint tracer
uptake of ganglia in the neck, abdomen, and presacral region has been an imaging challenge due
to difficult discrimination from suspicious lymph nodes. Moreover, PSMA tracers labelled with
different radionuclides demonstrate varying levels of ganglion uptake despite having the same target
structure on the cell membrane, resulting in distinct imaging pitfall patterns. Our study aims to
investigate the underlying mechanisms of the varying detectability of PSMA ligands labelled with
different radionuclides.

Abstract: Background: Several studies indicate, particularly in the case of [18F]PSMA-1007, a rela-
tively high rate of detection of ganglia in PSMA PET imaging. Ganglia are an integral part of the
sympathetic portion of the autonomous nervous system. To date, no studies have directly compared
[68Ga]Ga-PSMA-11 and [18F]PSMA-1007 ganglionic uptake intra-individually and analyzed the
underlying molecular and physical mechanisms of different detection rates. With this monocentric
retrospective study, we sought to evaluate the intra-individual physiological ganglion uptake of
these different PSMA ligands in evidence-based imaging for prostate cancer. Methods: Our cohort
consists of 19 male patients (median age 72 ± 9 with a range of 56–85) with biochemical recurrence
of prostate cancer who underwent both [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT in our
clinic on the same scanner per standard care between March 2015 and March 2022. Tracer uptake was
quantified according to maximum standardized uptake value (SUVmax) for both [68Ga]Ga-PSMA-11
and [18F]PSMA-1007 PET/CT scans. Ganglia-to-background ratios (GBRs) were determined to
quantify the image contrast through dividing the SUVmax of the ganglia by the background value
(SUVmax of blood pool in the descending aorta, fatty tissue, and skeletal muscle in gluteal region).
We used descriptive analyses for demographics and tumor characteristics and performed two-way
repeated-measures ANOVA (analysis of variance) for SUV metrics including GBR measurements.
Results: In total, we examined 101 ganglia with [18F]PSMA-1007 scanning, localized mostly in pairs
as stellate, coeliac, and sacral, of which 76 were also detected with [68Ga]Ga-PSMA-11 PET/CT
scanning. There was no statistically significant difference in PSMA uptake in terms of SUVmax be-
tween [18F]PSMA-1007 and [68Ga]Ga-PSMA-11 (p value: 0.052). In contrast, the comparison of GBRs
revealed a higher detectability rate of ganglia with [18F]PSMA-1007 imaging (p < 0.001). Furthermore,
a separate comparison of ganglia with respect to their anatomical location also demonstrated sta-
tistically significant differences both within and between [18F]PSMA-1007 and [68Ga]Ga-PSMA-11
PET/CT scans. Conclusion: Given the impression of more accentuated [18F]PSMA-1007 uptake in
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ganglia compared with 68Ga-labelled counterparts, our study demonstrated that the better detectabil-
ity of ganglia is not due to more intense [18F]PSMA-1007 uptake by these small structures but to
much more favorable physical properties of the radionuclide 18F. The most relevant limitations of our
study are its retrospective design and the small patient cohort.

Keywords: PSMA uptake; ganglion; ganglia; [18F]PSMA-1007; [68Ga]Ga-PSMA-11; PET

1. Introduction

Prostate cancer is the second leading malignancy of the male population worldwide
and the most frequent cancer in elderly men (>60 years) with high morbidity and mortality,
especially in advanced cancer stages [1]. The correct diagnosis, treatment, and follow-up of
prostate cancer patients have been very challenging due to the insidious onset and progression
of the tumor and a very high rate of postoperative recurrences (27–53%). The accurate
detection of culprit lesion(s) in biochemical recurrence (BCR), or the setting of post-therapeutic
relapse with elevated tumor marker levels (prostate-specific antigen, PSA), represents the
most challenging step in prostate cancer management, which regularly escapes conventional
imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI),
or bone scintigraphy. This unmet clinical need has directed attention to molecular diagnostics
with prostate-specific membrane antigen (PSMA) imaging [2,3].

The introduction of [68Ga]Ga-PSMA-11 marks a revolutionary milestone in prostate
cancer management and currently represents the most widely used PSMA PET tracer
worldwide. The alternative 68Ga-labelled PSMA tracer, [68Ga]Ga-PSMA-617, offers a
suitable substrate for theranostic applications, whereas diagnostic use is not as practical as
[68Ga]Ga-PSMA-11 due to slower tumor accumulation and clearance kinetics. However,
Ga labelling exhibits several technical and practical disadvantages such as the need for
generator-based production with a short half-life, which significantly limits the supply
of off-center nuclear medicine facilities and, thus, high-volume use as well as economic
benefit. In fact, commercially available 68Ge/68Ga generators can offer only a maximum
activity of 1.85 GBq of 68Ga (88.9% β+; half-life: 67.71 min). In addition, 68Ga has a
high positron energy with a wide positron range (1899.1 keV, mean 890 keV), leading to
limitations of spatial resolution and, thus, indirectly, also to more partial-volume effect
than 18F-labelled tracers. A number of 18F-labelled PSMA-targeting radiotracers (96.7%
β+; half-life: 109.77 min; 633.5 keV, mean keV 250) have been developed to overcome the
aforementioned drawbacks of Ga labelling, of which [18F]PSMA-1007 has been considered
to be the most significant PSMA PET tracer due to very favorable biodistribution with a
predominantly hepatobiliary clearance, also enabling large-scale, cost-effective, off-center
use due to cyclotron production. Moreover, a low energy profile with a shorter positron
range allows a better spatial resolution than 68Ga (Table 1) [4–7].

Table 1. Differences in mean positron range between 18F and 68Ga in various human tissues (adapted
from [4]).

FLUORINE-18 GALLIUM-68
Mean positron range (mm) Mean positron range (mm)

BONE TISSUE 0.19 0.67
SOFT TISSUE 0.27 1.05

ADIPOSE TISSUE 0.33 1.17
LUNG TISSUE 0.80 3.32

Several studies indicate, particularly in the case of [18F]PSMA-1007, a relatively high
rate of detection of benign findings in PSMA PET imaging, ganglia being the most com-
mon [8,9]. Ganglia are an integral part of the sympathetic portion of the autonomous
nervous system. From the upper neck to the coccyx, sympathetic chain ganglia are found
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bilaterally along the entire length of the vertebral column. The accurate discrimination
of ganglia from malignant lesions as well as various detectability rates of ganglia with
different PSMA ligands have been considered as some of the major pitfall sources along
non-specific bone lesions in clinical practice [8–12].

To date, no studies have directly compared [68Ga]Ga-PSMA-11 and [18F]PSMA-1007
ganglionic uptake intra-individually and analyzed the underlying molecular and physical
mechanisms of different detection rates. With this monocentric retrospective study, we
sought to evaluate the intra-individual physiological ganglion uptake of these PSMA
ligands in evidence-based imaging for prostate cancer.

2. Materials and Methods
2.1. Patient Population

Nineteen male patients (median age 72 ± 9 with a range of 56–85) with biochemical
recurrence of prostate cancer were included in this study, who underwent both [68Ga]Ga-
PSMA-11 and [18F]PSMA-1007 PET/CT in our clinic per standard care in follow-up between
March 2015 and March 2022. The data were anonymized and retrospectively analyzed. The
study received approval from the Ethical Committee of the Medical Faculty of Heinrich-
Heine-University Duesseldorf, Germany (Study-Nr.: 2022-2070).

2.2. PET Image Acquisition

Imaging data were acquired 72 (median, range of 56–130) minutes after intravenous
application of [68Ga]Ga-PSMA-11 (injected median activity 150 MBq, range of 120–185) and
123 min (median, range of 98–138) after intravenous administration of [18F]PSMA-1007
(injected median activity 235 MBq, range of 209–278), respectively, with subsequent whole-
body imaging. All PET scans were acquired in 3D mode with a body-weight-adjusted
acquisition time of 3–4 min/bed position on the same PET/CT scanner with Siemens
Biograph 128 mCT (Supplementary Table S1). All patients were monitored regarding any
new symptoms or abnormalities up to 30 min after the end of the examination. The median
time interval between the scans was 34 months (range of 9–62 months).

2.3. Image Analysis

Tracer uptake was quantified according to maximum standardized uptake value
(SUVmax) for both [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT scans. Circular regions
of interest (ROIs) were placed on axial slices around ganglia with focally increased tracer
uptake (by EN with 5 years of imaging experience; supervised by EM with 10 years of
imaging experience and FLG with more than 20 years of imaging experience) and were
automatically incorporated into a three-dimensional volume of interest with a 40% iso-
contouring approach using Syngo.via software (ESoft; Siemens Healthineers, Erlangen,
Germany). SUVs were determined via drawing volumes of interest (VOIs) on ganglia,
which were then correlated anatomically with CT images for discrimination from lymph
node metastases. Ganglia were defined as such: if the focal or tear-drop- or ribbon-shaped
anatomical structures are found in typical paravertebral sites with tracer uptake. Ganglion-
to-background ratios (GBRs) were determined to quantify the image contrast through
dividing the SUVmax of the ganglia by the background value (SUVmax of blood pool
in the descending aorta, fatty tissue, and skeletal muscle in gluteal region). Finally, we
conducted an intra-individual correlation of the detected ganglia (single or pairwise stellate,
coeliac, and presacral ganglia) with increased tracer uptake for the determination of further
comparability.

2.4. Statistical Analysis

We used descriptive analyses for demographics and tumor characteristics and per-
formed two-way repeated-measures ANOVA (analysis of variance) for SUV metrics includ-
ing GBR measurements that are defined as quantitative variables, whereas the sites of the
ganglia and the tracer were considered as categorical variables. These statistical analyses
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were performed with SigmaStat version 3.5 (Systat Software, Inc., San Jose, CA, USA) and
Microsoft Excel (Microsoft Corporation, Redmond, DC, USA). A p value of <0.05 was
considered statistically significant.

3. Results

In total, we identified 101 ganglia in a cohort of 19 male patients with [18F]PSMA-1007
scanning, localized mostly in pairs as stellate, coeliac, and presacral, of which 76 were also
detected using [68Ga]Ga-PSMA-11 PET/CT scanning (Table 2). There was no statistically
significant difference in PSMA uptake in terms of SUVmax between [68Ga]Ga-PSMA-11 and
[18F]PSMA-1007 PET/CT (p value: 0.052). In this regard, a separate comparison of PSMA
tracers among anatomical sites of detected ganglia also revealed no statistically significant
difference in terms of SUVmax (p value: 0.238). Nevertheless, coeliac ganglia exhibited the
highest uptake, followed by stellate and presacral ganglia for both tracers (Table 3).

Table 2. Number of detected ganglia using [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT scanning.

Number of Detected Ganglia [68Ga]Ga-PSMA-11 [18F]PSMA-1007
Stellate 32 38
Coeliac 24 38

Presacral 20 25
Total 76 101

Table 3. Tracer uptake in ganglia in terms of SUVmax (a) and comparison of tracer uptake within
anatomical locations (b).

(a)

Tracer Uptake (in SUVmax) [68Ga]Ga-PSMA-11 [18F]PSMA-1007

Stellate (mean ± SD) 2.30 (±0.16) 2.91 (±0.16)

Coeliac (mean ± SD) 2.91 (±0.16) 3.18 (±0.15)

Presacral (mean ± SD) 1.73 (±0.21) 1.73 (±0.19)

(b)

Comparison (using Holm–Sidak method) [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 uptake

Coeliac vs. Stellate (diff. of means) 0.44 (p < 0.001)

Stellate vs. Presacral (diff. of means) 0.87 (p < 0.001)

Coeliac vs. Presacral (diff. of means) 1.31 (p = 0.011)

In contrast, a comparison of GBRs with respect to blood pool, fatty tissue, and skeletal
muscle revealed a significantly higher uptake of [18F]PSMA-1007 (p < 0.001), i.e., sharper
imaging contrast. Furthermore, a separate comparison of ganglia in terms of GBR with
respect to their anatomical location also demonstrated statistically significant differences
between and also within [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT scans (Table 4).
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Table 4. Tracer uptake in ganglia in terms of GBR and comparison of tracer uptake within anatomical
locations with respect to blood pool (a,b), adipose tissue (c,d), and skeletal muscle (e,f).

(a)

Tracer Uptake
(mean GBR with respect to blood pool) [68Ga]Ga-PSMA-11 [18F]PSMA-1007 p Value

Stellate 1.19 (±0.08) 1.97 (±0.07) <0.001

Coeliac 1.55 (±0.09) 2.23 (±0.07) <0.001

Presacral 0.89 (±0.10) 1.25 (±0.09) 0.011

In Total 1.21 (±0.05) 1.81 (±0.04) <0.001

(b)
Comparison

(GBR with respect to blood pool) [68Ga]Ga-PSMA-11 [18F]PSMA-1007

Coeliac vs. Stellate
(diff. of means) 0.36 (p = 0.01) 0.26 (p = 0.017)

Stellate vs. Presacral
(diff. of means) 0.30 (p = 0.02) 0.71 (p < 0.001)

Coeliac vs. Presacral
(diff. of means) 0.66 (p < 0.001) 0.97 (p < 0.001)

(c)

Tracer Uptake
(mean GBR with respect to adipose tissue) [68Ga]Ga-PSMA-11 [18F]PSMA-1007 p Value

Stellate 5.16 (±0.50) 9.60 (±0.48) <0.001

Coeliac 6.93 (±0.60) 10.34 (±0.46) <0.001

Presacral 3.82 (±0.64) 5.85 (±0.57) 0.020

In Total 5.30 (±0.33) 8.60 (±0.29) <0.001

(d)

Comparison
(GBR with respect to adipose tissue) [68Ga]Ga-PSMA-11 [18F]PSMA-1007

Coeliac vs. Stellate
(diff. of means) 1.76 (p = 0.05) 0.73 (p = 0.277)

Stellate vs. Presacral
(diff. of means) 1.34 (p = 0.103) 3.75 (p < 0.001)

Coeliac vs. Presacral
(diff. of means) 3.10 (p = 0.002) 4.48 (p < 0.001)

(e)

Tracer Uptake
(mean GBR with respect to skeletal muscle) [68Ga]Ga-PSMA-11 [18F]PSMA-1007 p Value

Stellate 2.75 (±0.14) 3.19 (±0.14) p = 0.029

Coeliac 3.33 (±0.17) 3.54 (±0.13) p = 0.335

Presacral 1.83 (±0.18) 1.97 (±0.16) p = 0.06

In Total 2.64 (±0.099) 2.90 (±0.08) p = 0.044

(f)

Comparison
(GBR with respect to skeletal muscle) [68Ga]Ga-PSMA-11 [18F]PSMA-1007

Coeliac vs. Stellate
(diff. of means) 0.58 (p = 0.012) 0.35 (p = 0.077)

Stellate vs. Presacral
(diff. of means) 0.91 (p < 0.001) 1.22 (p < 0.001)

Coeliac vs. Presacral
(diff. of means) 1.49 (p < 0.001) 1.57 (p < 0.001)
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4. Discussion

After the implementation and widespread use of [18F]PSMA-1007 in prostate cancer
management, clinicians have been reporting a high number of benign, non-prostatic struc-
tures, in particular ganglia, in comparison to the current most widely used PSMA PET
tracer [68Ga]Ga-PSMA-11. Of the 22–23 pairs of ganglia that comprise the sympathetic
chain, the stellate ganglia (which emerged from the combination of C7 and T1 ganglia dur-
ing evolution), the coeliac ganglia (at the level of T11/12), and the sacral ganglia have been
predominantly shown to exhibit a substantial PSMA uptake. Despite multiplex, clinical,
and imaging correlation methods, it has occasionally led to pitfalls and misdiagnoses in
regular clinical care [9,12,13].

With this monocentric, retrospective study, we aimed to evaluate the underlying
molecular and physical mechanisms of varying tracer uptake of the ganglia via comparing
the two widely used PSMA PET tracers [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 on an
intra-individual basis using the same PET/CT scanner. We observed a slightly less intense
[68Ga]Ga-PSMA-11 uptake of the ganglia in terms of SUVmax and also a smaller number
of detected ganglia than [18F]PSMA-1007, even though the statistical assessment revealed
no significant difference (Figure 1). Given the anatomical location of the ganglia, coeliac
ganglia exhibited the most intense tracer uptake followed by stellate and then presacral
ganglia for both tracers. However, the comparison of PSMA uptake in ganglia in terms
of GBR showed an unequivocal statistical superiority of [18F]PSMA-1007 over [68Ga]Ga-
PSMA-11 across all anatomical locations.
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varying visual detectability of ganglia at the typical sites (red arrows) on different PSMA ligands.

This is a very noteworthy finding, as the reader might detect a greater number of
ganglia in [18F]PSMA-1007 PET imaging not necessarily because of more intense tracer
uptake than [68Ga]Ga-PSMA-11, but because of much better GBR. As Giesel et al. re-
ported, [18F]PSMA-1007 exhibits slightly lower tracer kinetics than [68Ga]Ga-PSMA-11, so
that favorable GBR for [18F]PSMA-1007 might only be explained by the distinct physical
characteristics of different radionuclides [14].

Image quality or spatial resolution is a result of multiple vectors such as detector-
element geometry, annihilation acollinearity, and positron range. In a study with the same
state-of-the-art digital PET/CT scanners, the positron range of different tracers is the most
important determining factor for tracer-related differences in spatial resolution and even
quality of activity quantitation. Positrons arising from the decay of 68Ga feature an endpoint
energy three times higher than those of 18F and therefore have a much greater mean range
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in tissue (Table 1). Furthermore, given the shorter half-life and lower positron yield of
68Ga than 18F (67.7 min vs. 109.7 min and 89.14% vs. 96.86%, respectively), there is higher
activity of 18F in tissue despite adjusted acquisition times for the different tracer. This
causes greater positron flux, resolution, better count statistics, and, thus, greater lesion
detectability with [18F]PSMA-1007. In particular, the image quality and spatial resolution
of lesions smaller than 13 mm in diameter are shown to be impaired by radionuclides with
higher endpoint energy of positrons (e.g., 68Ga). Besides, this also affects the quantitative
image parameters between lesions of different sizes, as the so-called partial volume effect
worsens the detection sensitivity [4,15].

The relevant limitations of this study are its retrospective design and small patient
cohort. Furthermore, no histopathological correlation was performed, but since the ganglia
do not represent unequivocal findings, histological confirmation is not applicable. The time
interval between PET scans was also not considered to be a relevant factor for fluctuating
tracer uptake, as the study groups of olde Heuvel et al. and Mamlins et al. demonstrated
largely stable [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 uptake of ganglia, respectively, over
a long period of time [11,16]. Moreover, the investigation by Alberts et al. showed no
reliable discrimination between ganglia and malignant lesions with respect to tracer uptake
kinetics in late images, which makes the acquisition of delayed images redundant [8]. In
addition, as all patients underwent both examinations on the same PET/CT scanner with
the same reconstruction algorithms and parameters, no procedural bias is to be expected.

5. Conclusions

To our best knowledge, this is the first investigation to evaluate the physiologic
[68Ga]Ga-PSMA-11 and [18F]PSMA-1007 uptake in ganglia in patients with prostate cancer
with respect to its underlying molecular and physical mechanisms on an intra-individual
basis using the same PET/CT scanner in a monocentric, retrospective design. Given the
impression of greater [18F]PSMA-1007 uptake in ganglia, our study demonstrated that
the better detectability of small lesions, particularly ganglia, is not due to more intense
[18F]PSMA-1007 uptake by these structures, but to better ganglion-to-background ratio
(GBR) due to the much more favorable physical properties of the radionuclide 18F. In
summary, the different ganglion detectability demonstrated by different PSMA tracers
appears to be based on the physical properties of the distinct radionuclides.
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