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Simple Summary: To minimize the risk of cancer recurrence, it is crucial for surgeons to assess the
resection margins (surface) of surgical specimens during breast-conserving surgeries to determine
whether the tumor has been removed entirely. However, this is often not easy and also current
techniques lack to aid the surgeons. In our study, we used a hyperspectral imaging technique to
overcome this challenge. To assess the resection margins with hyperspectral imaging, a classification
model should be developed, which requires a dataset with accurate ground-truth labels. Since
it is difficult to establish such a dataset, we introduced a novel approach based on hyperspectral
unmixing to enable an accurate correlation between hyperspectral measurements and histology
ground-truth labels. Subsequently, we developed a classification model for tumor tissue detection on
the lumpectomy resection surface of 189 patients. We achieved a sensitivity of 94% and a specificity
of 85%, which demonstrated the potential of hyperspectral imaging for breast-conserving surgeries.

Abstract: (1) Background: Assessing the resection margins during breast-conserving surgery is
an important clinical need to minimize the risk of recurrent breast cancer. However, currently
there is no technique that can provide real-time feedback to aid surgeons in the margin assessment.
Hyperspectral imaging has the potential to overcome this problem. To classify resection margins with
this technique, a tissue discrimination model should be developed, which requires a dataset with
accurate ground-truth labels. However, establishing such a dataset for resection specimens is difficult.
(2) Methods: In this study, we therefore propose a novel approach based on hyperspectral unmixing
to determine which pixels within hyperspectral images should be assigned to the ground-truth labels
from histopathology. Subsequently, we use this hyperspectral-unmixing-based approach to develop
a tissue discrimination model on the presence of tumor tissue within the resection margins of ex
vivo breast lumpectomy specimens. (3) Results: In total, 372 measured locations were included on
the lumpectomy resection surface of 189 patients. We achieved a sensitivity of 0.94, specificity of
0.85, accuracy of 0.87, Matthew’s correlation coefficient of 0.71, and area under the curve of 0.92.
(4) Conclusion: Using this hyperspectral-unmixing-based approach, we demonstrated that the
measured locations with hyperspectral imaging on the resection surface of lumpectomy specimens
could be classified with excellent performance.

Keywords: breast-conserving surgery; hyperspectral imaging; resection margin assessment; breast
tissue; hyperspectral unmixing; tissue classification

1. Introduction

With an estimated number of 2.3 million new diagnoses in 2020, breast cancer is the
most prevalent type of cancer among women worldwide [1]. Treatment of this disease
often consists of breast-conserving surgery combined with adjuvant radiotherapy [2,3].
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During breast-conserving surgery, surgeons aim to remove malignant tumor tissue with
a small border of healthy tissue around it, called a resection margin, while sparing the
remaining healthy tissue of the breast. However, it is not always easy to distinguish the
border between healthy and tumor tissue during surgery. Consequently, in up to 36% of
surgeries [4], the margin of the resected breast tissue still contains tumor tissue, which
is described as a tumor-positive resection margin. As the latter indicates a larger risk
of recurrent breast cancer [5,6], the patient is subjected to additional treatment, e.g., a
re-operation or an extra radiotherapy boost, which evidently affects the cosmetic result,
the patient’s quality of life, and the treatment costs [7,8]. Currently, resection margin
assessment is performed by histopathological analysis, which could take between 3 and
5 days after surgery. To improve breast-conserving surgeries, there is a need for a margin
assessment technique that allows real-time feedback during surgery regarding the presence
of tumor tissue on the resection margins of the surgical specimen.

Hyperspectral imaging (HSI) is a technique that has shown promising results for
the discrimination between tumor and healthy tissue in the breast [9–14], as well as in
the colon [15,16], ovary [17], thyroid [18,19], and skin [20,21]. Hyperspectral imaging is
a diagnostic technique in which digital imaging is combined with spectroscopy. Each
pixel within the captured image contains the reflected intensity for a wide range of colors,
known as a spectrum. These spectra can be considered an ‘optical fingerprint’, since they
are influenced by the tissue composition. Compared to a normal color image, which only
has three spectral bands corresponding to the visual primary colors red, green, and blue,
a hyperspectral image thus contains a large number of spectral bands to yield more detailed
information about the sample’s optical properties. A main advantage of hyperspectral
imaging is that it can image tissue in a quick, non-invasive, and harmless manner.

Hyperspectral imaging has been shown to be able to differentiate healthy from
malignant tissue in gross-sectioned breast tissue slices using supervised classification
methods [9–11]. In a study by Kho et al., promising results were achieved with a sensitivity
and specificity of, respectively, 98% and 99% for discriminating tumor tissue from healthy
tissue in breast tissue slices [10]. This demonstrated the potential of hyperspectral imaging
for margin assessment. Even so, a tissue classification algorithm developed on tissue slices
cannot be directly used for intact resection specimens. Previous studies demonstrated
differences between slices and specimens in terms of tissue thickness, freshness, surface
structure, blood saturation, and cauterization, which in turn can influence the measured
spectra within the hyperspectral images [11,22]. Therefore, we recently took the next
step towards clinical translation by developing an algorithm specifically for breast cancer
resection specimens [11].

In that study, we discussed the challenge of establishing ground-truth labels when
developing classification algorithms for resection specimens. In the standard histopathol-
ogy processing of resection specimens at the Netherlands Cancer Institute—Antoni van
Leeuwenhoek hospital, a specimen was first cut into thick slices and then a very thin
slice (±4 µm) was stained with hematoxylin and eosin (H&E) and inspected under a mi-
croscope by the pathologist. For our study, this resulted in a tissue label for that entire
H&E slide (e.g., healthy or tumor). After histopathology processing and examination,
the next step for us was to identify which pixel in the hyperspectral image should be
assigned to this ground-truth label and should be used to develop a classification algo-
rithm. One often-used approach to correlate the H&E slide to the hyperspectral image
is to place an ink mark (or other types of marker) on the surface of the specimen which
is visible in both the camera image and the H&E slide. An H&E slide is usually made
perpendicular to the surface of the specimen, and since the ink mark generally covers an
area of approximately 5 by 5 mm, while an H&E slide is only about 4 µm thick, there is
always ambiguity in deciding which of the pixels covered by the ink mark corresponds best
to the H&E slide. This ambiguity can be especially problematic in inhomogeneous tissue
such as resection specimens, where neighboring pixels covered by the ink mark can contain
different tissue types. The classification performance of a machine learning model strongly
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depends on the accuracy of the ground-truth labels. Therefore, in order to train a robust
classification model, it is crucial to ensure that the ground-truth labels truly correspond to
the pixels from which the spectra are used in the development of the algorithm.

In our previous study, we assumed that the H&E slide always came from the center
of the ink mark. Therefore, we assigned the pathology labels to the pixel in the center of
the patch of pixels containing the ink mark. However, in practice, it is impossible for a
histopathologist to slice the tissue with such precision that the H&E slide truly is taken
from the center of the ink mark. In the current study, we propose a novel method based on
hyperspectral unmixing to decide which pixel (covered by a mark) in a hyperspectral image
should be assigned the ground-truth label from histopathology, and should subsequently
be used in training a classification algorithm. We apply this approach to breast cancer resec-
tion specimens and show that our novel method improves the classification performance
compared to using the center pixel approach. While the current study focuses on breast
cancer, the approach we developed based on hyperspectral unmixing can potentially also
be used for any other type of tissue classification algorithm. To the best of our knowledge,
this is the first study that has used such an approach to assign pathology labels.

2. Materials and Methods
2.1. Study Design

In the period from 2018 to 2021, lumpectomy specimens were included from 200 patients
that received primary breast-conserving surgery (either with or without neoadjuvant ther-
apy) at The Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital. These
lumpectomy specimens were imaged with hyperspectral cameras immediately after re-
section, before pathology processing. This ex vivo study complied with the Declaration
of Helsinki and was approved by the Institutional Review Board of The Netherlands Can-
cer Institute—Antoni van Leeuwenhoek hospital. Based on the Dutch medical research
involving human subjects act (WMO), no informed consent from the patients was required.

2.2. Hyperspectral Imaging

The setup consisted of 3 halogen light sources (2900 K) to illuminate the sample from
a 35 degree angle, and a scanner to move the sample under the camera enabling it to be
imaged line-by-line, see Figure 1. The acquired 3D data structure is called a hypercube,
which contains both spatial information (x and y dimensions) and spectral information
(z dimension).

To cover a broad wavelength range, two pushbroom hyperspectral cameras (Specim,
Spectral Imaging Ltd., Oulu, Finland) were used. The first camera (PFD-CL-65-V10E, CMOS
sensor 1312× 384 pixels, 384 wavelength bands, 3 nm increments, 0.16 mm/pixel) operates in
the visual (VIS) region between 400 and 1000 nm, and the second camera (VLNIR CL-350-N17E,
InGaAs sensor 320× 256 pixels, 256 wavelength bands, 5 nm increments, 0.5 mm/pixel) in the
near-infrared (NIR) region between 900 and 1700 nm (the latter is depicted in Figure 1 but the
setup of both cameras is similar). The cameras were controlled with data acquisition software
(LUMO v2016-427, Specim, Spectral Imaging Ltd., Oulu, Finland).

Considering the specimen as a cube with six resection sides, each side was imaged.
For acquiring the HSI hypercube for each side, first, the specimen was positioned on a
container tray which can be fixated to the scanner translation frame. This enabled us to
acquire the hyperspectral images for each resection side with both cameras in sequence
without manipulating the specimen when moving the translation frame from one camera
to another. After one resection side was imaged, the specimen was repositioned manually
so that the following side could be imaged again with both cameras in sequence.
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Figure 1. Hyperspectral imaging setup. To allow reproducible measurements, the lumpectomy
specimen is positioned with a container upon a frame which fits the scanner (a). By moving the
scanner under the camera, a 3D hypercube of the specimen can be acquired with spatial information
along the x and y axes and spectral information along the z axis (b). For each pixel in the hypercube,
an individual spectrum can be obtained which contains information about the specimen’s optical
properties; example spectra corresponding to boxes depicted in yellow, blue, and red are shown in (c).

To account for the dark current in the hyperspectral imaging systems and for the
spectral variations in the illumination setup, we converted the raw intensity data into
calibrated diffuse reflectance images as described in [9]. The hyperspectral images of the
camera systems differ in terms of size and spatial resolution. Therefore, we resized the
images to 320× 256 pixels using an affine registration and matched the spatial resolution
(0.5 mm/pixel). We excluded the wavelength bands at the extremities of the spectral ranges
of the hyperspectral cameras (because of the sensors’ low spectral sensitivity at the extremi-
ties), which resulted in a hyperspectral image with a wavelength range from 450 to 951 nm
(VIS camera, 318 wavelength bands) to 954–1650 nm (NIR camera, 210 wavelength bands).
Both hyperspectral imaging systems included an individual suspension system with corre-
sponding light sources. Therefore, the illumination angle of the systems could slightly differ
and may cause a bias (discontinuity) between the spectra of the hyperspectral cameras. We
accounted for this by first calculating the difference in diffuse reflectance between the first
wavelength (954 nm) of the NIR camera and the last wavelength (951 nm) of the VIS camera
for each spectrum. Subsequently, this difference was added to the entire spectrum of
the NIR camera to connect the spectra of both cameras. Additionally, a standard normal
variate (SNV) normalization was applied to account for surface reflections and the uneven
tissue surface of the lumpectomy specimen, using the following:

RSNV(λ) =
Rcal(λ)− µ

σ
(1)

where Rcal(λ) is the calibrated reflectance spectrum, µ is the mean of Rcal(λ), and σ is the
standard deviation of Rcal(λ) [9,23].
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2.3. Pipeline to Assign Ground-Truth Labels

We introduce a pipeline to develop a tissue classification algorithm where ground-
truth labels are assigned to the training set based on hyperspectral unmixing (Figure 2). Our
new method based on hyperspectral unmixing addresses the ambiguity in deciding which
pixel (and thus which spectrum) should be assigned to the ground-truth label obtained
from histopathology.

Figure 2. Pipeline to train a tissue classification algorithm where ground-truth labels are assigned to
the training set based on hyperspectral unmixing. (a) First, the hyperspectral images of the specimen
are acquired. Subsequently, black ink marks are placed on the specimen and a reference image (b) is
captured to correlate the hyperspectral images to the histology slides. The upper pipeline shows the
histopathological workflow, where (c) the lumpectomy specimen is gross-sectioned into tissue blocks
of a few millimeters thick; (d) a slice of ±4 micrometers thick is sliced from this block and (e) stained
with H&E, digitized and inspected by a pathologist who delineates the malignant tissue region in red
up to a depth of 2 mm below the inked surface. The lower pipeline shows the workflow to determine
which pixel covered by the ink mark should be assigned to this ground-truth label. (f) A patch of
10 by 10 pixels is extracted for each ink mark; (g) based on hyperspectral unmixing a tumor prediction
map is created for this patch. (h) This map is then used to select the spectrum from the pixel that most
likely corresponds to the ground-truth label which is used to (i) train the classification algorithm.

2.3.1. Reference Image

After the hypercubes were obtained (Figure 2a), black ink marks of approximately
5 × 5 mm were placed on the resection specimen to correlate the hyperspectral images to
the histology slides. Subsequently, a reference image was taken with the VIS camera to
determine which pixels in the hypercubes correspond to the black ink marks (Figure 2b).
Due to limitations in the histopathology workflow, only a maximum of three ink marks
could be placed on a single side of the specimen and be correlated with the ground-truth
hematoxylin and eosin (H&E) stained images. To increase the chance that our dataset
contained enough tumor data, tumor-suspicious areas were identified by visual inspection
and palpation as well as an ultrasound scanner, and at least one of the ink marks was placed
on the tumor-suspicious area. It should be noted that the ink mark locations were selected
prior to the pathology processing, which means that there was no certainty regarding the
tissue type underneath the ink marks.



Cancers 2023, 15, 2679 6 of 17

2.3.2. Pathology Processing

After the hyperspectral images were obtained, the lumpectomy specimens were
processed at the pathology department. First, the specimens were sliced into blocks
of a few millimeters thick (Figure 2c). Next, from each block that contained a black ink
mark, one thinner slice was made (±4 µm) and stained with hematoxylin and eosin
(Figure 2d). This H&E slice was digitized, and malignant tissue regions (i.e., carcinoma in
situ or invasive carcinoma) were annotated by a pathologist. To discriminate between fat
and connective tissue in the remaining healthy tissue, we used a threshold value of 0.90
for the intensity within the green channel of the digitized H&E image so that, based on
the H&E color distribution, a distinction was made between fat (white) and connective
tissue (pink). To determine the ground-truth label for the H&E image, an area up to 2 mm
underneath the black ink surface was selected (Figure 2e). If any carcinoma in situ (CIS)
or invasive carcinoma (IC) was present within this area, the label malignant was assigned,
whereas in the case of only fat or connective tissue, the label healthy was assigned.

2.3.3. Assigning Ground-Truth Labels with Hyperspectral Unmixing

Hyperspectral unmixing can be used to estimate the fractional percentages (abundances)
of pure components (endmembers) within spectra (pixels). In this study, we use hyperspectral
unmixing to estimate the fractional abundances of malignant tumor and healthy tissue within
the spectra from the pixels covered by the ink marks.

We performed hyperspectral unmixing using a linear mixing model (LMM).
An LMM assumes that each detected photon has interacted with only one tissue type
and that photons from different tissue types are mixed in the camera as a result of its low
spatial resolution [24]. Since hyperspectral imaging detects diffuse light that has traveled a
few millimeters through tissue, and breast tissue is inhomogeneous, the assumption that
detected photons have interacted with only one tissue type is likely violated. Therefore,
nonlinear mixing models represent a more realistic scenario for hyperspectral imaging.
Even so, nonlinear mixing models often use complex deep learning methods, and thus
generally require a large amount of data and computation time to unmix the data. On top of
that, the most common nonlinear mixing models employ autoencoder architectures [25,26].
These unsupervised algorithms are more prone to extracting endmembers that are nonex-
istent, and thus the predicted fractional abundances might be incorrect and useless [26].
Since the number of labeled samples in our dataset is limited, we used a linear mixing
model instead of a nonlinear mixing model.

To estimate the fractional abundances of malignant tumor and healthy tissue within
the spectra from the pixels covered by the ink marks, we selected patches of 10× 10 pixels
(5 by 5 mm) and 528 wavelength bands (Figure 2f). Hereafter, we selected four endmembers
for the different tissue components IC, CIS, fat, and connective tissue. Selection of the
endmember spectra was performed according to the annotated H&E images that were
correlated with the marked locations. For each endmember, a single H&E image was chosen,
of which the area underneath the black ink mark only contained the respective tissue type.
Subsequently, the center pixel of the associated marked location on the hyperspectral image
was selected to obtain the endmember spectrum of this tissue component.

For each patch (measured location) on the lumpectomy resection surface, we cre-
ated a map with the estimated abundances of malignant tissue (IC and CIS combined),
see Figure 2g. With this map we intended to extract the spectra of the most relevant pixels
per location. In the case of a malignant ground-truth label based on the H&E, the spectrum
with the highest tumor prediction was extracted and labeled as tumor (Figure 2h), whereas
in the case of a healthy ground-truth label, the spectrum with the lowest tumor prediction
was extracted and labeled as healthy. Hence, using this prediction map, we could find the
most representative spectra for each location.

The unmixing process described by the LMM is defined as
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X =
C

∑
c=1

acec + ε (2)

where X is represented as a linear combination of the endmember spectra ec and their
fractional abundances ac for each tissue class c and additional Gaussian noise ε. The model
is subjected to the abundance non-negativity constraint as well as the abundance sum-
to-one constraint. This means that ac should be ≥0 and the total sum of the fractional
abundances should equal 1, respectively, [27–29]. X is the measured spectrum with mλ

wavelength bands and ec can be extracted from ground-truth spectra. With these known
variables, Equation (2) can be fitted to the measured spectrum with a constrained linear
least-squares approach using the interior-point algorithm [30,31] if the total number of
tissue classes C is < mλ − 1, which is generally the case. The least-squares optimization is
described by

{âc}LS = argmin
{âc}c

∥∥X′(â1, ..., âC)− X
∥∥

2 (3)

where âc is the estimate for ac and X′ is the reconstructed spectrum. Thus, by inverting
Equation (2) the unmixing problem can be solved with the estimation of the unknowns
ac and ε as output.

Using the endmember spectra and the patch as input for the LMM, we could estimate
the abundances of the tissue components for every pixel in the patch. Algorithm 1 shows a
detailed explanation of this hyperspectral-unmixing-based approach.

Algorithm 1 Label assignment based on hyperspectral unmixing
Input: Training samples H with labels L at locations P
Output: Certain Labeled representative spectra S, Ł

1: for i ∈ {1, 2, 3, ..., N} do . N: number of samples in training set
2: for c ∈ {1, 2, ..., Ti} do . Ti: number of ink points
3: M← Hi(Pcx − 5 : Pcx + 5 : Pcy − 5 : Pcy + 5) . extracting a patch
4: U← LMM(M) . calculating tumor percentage based on unmixing
5: if Li is 1 then
6: d← argmax

d
(U) . the argument of the maxima

7: Si ← P(d) . extracting representative tumor spectrum
8: Łi ← 1 . assigning tumor label
9: else if Li is 0 then

10: d← argmin
d

(U) . the argument of the minima

11: Si ← P(d) . extracting representative healthy spectrum
12: Łi ← 0 . assigning healthy label
13: end if
14: end for
15: end for

2.4. Tissue Classification

Figure 3 outlines our approach to develop the classification algorithm. First, the dataset
was split into an 80% training set and a 20% test set whilst the spectra were partitioned on
a patient level. For each hyperspectral image in the training set, we extracted the patch
of pixels (10 × 10 pixels) corresponding to the ink mark. Next, we used hyperspectral
unmixing to select the pixel within the patch that most likely corresponded to the ground-
truth label from histopathology. The spectrum from this pixel combined with the ground-
truth label was then used to train the classification algorithm, for which we used a weighted
kNN classifier, which is a supervised machine learning model. For the k-nearest neighbor
classification model, the number of neighbors was set to 10 with the Euclidean distance
metric and squared inverse distance weight.
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For the test set, we also extracted the patch of pixels corresponding to the ink mark for
each hyperspectral image. Next, we used the developed classification algorithm to classify
each pixel within the patch individually. If minimally 10 out of the 100 pixels within the
patch were classified as tumor, the patch was assigned the ground-truth label malignant
(and healthy otherwise). This threshold was set to 10 pixels (pixel size ≈ 0.5 mm) as a
re-excision is indicated when more than 4 mm of IC or a combination of IC with CIS is
present on the resection surface [32].

Figure 3. Proposed method to develop a classification algorithm where hyperspectral unmixing is
used to determine which spectra should be assigned the ground-truth labels from histopathology for
the training set.

Performance Testing

From a clinical perspective, it is particularly essential to distinguish healthy from
malignant tissue. Therefore, we determined the number of measurement locations that
were correctly classified as either healthy or malignant tissue. The prior is defined as
the true negative (TN) rate, whereas the latter is defined as the true positive (TP) rate.
Conversely, the false positive (FP) rate represents the number of measurement locations that
were classified as malignant tissue which were healthy tissue, and the false negative (FN)
rate is the number of measurement locations that were classified as healthy tissue which
were malignant tissue. With these definitions, we calculated the sensitivity, specificity, and
accuracy using the optimal cut-off point on the receiver operating characteristic (ROC) curve
and the associated 95% confidence intervals (CI) according to the Clopper–Pearson interval
method [33]. Furthermore, the area under the curve (AUC) and Matthew’s Correlation
Coefficient (MCC) were determined. The latter is defined as

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

with the MCC ranging from −1 (negative correlation) to +1 (perfect correlation). The MCC
can be considered as a more robust alternative for accuracy in the case of an imbalanced
dataset [34].

We compared our approach for assigning ground-truth labels in the training set to
two other approaches: (1) selecting the spectra from the center pixels of each patch; (2) tak-
ing the average of all spectra within the patch. For each approach, the same partitioning of
the data was used for the training and test sets to enable a fair comparison.
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3. Results
3.1. Dataset Description

In total, the lumpectomy specimens of 189 female patients were included in the
analysis. The remaining 11 patients (of the initially 200 patients measured) were excluded
from the dataset because no tissue labels could be assigned to the measured locations,
i.e., the ink marks could not be found on the H&E slides, and thus no correlation could be
made with histopathology.

Table 1 provides an overview of the characteristics of the 189 included patients: the age,
menopausal stage, breast side and density, type of neoadjuvant therapy, and the lumpectomy
size. The age of the patients was 57 ± 11 years (mean ± STD), and most of them were in their
post-menopausal stage. Based on the American College of Radiology (ACR) score, the largest
group of patients had either a scattered fibroglandular or heterogeneously dense breast density.
Furthermore, most patients did not have neoadjuvant therapy before the surgery. The size of
the resected lumpectomy specimens was 57 ± 56 cm3 (mean ± STD).

Table 2 describes the distribution of healthy and malignant tissue in the lumpectomy
dataset. The dataset consists of 151 patients in the training set (302 measured locations)
and 38 patients in the test set (70 measured locations). The number of malignant tissue
labels is lower compared to the number of healthy tissue labels because the measurement
locations had been particularly chosen based on visual inspection and palpation before
histopathological processing. Therefore, the exact location of the tumor tissue was not
known at the time when measurement locations were selected.

Table 1. Patient characteristics.

Characteristic No. of Patients (%) Mean ± STD

Age, years 57 ± 11
<50 48 (25)

50–59 69 (37)
60–69 43 (23)
≥70 29 (15)

Menopausal stage
Pre 41 (22)
Peri 16 (8)
Post 109 (58)

Unknown 23 (12)

Breast side
Left 92 (49)

Right 97 (51)

Breast density, ACR 1 score
1 15 (8)
2 75 (40)
3 75 (40)
4 20 (11)

Unknown 4 (2)

Neoadjuvant therapy 2

Chemotherapy 19 (10)
Hormone therapy 13 (7)
Immunotherapy 2 (1)

None 155 (82)

Size lumpectomy, cm3 57 ± 56
1 American College of Radiology score; 1 = almost entirely fatty. 2 = scattered fibroglandular densities.
3 = heterogeneously dense. 4 = extremely dense. 2 Only patients with either no or partial tumor response
to neoadjuvant therapy were included.



Cancers 2023, 15, 2679 10 of 17

Table 2. Distribution of tissue types in the lumpectomy dataset.

Tissue Class Training Set Test Set
#Patients (#Locations) Labeled Labeled

Healthy 129 (221) 35 (53)
Malignant 59 (81) 12 (17)

Total 151 (302) 38 (70)

3.2. Assigning Ground-Truth Labels with Hyperspectral Unmixing

Figure 4 illustrates examples of the tumor prediction maps of six measurement loca-
tions. These tumor prediction maps are the result of hyperspectral unmixing, and depict
the estimated abundances of tumor tissue within each pixel. The first two rows of Figure 4
are from pixel patches that were assigned the ground-truth label ‘healthy’ based on the
corresponding H&E slide. The tumor prediction map for the healthy pixel patches have
very low estimated abundances of tumor tissue. The bottom four rows of Figure 4 are
from pixel patches that were assigned the ground-truth label ‘malignant’. All four tumor
prediction maps have a hotspot and a spatial gradient in the estimated abundances in the
radial direction from high (bright) to low (dark) estimated abundances. It should be noted
that the maximum value of the abundance of malignant tissue does not necessarily have to
be 100% for a pixel patch belonging to an area that contains tumor tissue (bottom tumor
prediction map). The tissue within the region of interest in the H&E slide (Figure 2e) is not
necessarily homogeneous and can contain both malignant and healthy tissue. In the first
three malignant patches there is much variation in the estimated abundances within the
patch, and the hotspots (i.e., the pixels with the highest estimated tumor percentages) are
not located in the center of the patches.

3.3. Tissue Classification

Figure 5 illustrates the effect of the three different approaches for assigning ground-
truth labels to spectra. The tumor prediction map (Figure 5a) implies that the tumor is not
located in the center of the pixel patch. From the tumor prediction map it becomes clear
that it will likely matter to which pixel within the patch the ground-truth label is assigned.
Figure 5b shows an example of how different approaches (hyperspectral unmixing, center
patch, or average patch) for selecting pixels to assign ground-truth labels will result in
different spectra used to train the algorithm.

When comparing the SNV-normalized spectrum obtained with hyperspectral unmix-
ing to the spectra of the center pixel and the average of all pixels in the patch, a distinct
difference can be observed in the spectral shape. This spectral variability is mainly evident
in the visual range from 600 to 730 nm, and in the near-infrared range around 1200 nm.
Although the spectra of the center pixel and the average of all pixels vary slightly in
intensity, they are mostly similar along the wavelength range.

Table 3 gives the performance metrics of the weighted kNN model for the discrimina-
tion between healthy and malignant tissue for each approach to select pixels and assign
ground-truth labels. From Table 3 and the ROC curves shown in Figure 6, it can be ob-
served that the highest performance is achieved with the hyperspectral-unmixing-based
approach, which has an overall performance of 94% sensitivity (95% CI, 0.71–1.00), 85%
specificity (95% CI, 0.72–0.93), 87% accuracy (95% CI, 0.77–0.94), 71% MCC, and 92% AUC.
The average patch approach has a lower performance with a sensitivity of 88% (95% CI,
0.64–0.99) and specificity of 85% (95% CI, 0.72–0.93). Finally, the center pixel approach has
the lowest performance, with a sensitivity of 76% (95% CI, 0.50–0.93) and specificity of 85%
(95% CI, 0.72–0.93).
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(a) Pseudocolor HSI patch (b) Tumor prediction heatmap
Figure 4. Tumor prediction map of different measured locations on the lumpectomy resection surface
obtained with hyperspectral unmixing. (a) Pseudocolor image (wavelength bands at 649, 534, and
480 nm) based on the hyperspectral image with (b) the corresponding tumor prediction map. Rows
1–2: locations with a healthy tissue label from histopathology and a low tumor prediction. Rows 3–6:
locations with a malignant tissue label and a high tumor prediction, despite how the tumor hotspots
vary in terms of size and location.
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(a) (b)
Figure 5. (a) Tumor prediction map for a pixel patch where the H&E slide was labeled malignant.
The numbers are the estimated fractional abundances of tumor tissue obtained with hyperspectral
unmixing. There is a tumor hotspot on the left, which suggests the tumor is not centered within the
ink mark. (b) SNV normalized diffuse reflectance spectra of three different approaches for selecting
pixels to assign ground-truth labels. There is a distinct difference in the SNV-normalized spectrum
obtained with hyperspectral unmixing (pixel with the highest tumor value in the prediction map)
compared to the center pixel and the average of all pixels in the patch.

Figure 6. Comparison of the ROC curve of the hyperspectral-unmixing-based approach we developed
(yellow line) to selecting the center pixel or taking the average of all spectra within a pixel patch.
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Table 3. Performance metrics of the weighted kNN classifiers for the discrimination of healthy and
malignant tissue on the lumpectomy resection surface using different approaches.

Sensitivity
Mean [95% CI]

Specificity
Mean [95% CI]

Accuracy
Mean [95% CI] MCC AUC

Patch center 0.76 [0.50, 0.93] 0.85 [0.72, 0.93] 0.83 [0.72, 0.91] 0.57 0.85
Patch average 0.88 [0.64, 0.99] 0.85 [0.72, 0.93] 0.86 [0.75, 0.93] 0.67 0.93

Patch unmixing 0.94 [0.71, 1.00] 0.85 [0.72, 0.93] 0.87 [0.77, 0.94] 0.71 0.92

4. Discussion

Hyperspectral imaging has the potential to improve breast-conserving surgeries by
providing real-time margin assessment, which could enable surgeons to immediately
remove additional tissue when necessary to obtain a negative resection margin. As such,
supervised classification methods can be employed to develop an algorithm that can
determine the presence of tumor tissue within the resection margin. To train supervised
classification methods, a dataset with accurate ground-truth labels is required, which
is difficult to establish for resection specimens. In this study, we therefore developed
a novel approach to assign ground-truth labels to pixels within hyperspectral images
based on hyperspectral unmixing. We demonstrated that our novel approach has a higher
performance (MCC 0.71) than both the conventional approach to assign the ground-truth
label to the center pixel of the inked area (MCC 0.57) or to the average spectrum over all
pixels in the inked area (MCC 0.67).

By using this approach, hyperspectral imaging has the potential to outperform other
margin assessment techniques that are currently used intraoperatively such as frozen
section analysis. Although frozen section analysis has a high diagnostic performance,
including a sensitivity of 83% and specificity of 95% [35,36], only a small section of the
entire resection surface can be investigated. Furthermore, this technique generally extends
the surgery time by 27 min on average [35]. With hyperspectral imaging we are able
to image and analyze the entire resection surface of the breast lumpectomy specimen
within 10 min (less than 1.5 min per resection side) while the classification performance is
comparable to frozen section analysis.

The improved performance of the hyperspectral-unmixing-based approach can be
explained using the tumor prediction maps in Figure 4. In the tumor prediction maps of
measurements that were assigned a malignant ground-truth label, the location of the highest
estimated abundance of malignant tissue is not necessarily in the center of the pixel patch.
In practice, it also seems unlikely that histopathologists would be able to slice the tissue
with such a high accuracy that the H&E slide would truly correspond to the center of the ink
mark. Thus, when ground-truth labels are assigned to the center of the patch, a malignant
label might be assigned to a pixel where the spectrum relates to an area that contains almost
no tumor tissue. Figure 4 also shows that the tumor hotspot may vary in size. Thus, when
ground-truth labels are assigned to the average spectrum of the patch, it might happen that,
when the tumor hotspot is relatively small, its corresponding pixels will not contribute
accordingly to the total. Consequently, the obtained spectrum predominantly represents
healthy tissue, while the ground-truth label from histopathology is malignant. Hence,
the mismatch between the labels and measured locations for the center pixel approach
as well as the average of the patch approach may have caused the classification model
to be trained incorrectly, whereas in the proposed hyperspectral unmixing approach, we
selected the pixels that most likely corresponded to the ground-truth labels as input for the
training set.

In the current study, we performed hyperspectral unmixing using a linear mixing
model. Given the limited number of labeled samples in our dataset, using a linear mixing
was more straightforward and advantageous compared to using a nonlinear mixing model.
Nevertheless, we acknowledge that a linear mixing model may not be fully adequate to
predict the interaction between light and inhomogeneous tissue and thus might result
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in inaccurate values for the fractional abundances. Even so, the values of the fractional
abundances were not the end goal of our approach—they were merely an instrument to
select spectra corresponding to ground-truth labels from histopathology. We have shown
that this approach outperforms conventional methods to assign ground-truth labels.

The goal of this study was to develop an algorithm to determine the presence of tumor
tissue within the resection margin. Thereby, we primarily focused on the discrimination of
healthy and malignant tissue without particularly considering the different variants that
belong to either of the tissue classes (i.e., healthy; fat and connective tissue; malignant;
CIS and IC). As clinical guidelines on re-excisions differ among cancer variants and even
subvariants [32,37], the results of the current study might ultimately be insufficient to
provide the intraoperative feedback necessary to decide whether or not to perform a re-
excision. For example, among CIS, the precursor to invasive carcinoma, a distinction can
be made between ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS).
In the USA, a re-excision for DCIS is already indicated when any cells are present within a
margin of 2 mm under the resection surface, whereas in the Netherlands this only applies
to DCIS cells on the resection surface [32,37]. In addition, the presence of low-grade DCIS
may also not indicate a re-excision in all cases. For LCIS, some subvariants are indicative
for a re-excision but the classical variant is not. As opposed to CIS, a re-excision for IC
is only recommended when the lesion reaches the resection surface and is larger than
4 mm in size [32]. Hence, to provide clinically meaningful feedback to the surgeon, future
research should be more focused on the differentiation between the variants of breast
cancer. Nevertheless, in uncertain cases the surgeon could still decide to resect some extra
tissue during surgery rather than waiting for additional treatment when the resection
surface turns out to be tumor-positive. Since the different types of CIS and IC also deviate
considerably in terms of cell density [32], it would be worth investigating the influence of
their pathological features on the spectral shape.

A common problem in histopathology is the deformation of lumpectomy specimens
after surgical removal. When a lumpectomy specimen is placed on a hard surface, flat-
tening of the tissue may occur. Consequently, the specimen might lose almost 50% of its
original height [38], which is known as the pancake phenomenon; the up–down margins
decrease while the lateral margins increase. As the prior could affect the margin assessment
with the risk of inducing false positive results not only during histopathological analy-
sis but also during hyperspectral imaging, the accurate correlation of histology results
with the acquired HSI spectra considering the consequences of the pancake effect requires
further investigation.

We used ink to mark areas on the surface of the resection specimen that could be
identified in the hyperspectral images and could be used to identify a single H&E slide
within that area. One downside of the ink marks was that they covered a fairly large area
of 5 by 5 mm. Although Kho et al. [9] demonstrated that for the hyperspectral cameras an
area larger than 2 by 2 mm should be sufficient to detect tumor tissue in more than 93% of
cases, a smaller ink mark would be not practical as it would highly increase the difficulty of
tracing back the ink on the corresponding H&E slide. Another downside of the ink marks
is that they can disperse between the time when the hyperspectral image is taken and
when the H&E slide is made. Although an ink fixator helped to minimize the dispersion
of the ink, the marks still slightly blended together in a few cases where the ink marks
were placed in close proximity of each other. This increased the difficulty of separating ink
marks on the H&E images, adding an uncertainty to the corresponding tissue labels. While
this could be prevented by placing the ink marks at a safe distance from each other, placing
ink marks close to each other on suspected tumor tissue helped to increase the amount of
tumor data in the dataset. Apart from ink, other types of marks could be used to correlate
histopathology slides to the hyperspectral image, such as sutures. Regardless, the size of
the marker will always be bigger than the thickness of an H&E slide, so our hyperspectral
unmixing approach would also be relevant when other marks are used.
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Another point to note is that the 0.5 mm resolution (pixel size) of the camera is
substantially smaller than the optical diffusion length. The optical diffusion length is a
measure of the blurriness of the optical images due to the strong light scattering inside the
tissue. This leads to mixing of spectra of adjacent pixels, independent of their ground-truth
label. Kho et al. [10] showed that, depending on the wavelength, the information from a
diffuse optical spectrum can be smeared out over an area as large as 2 mm. This seems to
be in line with our current results, e.g., in the tumor prediction maps shown in Figure 4 we
see transitions from 100% healthy to 100% malignant tissue (dark to bright) occurring over
roughly 4–5 pixels.

5. Conclusions

This is the first study that has used a hyperspectral-unmixing-based approach to deter-
mine which pixels should be assigned a ground-truth label from histopathology, and should
be used to train a supervised classification algorithm. This approach outperformed con-
ventional approaches to assign ground-truth labels on ex vivo lumpectomy specimens.
Since the ultimate goal of our research is to implement hyperspectral imaging into clinical
practice, future steps would be to incorporate and classify the entire resection surface of
lumpectomy specimens in order to allow real-time feedback during breast-conserving
surgery. Furthermore, even though we applied the hyperspectral-unmixing-based ap-
proach to breast cancer, it could also be used for other types of cancer, other types of tissue
classification, and even outside the medical field to any other field in which hyperspectral
imaging is used.
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