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Simple Summary: Endometrial cancer (EC) is one of the most common gynecological malignancies.
Therefore, it is of great clinical importance to identify potential candidates for diagnostic and prog-
nostic biomarkers in order to identify high-risk patients and obtain a more accurate prognosis in a
timely manner. MicroRNAs (miRs) are small single-stranded RNAs that regulate gene expression
and play a role in all steps of cancer development. The miRs expressed in endometrial tumor tissue
are probably involved in cell proliferation and differentiation, apoptosis, and carcinogenesis. We
reviewed the literature to identify potential miRs that may function as diagnostic, prognostic, or
response to treatment markers in EC.

Abstract: In developed countries, endometrial cancer (EC) is one of the most common neoplasms
of the female reproductive system. MicroRNAs (miRs) are a class of single-stranded noncoding
RNA molecules with lengths of 19–25 nucleotides that bind to target messenger RNA (mRNA) to
regulate post-transcriptional gene expression. Although there is a large amount of research focused
on identifying miRs with a diagnostic, prognostic, or response to treatment capacity in EC, these
studies differ in terms of experimental methodology, types of samples used, selection criteria, and
results obtained. Hence, there is a large amount of heterogeneous information that makes it difficult
to identify potential miR biomarkers. We aimed to summarize the current knowledge on miRs
that have been shown to be the most suitable potential markers for EC. We searched PubMed and
Google Scholar without date restrictions or filters. We described 138 miRs with potential diagnostic,
prognostic, or treatment response potential in EC. Seven diagnostic panels showed higher sensitivity
and specificity for the diagnosis of EC than individual miRs. We further identified miRs up- or
downregulated depending on the FIGO stage, precursor lesions, and staging after surgery, which
provides insight into which miRs are expressed chronologically depending on the disease stage
and/or that are modulated depending on the tumor grade based on histopathological evaluation.

Keywords: endometrial cancer; miRNAs; biomarkers; diagnosis; prognosis; response to treatment

1. Introduction

In developed countries, endometrial cancer (EC) is one of the most frequent tumors of
the female reproductive tract. Worldwide, EC was diagnosed in 417,367 women in 2020,
with the highest disease burden in North America and Western Europe. In the same year,
EC was the fourth most common female neoplasm in Europe, with an incidence of 12.9–20.2
and a mortality of 2.0–3.7 cases per 100,000 women [1]. According to data obtained from
Cancer statistics, 2022, 65,950 new cases of EC were estimated, representing 3.5% of all new
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cancer cases in the USA, and the disease was fatal for 12,550 patients, which was equivalent
to 2.1% of all deaths because of cancer [2].

EC is a heterogeneous malignant disease comprising several histological types, which
differ from each other in terms of pathophysiology, clinical manifestations, and prognosis;
this heterogeneity hinders the development of screening and treatment strategies. His-
tomorphological examinations are essential in the diagnosis of EC, but the classification
of EC by histomorphological criteria has limited reproducibility, especially in high-grade
tumors [3]. EC is currently classified according to The Cancer Genome Atlas (TCGA)
criteria and post-TCGA publications. The TCGA applied methods that were too costly
and confusing to be systematically applied in clinical medical practice [4]. Since TCGA,
two research teams have developed more pragmatic and useful approaches that allow
more accessible molecular subtyping in pathology laboratories [5,6]. The European So-
ciety of Gynaecological Oncology (ESGO), the European Society for Radiotherapy and
Oncology (ESTRO), and the European Society of Pathology (ESP) guidelines classified
EC into (i) ultra-mutated ECs characterized by pathogenic variants in the exonuclease
domain of DNA polymerase-epsilon (POLE), (ii) microsatellite instability (MSI) hypermu-
tated/mismatch repair (MMR) deficient, (iii) a copy-number high group with frequent TP53
mutations (p53 mutant immunoreactive pattern), (iv) low copy number/non-specific molec-
ular profile (retained MMR protein immunoreactivity and p53 wild-type immunoreactive
pattern), and (v) multiple classifiers (combination of markers included in the previous
categories) [7,8]. Molecular classification can be performed using the diagnostic algorithm
provided by Vermij et al. [9]; the diagnostic requires testing of three immunohistochemical
markers (p53, MSH-6, PMS-2) and somatic mutation analysis of POLE (exons 9, 11, 13,
14). Table 1 shows the main characteristics between different subtypes of tumors, from
molecular and histological alterations to associated clinical features, including diagnosis
and prognosis [4–6].

Table 1. Molecular classification of endometrial carcinoma according to The Cancer Genome Atlas
(TCGA) criteria and post-TCGA publications. Adapted from [4–6].

Characteristics POLE-Mutant MSI p53wt/NSMP p53 Abnormal (CN High)

Mutational frequency >100 mutations/Mb 100–10 mutations/Mb <10 mutations/Mb <10 mutations/Mb

Somatic CN
alterations Very low Low Low High

Top five recurrent gene
mutations (%)

POLE (100%)
DMD (100%)

CSMD1 (100%)
FAT4 (100%)
PTEN (94%)

PTEN (88%)
PIK3CA (54%)
PIK3R1 (42%)
RPL22 (37%)

ARID1A (37%)

PTEN (77%)
PIK3CA (53%)
CTNNB1 (52%)
ARID1A (42%)
PIK3R1 (33%)

TP53 (92%)
PIK3CA (47%)
FBXW7 (22%)

PPP2R1A (22%)
PTEN (10%)

Associated histological
feature

Endometrioid
Grade 3

Broad front invasion
TILs

Giant tumoral cells

Endometrioid
Grade 3

LVSI substantial
MELF-type invasion

TILs

Endometrioid
Grade 1–2

Squamous differentiation
ER/PR expression

Serous
Grade 3

LVSI
High cytonuclear atypia

Slit-like spaces

Associated clinical features
Lower BMI

Early Stage (IA/IB)
Early onset

Higher BMI
Lynch Syndrome Higher BMI

Lower BMI
Advanced stage

Late onset

Prognosis in early stage (I–II) Excellent Intermediate Excellent/intermediate/poor Poor

Diagnostic test NGS (exons 9, 13, 14 or 9–14)
Tumor mutation burden

MMR-IHC (MLH1, MSH2,
MSH6, PMS2)

MSI assay
Tumor mutation burden

p53-IHC
NGS

POLE: polymerase epsilon, MSI: microsatellite instability, CN: copy-number, NSMP: no specific molecular
profile, Mb: megabase, DMD: dystrophin, CSMD1: CUB and Sushi multiple domains 1, FAT4: FAT atypical
cadherin 4, PTEN: phosphatase and tensin homolog, TP53: tumor protein p53, PIK3CA: phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha, PIK3R1: phosphoinositide-3-kinase regulatory subunit 1, CTNNB1:
catenin beta 1, ARID1A: AT-rich interaction domain 1A, FBXW7: F-box and WD repeat domain containing 7,
PPP2R1A: protein phosphatase 2 scaffold subunit A alpha, TILs: tumor-infiltrating lymphocytes, LVSI: lympho-
vascular space invasion, MELF: microcystic elongated and fragmented type of invasion, ER: estrogen receptor, PR:
progesterone receptor, BMI: body mass index, NGS: next-generation sequencing, IHC: immunohistochemistry,
MMR: mismatch repair, MLH1: mutL homolog 1, MSH2: mutS homolog 2, MSH6: mutS homolog 6, PMS2: PMS1
homolog 2, mismatch repair system component.
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A biopsy of the endometrial lining for pathological examination is the definitive test to
confirm an EC diagnosis. The WHO classification (based on the cytomorphological charac-
teristics) distinguishes between endometrial hyperplasia without atypia (EH) and atypical
endometrial hyperplasia/endometrioid intraepithelial neoplasia (AEH/EIN). AEH/EIN
is characterized by crowded glands with cytologically atypical epithelium separated by
little intervening stroma. Cellular atypia is characterized by nuclear enlargement and
rounding, pleomorphism, loss of polarity, and the presence of nucleoli [10]. The specific
treatment depends on the stage, according to the International Federation of Gynecology
and Obstetrics (FIGO), but in general, a hysterectomy with bilateral salpingo-oophorectomy
is performed, with dissection of the pelvic and para-aortic nodes, which may be followed
by adjuvant chemotherapy (cisplatin-based) with or without radiotherapy [11]. When en-
dometrioid endometrial carcinoma (EEC) is diagnosed at an early stage, surgery typically
results in a good prognosis. However, patients with advanced stages of EEC exhibit more
aggressive characteristics and an increased risk of metastasis (a multi-step process by which
cancer cells from the primary tumor proliferate to form distant secondary tumors) [12,13].
Although important advances have been made in therapeutic strategies, the management
of cases with advanced stages of the disease remains difficult, as the 5-year survival is
only 10–29%. Thus, there is a need to identify and implement biomarkers that allow early
and timely detection to prevent the progression of the disease to advanced stages and
to objectively distinguish between histological subtypes. This approach should facilitate
research and treatment of specific subtypes of EC [14,15].

MicroRNAs (miRs), a class of short noncoding RNAs with a length of 19–25 nu-
cleotides, regulate gene expression via antisense complementarity or complementarity with
specific messenger RNA (mRNA) [16]. Under normal physiological conditions, individual
miRs show strict tissue-specific and development stage-specific expression patterns. In
contrast, miRs display unique expression profiles, depending on clinical features, in several
cancers, including breast cancer, lung cancer, and chronic lymphocytic leukemia [17,18].

MiRs are associated with the development of tumors and may be classified as onco-
genic miRs (oncomiRs) and tumor-suppressor miRs. An oncomiR acts as an oncogene and
has increased expression in tumor cells, while a tumor suppressor miR acts as a tumor
suppressor gene and has decreased expression in tumor cells [19]. The miRs expressed in
endometrial tumor tissue are probably involved in cell proliferation and differentiation,
apoptosis, and carcinogenesis [20,21]. Our main objective in this narrative review is to iden-
tify potential miRs that may serve as diagnostic, response to treatment, and/or prognostic
biomarkers of EC in relation to the clinical and histopathological features of the disease.

2. Methods

To identify the most suitable miRs that may serve as biomarkers in EC in relation
to the clinical and histopathological features of the disease, we searched PubMed and
Google Scholar without date restrictions or filters using the following keywords: circulating
miRNAs, endometrial tissue miRNAs, endometrial cancer, biomarkers, diagnosis, response
to treatment, and prognosis. We included two types of articles: (1) Original articles that
were published in English and whose objective was to investigate miRs associated with EC
in samples of endometrial tumor tissue, serum, plasma, cell lines, and in silico, in addition
to providing statistically significant results (p < 0.05). (2) Review articles and guidelines
to supplement general information on EC, in particular, epidemiological information and
definitions of concepts. We excluded articles that were not in English, miRs obtained
from other biological samples, or studies that did not obtain statistically significant results
(p > 0.05). We classified the miRs according to their potential use in EC in the following
categories: diagnostic markers, prognostic markers, and response to treatment. We included
138 original studies, the majority of which are retrospective studies with a sample size
of <160 patients. We also included 12 reviews, the World Health Organization (WHO)
classification of female genital tumors and the ESGO/ESTRO/ESP guidelines for the
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management of patients with endometrial carcinoma, which described the expression
levels of 138 miRs in EC.

3. Results
3.1. Diagnostic and Classificatory Capacity of miRs for EC

Numerous promising circulating miRs (found in serum, plasma, and venous blood)
have been identified that could contribute to the clinical or histopathological diagnosis of
EC. Depending on the type of study, different quantitative methods are used to determine
the expression level of each miR and to evaluate their relationship to the disease [22]. In
the same way, the tumor tissue miRs profile has been used to evaluate the classificatory
capacity of the tumor stage, grade, and progression.

In the following subsections, we group the potential miRs associated with EC accord-
ing to the matrix in which they have been detected, as well as their diagnostic and/or
classificatory capacity. We also discuss their clinical significance.

3.1.1. miRs Studied in Plasma

Blood plasma serves as the liquid base for whole blood and contains 91% to 92% of
water and 8% to 9% of solids (coagulants, proteins, electrolytes, vitamins, hormones, nucleic
acids, etc.). In adults, liver cells, the bone marrow, degenerating blood cells, general body
tissue cells, and the spleen contribute to the formation of plasma content. Plasma content is
frequently used to identify markers in a large number of human diseases. In EC and with
the aim of identifying miR biomarkers in plasma to assist the clinical screening of disease,
Fan et al. [22] conducted a four-phase study in which they analyzed a total of 93 plasma
samples from patients with EC who were diagnosed via histopathological examination
and who did not accept a therapeutic intervention such as surgery, radiotherapy, or drug
treatment prior to sampling. The control group (CG) comprised 79 samples from patients
who were randomly recruited and guaranteed to be free of EC after imaging examination.
They reported the expression level of three miRs based on quantitative real-time polymerase
chain reaction (qRT-PCR). miR-142-3p (p = 0.0003), miR-146a-5p (p = 0.0002), and miR-
151a-5p (p = 0.0018) were significantly overexpressed in the plasma of patients with the
EC compared with the CG. However, a combination of miRs could provide stronger
differentiation power than an individual miR. The three miRs were combined as a panel,
and the area under the receiver operating characteristic (ROC) curve (AUC) was 0.716 (95%
confidence interval [CI]: 0.640–0.793, sensitivity = 62%, specificity = 64.5%, cutoff = 0.528).
Based on the analysis of FIGO stages, there was no significant difference in the expression
of the three miRs in the early stage (I: 90% of patients) and advanced stages (II + III + IV:
10% of patients) of EC. The expression of miR-142-3p and miR-146a-5p in pre-menopausal
patients with EC was significantly higher than in post-menopausal patients. Compared
with controls, miR-142-3p and miR-146a-5p have also been reported as overrepresented in
the plasma of patients with EC at diagnosis in the other two studies [22–24].

3.1.2. Serum miRs

In a study including 194 patients—92 with a pathological diagnosis of EC (who had
not received any type of therapy) and 102 control patients (the CG, without EC or any
other type of systemic disease)—the authors found five miRs that were significantly overex-
pressed in the serum of patients with EC compared with the CG: miR-195-5p, miR-20b-5p,
miR-204-5p, miR-423-3p, and miR-484 (fold change [FC] = 1.59–6.21, p < 0.0005). Meanwhile,
miR-143-3p was downregulated (p < 0.0001, FC = −10.11) [25]. After constructing ROC
curves using the six-miR panel for patients with early (I) and late (II + III + IV) FIGO stages,
the AUC was 0.769 and 0.844, respectively, compared with the CG. The six-miR panel could
distinguish patients with early- or late-stage EC from the CG, with a sensitivity of 60.2%
and a specificity of 84.3% in early-stage patients and a sensitivity of 66.7% and a specificity
of 92.2% in late-stage patients. Another pathological characteristic studied was tumor grade.
The AUC of the six-miR panel was 0.773 (sensitivity = 62.9%, specificity = 81.4%) for grade
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I, 0.766 (sensitivity = 69.8%, specificity = 70.6%) for grade II, and 0.874 (sensitivity = 91.7%,
specificity = 71.6%) for grade III. These values demonstrate the ability of this panel to
distinguish patients with EC at any stage from the CG. However, there were no significant
differences between the different subgroups of patients with EC, indicating that the expres-
sion of miRs does not change according to changes in patient characteristics. Compared
with previously identified biomarkers, the six-miR panel showed superior performance in
diagnosing EC [25]. At diagnosis, serum miRs with more consistent differences between
groups of patients with EC and controls include miR-195-5p [25–27], miR-20b-5p [28–37],
and miR-204 [38,39]. The serum concentration of these miRs has been reported as increased
in patients with EC.

3.1.3. miRs Studied in Endometrial Tissue

The human endometrium consists of glandular epithelium and vascularised stroma
and is unique because it is constantly shed and regrown with each menstrual cycle, gen-
erating up to 10 mm of new mucosa. Consequently, there are marked changes in cell
composition and gene expression across the menstrual cycle, and the expression of many
genes is influenced by genetic variation among individuals. Hence, the identification of
a consensus of EC tissue biomarkers is quite complex. In addition, the sample sizes for
studies that have examined the endometrium and/or EC are modest, and there are impor-
tant differences between study designs, preservation of the tissue sample, and the staging
of the tumor to be evaluated. However, the growing evidence of the miRs involved in
carcinogenesis has allowed researchers to propose panels with potential value for diagnosis,
prognosis, staging, and treatment response in EC.

Tissue miRs with Diagnostic Usefulness for EC

With the aim to identify a set of EEC-associated miRs in tissue and to evaluate their
clinical significance, Tsukamoto et al. [20] identified, by next-generation sequencing (NGS),
11 candidate EEC-associated miRs (≥2 times up- or downregulated compared with normal
endometrium [NE] tissue, which came from patients who underwent hysterectomy due to
uterine myomas). They then evaluated expression levels of those miRs in 28 EEC and 14 NE
samples by qRT-PCR. Eight miRs showed significantly different expressions and were
EEC-associated miRs in tissue. Three were upregulated—miR-499, miR-135b, and miR-205
(p = 0.003, p < 0.001, and p = 0.002, respectively)—and five were downregulated—miR-10b,
miR-195, miR-30a-5p, miR-30a-3p, and miR-21 (p = 0.006, p < 0.001, p = 0.019, p = 0.001, and
p = 0.011, respectively). ROC analysis revealed that two panels of miRs (miR135b/miR195
and miR135b/miR30a-3p) provided a higher AUC when compared with individual miRs.
The two panels (miR135b/miR195 and miR135b/miR30a-3p) could distinguish between
EEC and NE with an AUC of 0.9835 (95% CI: 0.9677–1.0, p < 0.048) and 0.9898 (95% CI:
0.9677–1.0, p < 0.038), respectively. Lee et al. [40] obtained similar results. They performed
qRT-PCR using 75 formalin-fixed, paraffin-embedded (FFPE) tissue blocks of NE (n = 10),
endometrial hyperplasia (n = 43), and EC (n = 22) and identified a panel of six miRs (miR-21,
miR-182, miR-183, miR-200a, miR-200c, and miR-205) as the best marker to differentiate EC
from the other tissues. The panel had an AUC of 0.961, 91% sensitivity, and 94% specificity
(p < 0.05), while the individual miRs exhibited an AUC of 0.665–0.904, 64–77% sensitivity,
and 66–91% specificity (p < 0.05). A smaller panel of four miRs (miR-182, miR-183, miR-200a,
and miR-200c) was able to identify the EC of AEH with an AUC of 0.957, 95% sensitivity,
and 91% specificity. In the context of differentiating malignant lesions from precursor
lesions, these findings could set a precedent for future complementary tools that are useful
for determining malignancy in endometrial tissue samples.

In another experiment using qRT-PCR in RNA extracted from fresh-frozen endometrial
tissue (37 EC, 20 NE resected from postmenopausal patients with benign gynecologic
disease, and 4 AEH samples), Boren et al. [41] identified five miRs with decreased in
expression in the transition from NE to AEH to EC: miR-let-7i, miR-221, miR-193, miR-152,
and miR-30c (p < 0.0001). Eight miRs exhibited a relative increase in expression with the
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transition from NE to AEH to EC: miR-423 (p < 0.02); miR-let-7c (p < 0.01); and finally,
miR-185, miR-106a, miR-181a, miR-103, miR-107, and miR-210 (p < 0.0001).

Endometrial miRs Expressed According to Specific EC Chronological Stage

Continuing with the study of the miRs significantly expressed at each chronological
stage of the disease, Cohn et al. [42] examined tissue samples from 141 patients with
EC. They identified differences in miR expression between EC and NE (20 unmatched
endometrial samples), as well as in early EC stages based on qRT-PCR. Several miRs
showed >2-fold differences between EC stage I and controls: miR-200c (relative expression
ratio [RER] = 3.407), miR-183 (RER = 2.508), miR-205 (RER = 2.202), miR-223 (RER = 2.318),
and miR-425 (RER = 2.11), all with p < 0.001. In addition, there were differences in the
expression of several miRs in stages III–IV compared with stage I (>3 FC and p < 0.001),
namely miR-145a, miR-let-7a, miR-let-7c, miR-10b, miR-123, miR-26a, miR-125b1, miR-
125b2, miR-143, miR-133a, and miR-26a1, with an RER of 3–8.87. Figure 1 shows a summary
of the up- and downregulated miRs depending on the FIGO stage in the EC, precursor
lesions, and after surgical treatment [14,20,25,40–52].
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Figure 1. Up- or downregulated microRNAs (miRs) depending on the International Federation of
Gynecology and Obstetrics (FIGO) stage, precursor lesions, and after surgical treatment in patients
with endometrial cancer (EC). hsa-miR-200a and hsa-miR-200c (members of the miR-200 family) are
upregulated in precursor lesions of EC, such as endometrial hyperplasia (EH). In the case of miR-200c,
its overexpression is maintained in stage I EC, which could suggest that miR-200 family members act
in signaling pathways involved in the carcinogenesis of this tumor [14,20,25,40–52]. The FIGO stage
details are the following: stage I, tumor confined to the uterus; stage II, the tumor has spread from
the body of the uterus and grows into the cervical stroma, but it has not spread outside the uterus;
stage III, the tumor has spread outside the uterus, but not to the inner lining of the rectum or urinary
bladder; and stage IV, the tumor has spread to the rectal mucosa, urinary bladder, or distant organs.
AEH: atypical endometrial hyperplasia; EC, endometrial cancer; NE, normal endometrium.
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Tissue miRs Associated with EC, Tumor Grade, and Their Transcriptional Targets

The value of a disease biomarker is its capacity to discriminate between a healthy
individual and one with the disease. However, additional value is added if this marker
could be useful to understanding the pathogenesis of the disease. Previous in silico studies
have proposed miRs related to EC and have proposed target genes and the signaling
pathways involved. These miRs include hsa-miR-152, miR-181d, miR-370, miR-495, miR-
504, miR-510, miR-543, miR-548e, miR-548v, miR-579, miR-758, and miR-1287, which have
been predicted to modulate target genes and signaling pathways associated with EC [21].
However, there are a few studies that have included the identification and validation of
EC target genes that may have been used to establish the complete expression profiles
for each stage of EC and the modulated signaling pathways [53]. An example is the
miR-200 family members. In an effort to evaluate the role of miR-200c in cell growth
and drug sensitivity in EC and the underlying mechanisms, Park et al. [54] determined
the relative expression of miR-200c in frozen endometrial tissue (24 EC and 7 NE). The
authors identified increased expression of this miR in EC (p < 0.05). miR-200c regulates the
translocation of β-catenin from the cytoplasm to the nucleus via inhibition of bromodomain-
containing 7 (BRD7, a validated target of miR-200c), a potential tumor-suppressor gene,
resulting in increased expression of its transcriptional target genes, cyclin D1 and c-myc,
suggesting its potential role for the EC treatment. Similarly, miR-200a, miR-200b, and
miR-429 are highly overexpressed in EEC (FC: 8.29–10.60, p < 0.005) and are believed
to act as onco-miRs as they have been shown to downregulate phosphatase and tensin
homolog (PTEN) in in vitro studies (p < 0.05) [55]. PTEN is a negative regulator of the
phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/AKT) signaling pathway,
which participates in cell growth and survival. It is now well established that PTEN plays
a tumor suppressor role in cell proliferation and survival [56]. Mutations in PTEN have
been found in 30–80% of EC cases, suggesting that alterations in PTEN occur at a relatively
early stage of endometrial tumorigenesis. Hence, characterizing the complex relationship
between miRs and the PTEN target gene in endometrial lesions may help to better define
some of the molecular pathways driving carcinogenesis [40].

The miR-200 family also exhibits significant expression differences depending on the
EC histological type. Dong et al. [57] found that miR-200a was highly overexpressed in
the non-EEC subtype compared with EEC (p = 0. 025). They also evaluated the expression
level of miR-200a/miR-141 and miR-205 by qRT-PCR in 154 FFPE EC tissue samples
(102 EEC, 52 serous subtypes [SEC]) and 26 NE samples as controls. They found that
miR-200a, miR-141, and miR-205 were significantly increased in EEC (88.2%, 90.2%, and
90.2%, respectively) and non-EEC (86.5%, 75.0%, and 84.6%, respectively) compared with
NE (p < 0.05) [57]. miRs belonging to the miR-200 family are significantly upregulated in
EC, and their modulation is more pronounced in early clinical stages. On the other hand,
their expression decreases in more advanced stages and in poorly differentiated tumors [14].
miR-200a and miR-205 are responsible for repressing zinc finger E-box binding homeobox
1 and 2 (ZEB1 and ZEB2), as well as other mesenchymal genes. These miRs are considered
custodians of the epithelial phenotype, and loss of these miRs is a marker of aggressiveness
and metastasis in EC and other tumors, such as breast and ovarian cancer, based on cellular
models [58,59].

In EEC, DNA methyltransferase 3B (DNMT3B) overexpression occurs more often in the
subgroups with miR-145 and miR-143 downregulation, and there is a significant correlation
between DNMT3B and miR-145 status (p = 0.021); this correlation is not significant in
non-EEC (p ≥ 0.05). This indicates that DNMT3B is a molecular target of these two miRs,
which is consistent with in silico analysis because both miRs have complementary sites in
the 3′-untranslated region (UTR) and coding region. DNMT3B is necessary for de novo
methylation and may be involved in the aberrant methylation in some tumors. By using
a database of twenty FFPE EC samples (fifteen low-grade and five high-grade) and five
samples as the CG (proliferative endometrium), Zhang et al. [60] assessed by qRT-PCR
miR-145 and miR-143 expression. They were downregulated in EC compared with the CG
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(p = 0.034 and p = 0.022, respectively). In addition, these miRs were significantly lower in
EEC than in non-EEC (p ≤ 0.05) [60–62].

Another study evaluated tissue samples from 82 patients: 62 had a diagnosis of EC and
20 were controls (non-neoplastic endometrium). The authors focused on discriminating
miR profiles between well-differentiated and poorly differentiated EEC and between EEC
and SEC. They found decreased expression of miR-125b-5p, miR-let-7c-5p, miR-23b-3p, and
miR-99a-5p in grade 3 compared with grade 1 EEC (p < 0.05, FC 0.4037–0.4866). They also
found significantly downregulated miR-195-5p, miR-34a-5p, miR-let-7g-5p, and miR-497-
5p expression in SEC. The above-mentioned miRs target genes involved in the PI3K/AKT
and mitogen-activated protein kinase (MAPK) signaling pathway, respectively [63].

Figure 2 summarizes the miRs that are up- or downregulated depending on the EC
tumor grade [14,20,22,25,63].
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Figure 2. Up- or downregulation of microRNAs (miRs) depending on the endometrial cancer tumor
grade. miR-200a, part of the miR-200 family, is one of the miRs mainly overexpressed in grade 1 EC,
whereas miR-143-3p remains overexpressed in all three tumor grades [14,20,22,25,63].

Tissue miRs Associated with the EC Histological Types

Devor et al. [64] evaluated frozen endometrial tissue and identified miRs able to
distinguish SEC from EEC. They found that miR-9, miR-423-5p, miR-146a, and miR-375
(FC −232.7 to −4.6, p < 0.05) were downregulated and miR-218, miR-542-3p, miR-490-
3p, miR-504, miR-338-3p, miR-130a, miR-let-7c, miR-675, miR-570, and miR-518e were
upregulated (FC 3.2–80.2, p < 0.05). Hence, EEC and SEC have profiles containing shared,
unique, and differentiating miRs. EEC is characterized by a histological structure that
displays a glandular or villoglandular architecture lined by stratified columnar epithelium
with a crowded, complex, and branching architecture. The lining cells are usually columnar
and share a common apical border with adjacent cells, resulting in a smoothly contoured
glandular lumen. SEC, on the other hand, shows a complex papillary architecture. The
papillae vary from short, branched, and hyalinized to long, thin, and delicate [10]. miR-497-
5p was also downregulated in EEC (FC = 0.256, 95% CI: 0.180–0.351, p < 0.001) and SEC
(FC = 0.081, 95% CI: 0.054–0.115, p < 0.001) compared with non-tumor tissue (the CG). In
addition, differential expression of miR-497-5p distinguished SEC from EEC (FC = 0.318,
95% CI: 0.204–0.480, p < 0.001), and there was lower miR-497-5p expression in the hormone
receptor-negative and TP53-positive with high Ki-67 expression groups [65]. Figure 3
summarizes the studies reporting up- or downregulated miRs in EEC or SEC [63,64,66].
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Figure 3. Up- or downregulated microRNAs (miRs) in (a) endometrioid endometrial carcinoma (EEC)
or (b) serous endometrial carcinoma (SEC). Some miRs may be up- or downregulated depending on
the histological type. For example, miR-9 is overexpressed in EEC but downregulated in SEC. This
could indicate that miR plays different roles depending on the histological type [63,64,66].

3.2. miRs and EC Prognosis

Prognosis means predicting a likely future course of events—in this case, estimating
the future course of a patient’s disease. A prognosis is based on statistics and probability,
indices, survival curves, and prognostic scores, with the intent of being an objective and
neutral description of the reality of a disease [67].

The surgical stage is the most important prognostic factor, and the information derived
from the surgical stage is categorized according to the 2009 FIGO classification [68]. Other
prognostic factors in EC are histological type and grade, age, and tumor size. Favorable
prognostic factors include FIGO early stage, low-grade, endometrioid, diploid, and hor-
mone receptor-positive EC. Unfavorable prognostic factors include FIGO advanced stage,
non-endometrioid, high-grade, and aneuploid EC [12,68,69]. The molecular classification
adds another layer of information to the conventional morphologic features, and consider-
ing the high number of possible markers, only a few have been included in internationally
recommended guidelines for risk stratification. In 2020, the ESGO–ESTRO–ESP guidelines
encouraged the determination of the molecular subtype and classification of all EC patients.
Table 2 includes the prognostic risk groups to guide adjuvant therapy use according to the
ESGO–ESTRO–ESP guidelines [8]. Approximately 75% of patients with EC are diagnosed
at FIGO stage I or II, and the 5-year overall survival ranges from 74% to 91%; for FIGO
stages III and IV, the 5-year overall survival is 60% and 20%, respectively. Regarding
lymph node metastasis, the 5-year disease-free survival rate is estimated at 90% for patients
without metastasis, 60–70% if there is pelvic lymph node metastasis, and 30–40% if there is
paraaortic lymph node metastasis [68,70].
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Table 2. Prognostic risk group according to the ESGO–ESTRO–ESP guidelines [8].

Risk Group Molecular Classification Unknown Molecular Classification Known

Low • Stage IA endometrioid, grade 1–2, LVSI
negative or focal

• Stage I–II POLEmut endometrial carcinoma,
no residual disease.

• Stage IA MMRd/NSMP endometrioid
carcinoma + low grade + LVSI negative
or focal.

Intermediate

• Stage IB endometrioid, grade 1–2, LVSI
negative or focal.

• Stage IA endometrioid, grade 3, LVSI
negative or focal

• Stage IA non-endometrioid (serous, clear
cell, undifferentiated carcinoma,
carcinosarcoma, mixed) without
myometrial invasion

• Stage IB MMRd/NSMP endometrioid
carcinoma + low-grade + LVSI negative
or focal.

• Stage IA MMRd/NSMP endometrioid
carcinoma + high-grade + LVSI negative
or focal.

• Stage IA p53abn and/or non-endometrioid
without myometrial invasion.

High-intermediate

• Stage I endometrioid, substantial LSVI,
regardless of grade and depth of invasion

• Stage IB endometrioid, grade 3, regardless
of LVSI status

• Stage II

• Stage I MMRd/NSMP endometrioid
carcinoma + substantial LVSI regardless of
grade and depth of invasion.

• Stage IB MMRd/NSMP endometrioid
carcinoma high-grade regardless of
LVSI status.

• Stage II MMRd/NSMP endometrioid
carcinoma

High

• Stage III–IVA with no residual disease
• Stage I–IVA non-endometrioid (serous,

clear cell, undifferentiated carcinoma,
carcinosarcoma, mixed) with myometrial
invasion, and with no residual disease

• Stage III–IVA MMRd/NSMP endometrioid
carcinoma with no residual disease.

• Stage I–IVA p53abn endometrial carcinoma
with myometrial invasion, with no
residual disease.

• Stage I–IVA NSMP/MMRd serous,
undifferentiated carcinoma, carcinosarcoma
with myometrial invasion, with no
residual disease.

Advanced metastatic • Stage III–IVA with residual disease
• Stage IVB

• Stage III–IVA with residual disease of any
molecular type.

• Stage IVB of any molecular type.

ESGO: European Society of Gynaecological Oncology, ESTRO: European Society for Radiotherapy and Oncology,
ESP: European Society of Pathology, LVSI: lymphovascular space invasion, MMRd: mismatch repair deficient,
NSMP: non-specific molecular profile, p53abn: p53 abnormal, POLEmut: polymerase-mutated.

In EC, miR-205 upregulation is associated with poor survival and promotes cell
proliferation and invasion by targeting PTEN and ESRRG, respectively, suggesting that it
may function as a marker of poor prognosis [71,72]. On the other side, Wilczynski et al. [73]
found that miR-205 expression levels were higher in tumors with less than half myometrial
invasion and non-advanced EC (p = 0.039, p = 0.045, respectively). Kaplan–Meier analysis
revealed that higher levels of miR-205 were associated with better overall survival (hazard
ratio [HR] = 0.34, 95% CI: 0.21–0.82, log-rank test p = 0.034). Hence, miR-205 works as
a marker of good prognosis. In addition, miR-205 was most commonly upregulated in
non-EEC without lymph node metastasis (p = 0.030), but such association was not present
in EEC. Additional studies are needed to elucidate the signaling pathways through which
miR-205 acts to characterize its prognostic utility. There are contradictory results because
while some authors find that miR-205 is a possible marker of poor prognosis, others find
that it may function as a marker of good prognosis. Dong et al. [57] found that miR-205
expression levels were higher in the estrogen and progesterone receptor (ER/PR)-positive
subgroups, and the association between miR-205 and PR reached statistical significance
(p = 0.024). ER/PR positivity is considered a good prognostic factor because these tumors
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are considered to be hormone-sensitive, which is a characteristic of type I endometrial
tumors [69].

SEC is considered an aggressive tumor with a high relapse rate, early and deep
myometrial invasion, and frequent lymph vascular space involvement [74,75]. Based
on Kaplan–Meier analysis, researchers have found that miR-101, miR-10b, miR-139-5p,
miR-152, miR-29b, and miR-455-5p downregulation correlated with decreased overall
survival (p < 0.05); miR-152, miR-29b, and miR-455-5p downregulation correlated with
decreased progression-free survival (p < 0.05); and miR-10b, miR-29b, and miR-455-5p
downregulation correlated with vascular invasion (p = 0.048, p = 0.013, and p = 0.032,
respectively) [66]. These findings suggest that their downregulation occurs during the
course of tumor progression and, particularly, during the acquisition of cancer metastatic
potential. This information could be useful to help predict a patient’s risk for vascular
invasion when conclusive results are not available.

Insulin-like growth factor 1 receptor (IGF1R) is a target gene of miR-625-5p (deter-
mined based on the transfection of the miR-625-5p inhibitor in HEC-1-B cells). Therefore,
it could be involved in regulating cell proliferation and migration in EC by activating
the PI3K/Akt signaling pathway. Patients with low expression of miR-625-5p showed
significantly better overall survival compared with those with high miR-625-5p expression
(Kaplan–Meier analysis, p = 0.0287), suggesting that miR-625-5p acts as an onco-miR and
accelerates EC progression by activating the IGF1R/PI3K/Akt pathway [76]. IGF1R is a
transmembrane tyrosine kinase receptor implicated in intracellular signaling pathways,
such as PI3K/Akt [77].

miR-497-5p participates in EC progression and could regulate the phosphatidyli-
nositol 4-kinase beta (PI4KB)/hedgehog signaling pathway. In EC, miR-497-5p mimics
decreased the expression of PI4KB and hedgehog in HEC-1B cells (p < 0.01), while miR-
497-5p inhibitors increased PI4KB and hedgehog expression in HEC-1A cells (p < 0.01) [78].
miR-497-5p transcriptional targets have been identified in other tumor types. For example,
Raf-1 serine/threonine kinase (RAF1), kinase insert domain receptor/vascular endothelial
growth factor receptor 2 (KDR/VEGFR-2), and IGF1R—which represent genes involved
in the MAPK pathway (regulates cell growth and proliferation)—have been identified in
renal, non-small-cell lung, and hepatocellular cancer [79–81]. It seems that the miR-497-
5p expression level correlates with disease severity. In one study, the authors reported
that decreased miR-497-5p expression and increased expression of the target gene empty
spiracles homeobox 1 (EMX1) were significantly associated with advanced clinical and
histopathological characteristics (stage, grade, and histology) of EC (p < 0.05). In addition,
there was a worse prognosis and poor overall survival (HR = 0.536, 95% CI: 0.345–0.831,
p = 0.005) based on Kaplan–Meier survival analysis [82]. The decreased miR-497-5p ex-
pression has been observed in women with EC recurrence compared with women without
recurrence (FC = −3.04, FC cut-off = 0.45, p = 0.019). Patients with a miR-497-5p FC < 0.45
were more likely to show recurrence (n = 4; 80%) compared with those with an FC > 0.45
(n = 3; 19%), p = 0.025 [83]. Liu et al. [84] showed that miR-497 and miR-16-5p were down-
regulated while the mechanistic target of rapamycin kinase (mTOR) was upregulated in
EC tissue compared with healthy adjacent tissue (p < 0.05). The authors suggested that
hsa_circ_0011324 overexpression affects the expression of miR-497-5p and miR-16-5p and
therefore promotes proliferation, migration, and invasion.

miR-298 acts as a tumor-suppressor miR. In one study, miR-298 overexpression sup-
pressed Ishikawa cell proliferation and invasion, but these changes were abolished by
catenin delta 1 (CTNND1) overexpression (p < 0.05). Moreover, miR-298 overexpression
reduced CTNND1 mRNA and protein levels in Ishikawa cells (p < 0.05). These observa-
tions suggest that CTNND1 is a direct target of miR-298 in EC progression [85]. CTNND1
is a member of the cadherin–catenin complex and a key regulator of cell–cell adhesion,
as it regulates the cell adhesion properties of C-, E-, and N-cadherins. Thus, CTNND1
may function as an oncogene in various tumor types (including EC) by regulating several
signaling pathways, such as the Wnt pathway [86].
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miR-199a inhibits EC cell metastasis and invasion by targeting family with sequence
similarity 83, member B (FAM83B) in the epithelial–mesenchymal transition (EMT) sig-
naling pathway. Hence, overexpression of this miR could be associated with a better
prognosis [87]. Patients with stage III–IV EC with miR-199a overexpression had longer
median progression-free survival (13.3 versus 26.7 months, p < 0.048) and median overall
survival (20 versus 40 months, p < 0.0068), even though the expression was not significantly
different from controls [42].

Table 3 lists the miRs with potential diagnostic, prognostic, or treatment response
value for EC (in which its expression was reported with p < 0.05), their physiological
function, and the associated target genes.

Table 3. The microRNAs (miRs) with diagnostic, prognostic, or treatment response marker potential
in endometrial cancer (EC) (with significant expression differences, p < 0.05).

miR Function in EC Sample Expression Target Genes Clinical Value Reference

hsa-miR-143-3p
Tumor-suppressive factor by
regulating tumorigenesis
and progression.

Serum Up MAPK1 Diagnosis [25]

hsa-miR-143-3p
Might inhibit cell proliferation,
metastasis, and promote the
apoptosis of EC cells.

ET Down MAPK1 Prognosis [88]

hsa-miR-423
Inhibit cisplatin-induced
apoptosis from decreasing the
sensitivity of EC.

EC cell lines:
HEC-1B and
Ishikawa cells

Up Bcl-2, Caspase 3/7 Treatment response [89]

hsa-miR-142-3p

Mediation of cell apoptosis by the
miR-142-3p-FAM98A signaling
pathway (anti-apoptotic and
pro-proliferative effects).

Plasma Up FAM98A Diagnosis [22,23]

hsa-miR-146a-5p

Attenuates the effect of NIFK-AS1
on M2 polarization inhibition of
macrophages and
estrogen-induced EC cell
proliferation, migration,
and invasion.

Plasma Up NIFK-AS1 Diagnosis [22,24]

hsa-miR-151a-5p * Induce proliferation, migration,
and partial epithelial metastasis. Plasma Up E-cadherin

Fibronectin SNAI2 Diagnosis [22,90]

hsa-miR-195-5p
Suppressing cell migration,
proliferation, and
promote apoptosis.

Serum Up

PI3K/AKT and
MAPK/
ERK pathways
FGFR1, FGF2

Diagnosis [25–27]

hsa-miR-20b-5p VEGFA transcription. Serum Up
HIF1A
PTEN
STAT3

Diagnosis [28–37]

hsa-miR-204
Mediates the migration and
invasion of EC by
regulating FOXC1.

- Serum
- EC cell lines:
HEC1A, HEC1B,
AN3CA, KLE, RL95
- ET

Up FOXC1 Diagnosis [38,39]

hsa-miR-484 * Tumor suppressor. MCF7 and
T-47D cells Down KLF4 Treatment response [91]

hsa-miR-499 Suppressed tumor growth
and angiogenesis. ET Up/Down VAV3 Diagnosis [20,92]

hsa-miR-135b Promotes proliferation of EC cells. ET Up FOXO1 Diagnosis [20,93]

hsa-miR-205 Tumor suppressor through the
inhibition of EMT. ET Up PTEN Prognosis [94,95]

hsa-miR-10b
Inhibits apoptosis and promotes
proliferation, migration, and
invasion of EC cells.

ET Down HOXB3 Diagnosis [96]

hsa-miR-195 Inhibits migration, invasion
and EMT.

- ET
- AN3-CA and
Hec1A cells

Down SOX4
GPER or GPR30 Diagnosis [97,98]

hsa-miR-30a-5p * Inhibits cell proliferation
and migration. ET Down UBE3C Diagnosis [99]

hsa-miR-30a-3p Modulate autophagy. ET Down BECN1 Diagnosis [20,100]

hsa-miR-let 7a Inhibits the growth of EC cells. - ET
- HeLa cells Down AURKB Diagnosis [101]
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Table 3. Cont.

miR Function in EC Sample Expression Target Genes Clinical Value Reference

hsa-miR-221
Act similar to a critical site of the
regulatory pathway
ERα/HIF1-α/SNAI2.

ET Up/Down
LMOD1
ERα
MDM2

Diagnosis [41,102]

hsa-miR-193 *

Enhance cell invasion-mediated
EMT and improve cell
proliferation through the
ING5/PI3K/AKT signal pathway.

ET Up/Down RAMP1
ING5 Diagnosis [41,103]

hsa-miR-152

Inhibits proliferation of EC cells
via inducing G2/M phase arrest
by suppressing
CDC25B expression.

- ET
- KLE and
HEC-1B cells

Down
ENPP2
SNCAIP
CDC25B

Diagnosis [41,104]

hsa-miR-30c

Modulates MTA1, which may
promote EC progression through
the AKT/mTOR/4E-BP1
pathway.

- ET
- EC cell lines:
Ishikawa, HEC-1B,
and RL-952

Down GPRASP2
MTA1 Prognosis [41,105]

hsa-miR-185 * Inhibited EMT by targeting
Rab25 expression. ET Up KLF2

Rab25 Diagnosis [41,106]

hsa-miR-106a
Acts as an oncogenic miR in EC
by inhibiting tumor suppressor
BCL2L11 expression.

ET Up TGFB1I1
BCL2L11 Diagnosis [41,107]

hsa-miR-181a
Acts as an oncogenic miR that
negatively regulate tumor
suppressor PTEN.

ET Up PTEN
DPP6 Diagnosis [41,108]

hsa-miR-210
Promoted the progression of EC
by negative regulation
NFIX expression.

ET Up
ENPP2
C2orf32
NFIX

Diagnosis/Prognosis [41,109]

hsa-miR-103

- Regulates the progression in EC
through ZO-1.
- Regulates the growth and
invasion of EC cells through the
downregulation of TIMP-3

- ET
- Cell lines: HEC-1B
and Ishikawa

Up ZO-1
TIMP-3 Diagnosis/Prognosis [110,111]

hsa-miR-let 7c Contributes to paclitaxel
resistance via Aurora-B in SEC.

SEC cell lines:
USPC1,
USPC1-PTXR,
USPC1-PTXR2

Down Aurora-B Treatment response [112]

hsa-miR-200c

- It is speculated that the increase
in cell proliferation is mediated
through repression of KLF9.
- Regulated the translocation of
β-catenin from the cytoplasm to
the nucleus via inhibition of
BRD7, resulting in increased
expression of its transcriptional
target genes, cyclin D1 and c-myc.

- ET
- Cell lines: HEC-1A,
Ishikawa

Up
PTEN
KLF9
BRD7

Diagnosis [42,54,113]

hsa-miR-183 Promotes cell proliferation and
invasion by targeting MMP-9.

- ET
- EC cell lines: KLE,
HEC-1-A and
HHUA

Up MMP-9 Diagnosis [114]

hsa-miR-186

May reduce the expression of
tumor suppressor FOXO1 and
thereby deregulates cell
cycle control.

- Serum
- EC cell lines:
HEC-1B and
Ishikawa

Up FOXO1 Diagnosis [43,115]

hsa-miR-141-3p
Promoter EC cells proliferation,
indicating that could act as an
oncogenic miR in EC progression.

- ET
- EC cell lines:
HEC-1 A and
KLE cells

Up DAPK1 Prognosis [116,117]

hsa-miR-200a
Promotes EMT of EC cells by
negatively regulating
FOXA2 expression

ET Up FOXA2 Diagnosis [118]

hsa-miR-15a-5p

Inhibits the growth of EC cells via
attenuating WNT3A expression in
the Wnt/β-catenin
signaling pathway.

- ET
- Cell lines:
HEC-251, AN3CA,
RL95-2, HEC-1-A,
ISK, Ishikawa,
and JEC

Down WNT3A Diagnosis [47]

hsa-miR-449a

Might module the EC progression
via negative regulation of
transcription from RNA
polymerase II promoter

ET Down LEF1 Prognosis [48]
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Table 3. Cont.

miR Function in EC Sample Expression Target Genes Clinical Value Reference

hsa-miR-145-5p

Might act as a tumor suppressor
and regulate cell cycle associated
processes to inhibit the
development of EC

ET Down SOX11 Prognosis [48]

hsa-miR-505 Functions as a tumor suppressor
by targeting TGF-α

- ET
- EC cell lines:
HEC-1B and
Ishikawa

Down TGF-α Diagnosis [49]

hsa-miR-589-5p
Inhibits cell proliferation,
migration, and invasion by
targeting TRIP6.

- ET
- EC cell lines:
HEC-1B and
AN3CA

Down TRIP6 Diagnosis [50]

hsa-miR-20a-5p

- Inhibits EMT and invasion of EC
cells by targeting STAT3
- Inhibits EC progression by
targeting Jak1.

- EC cell lines:
ECC-1, KLE,
HHUA, RL95-2
and Ishikawa
- HEK293 cells
- Human uterine
epithelial cell
line HES
- ET

Down STAT3
Jak1 Diagnosis [51,52]

hsa-miR-23b
It may act as a tumor suppressor
miR: suppressed the proliferation
of Ishikawa cells.

- ET
- Ishikawa EC cells Down CCNG1 Prognosis [46,119]

EC: endometrial cancer, ET: endometrial tissue, MAPK1: mitogen-activated protein kinase, Bcl-2: B cell lymphoma-
2, FAM98A: family with sequence similarity 98 members A, NIFK-AS1: NIFK antisense RNA 1, SNAI2: snail
family transcriptional repressor 2, FGFR1: acidic fibroblast growth factor receptor FGF2: basic fibroblast growth
factor, PI3K: phosphatidylinositol 3-kinase, AKT: protein kinase B, ERK: extracellular regulated MAP kinase,
VEGFA: vascular endothelial growth factor A, HIF1A: hypoxia inducible factor 1 A, PTEN: phosphatase and
tensin homolog, STAT3: signal transducer and activator of transcription 3, FOXC1: forkhead box C1, KLF4:
kruppel-like factor 4, VAV3: vav guanine nucleotide exchange factor 3, FOXO1: forkhead Box O1, EMT: epithelial
mesenchymal transition, HOXB3: homeobox box 3, SOX4: SRY-related high-mobility group box 4, GPER or
GPR30: G protein-coupled estrogen receptor, UBE3C: ubiquitin protein ligase E3C, BECN1: Beclin 1, AURKB:
aurora kinase B, LMOD1: leiomodin 1, ERα: estrogen receptor alpha, MDM2: MDM2 proto-oncogene, HIF1-α:
hypoxia inducible factor-1 alpha, RAMP1: receptor activity modifying protein 1, ING5: inhibitor of growth family
member 5, ENPP2: ectonucleotide pyrophosphatase/phosphodiesterase 2, SNCAIP: synuclein, alpha interacting
protein, CDC25B: cell division cycle 25B, mTOR: mechanistic target of rapamycin kinase, 4E-BP1: eukaryotic
translation initiation factor 4E binding protein 1, GPRASP2: G protein-coupled receptor associated sorting protein
2, MTA1: metastasis-associated protein 1, KLF2: kruppel-like factor 2, Rab25: ras-related protein Rab-25, TGFB1I1:
transforming growth factor beta 1 induced transcript 1, BCL2L11: BCL2 similar to 11, DPP6: dipeptidyl-peptidase
6, C2orf32: chromosome 2 open reading frame 32, NFIX: nuclear factor I/X, ZO-1: tight junction protein 1,
TIMP-3: tissue inhibitor of metalloproteinase 3, SEC: serous endometrial cancer, KLF9: kruppel-like factor 9,
BRD7: bromodomain containing 7, MMP-9: matrix metallopeptidase 9, DAPK1: death-associated protein kinase 1,
FOXA2: forkhead box A2, WNT3A: wnt family member 3A, LEF1: lymphoid enhancer binding factor 1, SOX11:
SRY-box transcription factor 11, TGF-α: transforming growth factor-α, TRIP6: thyroid receptor interacting protein
6, Jak1: janus kinase 1, CCNG1: cyclin G1. * The specific role in EC was not identified in any of the studies
consulted. The references from 82 to 114 are reported exclusively in Table 3.

3.3. Treatment Response

The principal method of treatment in early-stage EC is surgery (laparotomy or la-
paroscopy); the extent of surgery includes total hysterectomy with bilateral salpingo-
oophorectomy [69]. Sentinel node biopsy is an alternative to lymph node dissection for
lymph node staging, and a negative sentinel node is accepted to confirm pN0. Sentinel
lymph has a high sensitivity of node status for lymph node staging in patients with early-
stage EC (it can be omitted in cases without myometrial invasion) and is associated with
a substantially lower risk of post-operative morbidity, especially lower leg lymphedema.
Staging infracolic omentectomy should be performed in stage I SEC, carcinosarcoma, and
undifferentiated carcinoma, but it can be omitted in clear cell and EEC in stage I disease. For
women with AEH/EIN or grade 1 EEC without myometrial invasion and without genetic
risk factors who wish to preserve fertility, medroxyprogesterone acetate (400–600 mg/day)
is the recommended treatment.

Adjuvant treatment recommendations for EC strongly depend on the prognostic
risk group: for patients with low-risk EC, no adjuvant treatment is recommended; for
patients with EC stage I–II, low-risk based on POLE-mutation, omission of adjuvant
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treatment should be considered. In case of intermediate risk, adjuvant brachytherapy
decreases vaginal recurrence, and for p53 abnormal carcinomas restricted to a polyp or
without myometrial invasion, adjuvant therapy is generally not recommended. Patients
in the high–intermediate risk group (pN0 after lymph node staging) can receive adjuvant
brachytherapy to decrease vaginal recurrence; in case of substantial lymphovascular space
invasion (LVSI) or stage II, external beam radiation therapy (EBRT) can be considered;
and if there are patients with substantial LVSI and/or high-grade, adjuvant chemother-
apy should be considered. Patients with high–intermediate risk cN0/pNx (lymph node
staging not performed) are recommended adjuvant EBRT, especially for substantial LVSI
and/or for stage II, additional adjuvant chemotherapy can be considered. Patients with
high risk are recommended EBRT with concurrent and adjuvant chemotherapy or alterna-
tively sequential chemotherapy and radiotherapy. In case of advanced disease, maximal
cytoreduction should be considered only if macroscopic complete resection is feasible with
acceptable morbidity; for unresectable tumors, consider definitive radiotherapy with EBRT
and intrauterine brachytherapy or neoadjuvant chemotherapy prior to surgical resection
or radiotherapy, depending on response. The combination of carboplatin and paclitaxel is
the standard chemotherapy treatment of advanced/recurrent EC, there is no standard of
care for second-line chemotherapy, but doxorubicin and paclitaxel are considered the most
active therapies [8].

These drugs have different modes of action. The action of cisplatin is associated
with its ability to form inter- and intra-strand DNA cross-links causing G1 arrest [120].
Li et al. [121] suggest that the damaging effects of cisplatin on DNA are also associated
with the expression of genes involved in apoptosis. Doxorubicin intercalates into DNA,
thereby inhibiting macromolecular biosynthesis and generating free radicals and hydrogen
peroxide, which activate mitochondria-induced apoptosis [122]. Finally, paclitaxel interferes
with normal microtubule growth [123].

3.3.1. Mechanisms of Chemoresistance in EC

The underlying causes of drug resistance in malignant neoplasms are multifactorial.
The factors that may influence the favorable or unfavorable response to drugs used in EC are
found at the molecular level. Indeed, myriad researchers have observed that the expression
or under-expression of certain elements belonging to numerous signaling pathways is
related to intrinsic/acquired chemoresistance or chemosensitivity, which in many cases
leads to cancer recurrence, resulting in treatment failure and death. Early identification of
conditions influencing chemoresistance helps to predict the sensitivity of cancer cells to the
drug, optimize therapy, and reduce toxic side effects [124].

Different proteins involved in apoptosis related to chemoresistance have been identi-
fied. For example, overexpression of the anti-apoptotic members of the Bcl-2 family, such
as Bcl-2 and BCL2-like 1 (Bcl-XL) (intrinsic apoptotic pathway), have been linked to cancer
chemoresistance, while elevated levels of pro-apoptotic proteins, such as BCL2 associated
X (Bax), promote apoptosis and sensitize tumor cells to various cancer treatments [125,126].
Because TP53 is involved in the control of cell cycle progression, it has been considered an
important determinant of sensitivity to chemotherapeutic drugs. Accumulated evidence
indicates that the level of TP53 expression could influence paclitaxel sensitivity as a result of
increased susceptibility to apoptosis following persistent G2/M arrest [127]. TP53 inactiva-
tion is associated with upregulation of the mitochondrial protein Bcl-2 and downregulation
of Bax [128]; hence, paclitaxel treatment may modulate the relative levels of these apop-
totic regulators (e.g., Bcl-2 phosphorylation) and thereby influence drug resistance and
sensitivity through these two proteins [129]. In turn, consistent with previous findings,
Bcl-2 upregulation has also been shown to be responsible for acquired chemoresistance to
platinum compounds in gynecologic cancers [130].

AKT is a central protein in many cellular pathways, such as cell survival, proliferation,
glucose uptake, metabolism, angiogenesis, as well as radiation and drug response [131].
The AKT1 and AKT2 isoforms have been shown to be responsible for the acquisition of
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resistance against cisplatin and paclitaxel, while all three AKT isoforms increase resistance
to doxorubicin in EC cells [132]. It is possible that chemotherapy response rates in EC
do not exceed 50% because downregulation or deletion of PTEN (frequently mutated in
EC) leads to increased resistance against platinum compounds [133–135]. An additional
mechanism of resistance to taxanes (including paclitaxel) is the selective overexpression
of β-tubulin subtypes such as β-tubulin III and β-V [136], as the presence of β-tubulin III
subunits inhibits taxane-promoted subunit assembly. This mechanism may be particularly
important because it may predict response to taxanes [137]. Umezu et al. [138] showed
by immunohistochemical staining for β-tubulin III that there was increased expression of
this protein in histological types of ovarian cancer (clear cell and mucinous) commonly
associated with worse response to chemotherapy. Furthermore, tumors with high levels of
β-tubulin III did not respond to standard chemotherapy (taxanes).

3.3.2. miRs Involved with Treatment Response in EC

As mentioned previously, surgery is the initial treatment in the early stages of EC.
Plasma concentrations of miR-135b, miR-205, and miR-30a-3p decrease significantly after
hysterectomy (p = 0.003), suggesting that these miRs in plasma are mainly from EEC and
NE, and they may serve as a non-invasive biomarker for early detection of relapses, which
would indicate failure of surgical treatment [20].

All miR-200 family members are significantly upregulated in EC and most pronounced
in early clinical stages, and a systematic decrease in their expression has been noted in
higher stages and in poorly differentiated tumors [14]. In an in vitro study, the authors
transfected Hec-1A and Ishikawa cells with anti-miR-200c and then treated them with
cisplatin (0, 3, and 6 µM for Hec-1A cells and at 1, 2, and 3 µM for Ishikawa cells) for 2 days.
They observed that anti-miR-200c induced an additive effect on the cisplatin cytotoxicity
(p < 0.01 and p < 0.05 for days 1 and 2, respectively). They also performed the experiment
with paclitaxel, but there was no additive effect on cytotoxicity. Thus, it can be inferred that
miR-200c may partially regulate the cytotoxicity of chemotherapeutic agents used to treat
EC [54]. Another member of the miR-200 family may also be involved in the regulation of
drug sensitivity, as transfection with anti-miR-429 enhanced the cytotoxic effect of cisplatin
in HEC-1A cells (p < 0.001). Based on the accumulated knowledge, specific inhibition of the
miR-200 family using anti-miR could represent a new therapeutic strategy for EEC [139].

One possible mechanism by which various members of the miR-200 family (miR-200b,
miR-200c, and miR-429) induce cisplatin resistance is by repressing AP-2α expression in
HEC-1A cells [140]. AP-2α functions as a tumor suppressor by regulating the transcription
of genes involved in apoptosis and cell proliferation. AP-2α regulates the transcriptional ac-
tivation of E-cadherin [141] and PTEN [142] and the transcriptional repression of Bcl-2 [143].
The presence of the single nucleotide polymorphism (SNP) rs1045385, with an A > C varia-
tion, decreased the binding of miR-200b, miR-200c, and miR-429 to the 3′-UTR of AP-2α,
which upregulated AP-2α protein expression and increased cisplatin sensitivity in HEC-1A
cells (p < 0.01) [140]. In contrast to prior data, there was a significant increase in chemosen-
sitivity to paclitaxel but not to cisplatin in Hec50 cells transfected with miR-200c mimic
versus controls (scrambled negative control). The chemosensitivity to 25 nmol/L pacli-
taxel increased by 37% and 45% in the cells treated with miR-200c mimic versus the mock
(transfection reagent only) and negative controls, respectively (p < 0.05). These findings
suggest that restoration of miR-200c enhances chemosensitivity to microtubule-directed
agents [144].

miR-29b enhanced the sensitivity of EC cells to cisplatin and increased cisplatin-
induced apoptosis by regulating the expression of BAX and Bcl-2. miR-29b upregulation
increased BAX expression and decreased Bcl-2 expression in EC cells. Moreover, miR-29b
changed PTEN and p-AKT expression by directly binding to the 3′-UTR of PTEN [145].
Mutations in PTEN have been found in 55% of precancerous lesions, up to 80% of EEC,
and up to 90% of high-grade tumors [146]. The survival rate of HEC-1-B and Ishikawa
cells decreased after miR-29b upregulation when these cells were treated with cisplatin
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compared with the negative group (p < 0.05). At the same time, the opposite phenomenon
was observed when miR-29b was downregulated (p < 0.05). These findings suggest that
miR-29b enhances the sensitivity of EC cells to cisplatin. Furthermore, miR-29b upregula-
tion increased cisplatin-induced apoptosis in HEC-1-B and Ishikawa cells (p = 0.021 and
p = 0.028, respectively) by increasing caspase 3/7 activity and by regulating the expression
of BAX and Bcl-2. Based on these findings, miR-29b might be used as a biomarker to predict
clinical response to chemotherapy in EC [145].

Another miR, with an opposite effect to miR-29b, is miR-135a because its overex-
pression decreased the sensitivity of Hec-1-B and Ishikawa cells after cisplatin treatment
(p < 0.05). In addition, miR-135a upregulation inhibited cisplatin-induced apoptosis by
decreasing the caspase3/7 activity in Hec-1-B and Ishikawa cells (p = 0.012, p = 0.015,
respectively). The Caspase-Glo 3/7 assay was used to examine the effect of miR-135a on
cisplatin-induced apoptosis of EC cells. Furthermore, cisplatin-induced apoptosis in EC
cells was inhibited by miR-135a: It could regulate BAX and Bcl-2 expression, showing
common molecular signaling pathways with miR-29b [147].

miR-625 overexpression sensitizes the response to paclitaxel by regulating ZEB2
in HEC-1 cells (p < 0.001). Furthermore, inhibiting miR-625 expression or forced ZEB2
overexpression increased paclitaxel resistance in Ishikawa cells (p < 0.001) [148]. ZEB2 is a
DNA-binding transcription factor that is mainly involved in EMT and plays a pivotal role in
drug resistance, survival, tumor recurrence, and metastasis [149]. The above data revealed
that downregulated ZEB2 can make EC cells more sensitive to paclitaxel, and perhaps it
can sensitize EC that is refractory to paclitaxel treatment and lead to the downregulation of
twist family bHLH transcription factor 1 (Twist1), matrix metalloproteinase-2 (MMP2), and
vimentin and upregulation of E-cadherin. [148].

In paclitaxel-resistant EC cells, miR-218 was downregulated compared with the cell
lines not resistant to paclitaxel: the relative expression levels were ~71.6% and ~66.5%
downregulation in RL95-2 and Ishikawa cells, respectively (p < 0.05). Moreover, miR-218
overexpression sensitized drug-resistant EC cells to paclitaxel (p < 0.05). High mobility
group box 1 (HMGB1) is a target gene of miR-218. HMGB1 was upregulated in paclitaxel-
resistant EC cells (p < 0.05). It mediated autophagy and contributed to chemotherapy
resistance in EC in vitro [150].

Paclitaxel sensitivity was enhanced by miR-34b transfection in the Hec-108, Hec-
1B, and KLE cell lines. Treatment with miR-34b changed the half maximal inhibitory
concentrations (IC50) for paclitaxel from 0.9 × 10−5 to 0.8 × 10−5 in HEC-108 cells, from
0.3 × 10−5 to 1.0 × 10−6 in HEC-1B cells, and from 0.4 × 10−5 to 1.0 × 10−6 in KLE cells.
In an in vivo xenograft tumor model, 28 days of treatment with miR-34b and paclitaxel
markedly reduced tumor growth compared with treatment with negative control miR
and paclitaxel (p < 0.05). These data suggest that miR-34b enhances paclitaxel sensitivity
in EC cells by downregulation of MET proto-oncogene (MET) expression [151]. MET
encodes a receptor tyrosine kinase that is widely expressed in epithelial cells. Increased
MET expression has been found in a number of human cancers, implicating MET in their
pathogenesis [152].

4. Conclusions

In this review, we described 138 miRs with potential diagnostic, prognostic, or treat-
ment response potential in EC. Seven diagnostic panels (one in serum, one in plasma, and
five in endometrial tissue) showed higher sensitivity and specificity for the diagnosis of EC
than individual miRs. We further identified 85 miRs up- or downregulated depending on
the FIGO stage, precursor lesions, and staging after surgery, which provides insight into
which miRs are expressed chronologically depending on the disease stage. We identified
30 miRs that are modulated depending on the tumor grade based on histopathologic evalu-
ation and 52 miRs differentially expressed between EEC and SEC. These miRs may have
diagnostic adjuvant potential when histopathologic evaluation is inconclusive. Several
miRs may have potential prognostic value in EC, one of the most studied is miR-497-5p,
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as it has been found to regulate cell growth and proliferation, and the expression level
correlates with disease severity. Finally, eight miRs (hsa-miR-200c, miR-29b, miR-135a,
miR-200b, miR-429, miR-625, miR-218, and miR-34b) are associated with increased or de-
creased chemosensitivity to cisplatin or paclitaxel, which are two of the chemotherapeutics
used to treat EC. These miRs may be useful in the future: Perhaps treatment response to
these drugs could be predicted depending on their expression. The wealth of EC-related
miR data in the literature clearly demonstrates the need to collect information about all
implicated miRs because each study may reflect different disease stages, patient subgroups,
and experimental methods, among other factors. Studying the roles of miRs in a complex
disease such as EC requires the integration of data from several sources, including miR
databases, miR target databases, and the biomedical literature.

Gaps and Opportunity Areas for the Use of miRs as Markers with Clinical Value in EC

It is important to mention that despite the large amount of existing information on
miRs and EC, it currently is not feasible to use miRs during the diagnostic approach
of EC because the full characterization to use them as a tool in the medical field is not
completely established. As an example, there are no well-established expression cut-off
points associated with the disease or with its features or progression stages. In the same way,
some of the limitations identified during our literature research are that most of the studies
have been retrospective and conducted on small and heterogeneous study populations,
the experimental methodology and the type and quality of the samples evaluated in each
study differ widely, and therefore, it currently is not possible to establish a consensus of its
usefulness in the clinical field. However, the current information integrated into this review
may be used as a basis to conduct clinical trials using either one panel or individual miRs to
determine the best method for miR extraction (according to the biological sample used), the
establishment of cut-off expression values with clinical significance (diagnostic, prognostic,
or choice of treatment), and the correct methods for the data obtaining and integration with
the recent molecular classifications of EC. Likewise, it is highly desirable to integrate the
miRs that have demonstrated clinical usefulness to stratify patients according to treatment
or adjuvant treatment modalities and thus try to unify the information generated from
these miRs with appropriate classifications used by validated medical guidelines.
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