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Simple Summary: A lower tumor–stroma ratio within a tumor correlates with a poorer outcome,
i.e., with a higher risk of death. The assessment of this ratio by humans is prone to errors, and
when presented the same case, the ratios reported by multiple pathologists will oftentimes deviate
significantly. The aim of our work was to predict the tumor–stroma ratio automatically using deep
neural segmentation networks. The assessment comprises two steps: recognizing the different tissue
types and estimating their ratio. We compared both steps individually to human observers and
showed that (i) the outlined automatic method yields good segmentation results and (ii) that human
estimations are consistently higher than the automated estimation and deviate significantly for a
hand-annotated ground truth. We showed that including an additional evaluation step for our
segmentation results and relating the segmentation quality to deviations in tumor–stroma assessment
provides helpful insights.

Abstract: The tumor–stroma ratio (TSR) has been repeatedly shown to be a prognostic factor for
survival prediction of different cancer types. However, an objective and reliable determination
of the tumor–stroma ratio remains challenging. We present an easily adaptable deep learning
model for accurately segmenting tumor regions in hematoxylin and eosin (H&E)-stained whole slide
images (WSIs) of colon cancer patients into five distinct classes (tumor, stroma, necrosis, mucus, and
background). The tumor–stroma ratio can be determined in the presence of necrotic or mucinous
areas. We employ a few-shot model, eventually aiming for the easy adaptability of our approach to
related segmentation tasks or other primaries, and compare the results to a well-established state-of-
the art approach (U-Net). Both models achieve similar results with an overall accuracy of 86.5% and
86.7%, respectively, indicating that the adaptability does not lead to a significant decrease in accuracy.
Moreover, we comprehensively compare with TSR estimates of human observers and examine in
detail discrepancies and inter-rater reliability. Adding a second survey for segmentation quality on
top of a first survey for TSR estimation, we found that TSR estimations of human observers are not
as reliable a ground truth as previously thought.

Keywords: segmentation; deep learning; image analysis; few-shot learning; U-Net; tumor–stroma
ratio; colorectal cancer
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1. Introduction

The tumor–stroma ratio (TSR) has repeatedly been shown to be a prognostic factor
for the survival prediction of patients suffering from a number of malignant diseases,
including colorectal [1–14], lung [15–17], liver [18], or breast cancer [19–23]. The most
common scoring method, especially for colon cancer, was developed by van Pelt et al. [7],
although the individual methods can vary.

However, only a few of these works focus on computer-assisted estimation, although
they hold the promise of providing a more objective and a less error-prone method, espe-
cially when using machine-learning models.

Early computer-assisted approaches for tumor and stroma assessment were based on
conventional machine learning, using so-called handcrafted texture features. For example,
Linder et al. [24] investigated various texture features such as local binary patterns and
Gabor filters together with support vector machines (SVM) for the classification of image
patches as either tumor epithelium or stroma. Image patches were extracted from digi-
tized colorectal cancer tissue microarrays (TMAs) which had been immunostained with
an epidermal growth factor receptor antibody. TSR values were not calculated but rather
mentioned as a possible application. Similarly, Bianconi et al. [25] applied handcrafted
features in conjunction with an SVM as well as a nearest-neighbor and naive Bayes rule
classifier to address the same two-class problem (tumor epithelium vs. stroma) on colorec-
tal cancer TMAs, but they did not calculate TSR values either. Geessink et al. (2015) [26]
investigated the pixel-wise classification of tumor and stroma tissue in hematoxylin and
eosin (H&E)-stained digitized colon sections. They also used explicit features, for exam-
ple local density nucleus pixels, and trained a normal-density-based quadratic classifier.
They evaluated their approach against manual pixel-wise annotations. Since they only
distinguished between tumor and stroma, smaller necrotic areas were counted as part of
the tumor. In subsequent work, Geessink et al. (2019) [8] applied a convolutional neural
network (CNN) for tissue classification and distinguished nine different tissue classes. The
computer-derived TSR values were compared to TSR values estimated by two pathologists
for 129 patients, which was followed by a survival analysis. Zhao et al. [9] also applied
a CNN that was trained on image patches of nine different tissue classes. In contrast to
many other approaches, which calculate the TSR only within a region of interest (ROI), they
determined the TSR based on the complete WSI as a ratio between the classified stroma
and tumor areas. In addition to evaluating the prognostic significance of the TSR regarding
the survival rate, they also performed a TSR consistency analysis on 126 images with
manual annotations of stroma and tumor tissues. However, for this consistency analysis,
they hand-selected ROIs that only comprised tumor and stroma tissues. Millar et al. [22]
used the QuPath PixelClassifier v0.2.1, yet they only segmented the images into the three
classes: tumor epithelium, stroma and background (with fatty tissue). They calculated the
TSR for breast cancer TMAs that were stained with H&E and investigated the prognostic
significance of the TSR. Segmentation results were not quantitatively evaluated, but the
authors indicated that segmentation required supervision by a pathologist and reported
this as a limitation of their study. They speculated that a deep learning approach might
improve segmentation. Hacking et al. [27] used QuPath superpixel image segmentation
(SIS) together with an artificial neural network as a classifier to segment tumor regions into
tumor epithelium, collagenous stroma and myxoid stroma. They also did not quantitatively
evaluate their segmentation results but focused on the prognostic value of myxoid stroma
ratio. Hong et al. [28] only considered three classes: background (non-tissue), stroma and
tumor. They generated a binary tissue mask with a fixed threshold after transformation of
the H&E image into grayscale. The special aspect of their work is converting the grayscale
H&E image into a virtual cytokeratin stained image using a conditional generative adver-
sarial network (GAN). Afterwards, they binarized the cytokeratin image by thresholding
its chromogen (Diaminobenzidine, DAB) channel. Based on these two binary masks, they
calculated the tumor and stroma areas. Abbet et al. [12] reported a fully automated TSR
estimation on WSIs and performed survival analysis on 221 WSIs of colorectal cancer
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patients. Their TSR scoring followed the recommendation of Pelt et al. [7]. In a first step, a
tissue classification is performed on the full WSI by applying a model trained using self-
supervision and unsupervised domain adaptation [29] to detect tumor and tumor-adjacent
stroma tissue. As in the other CNN-based classification methods mentioned above, a class
label is assigned to every image patch. The resulting checkerboard-like segmentation is
then smoothened by applying conditional random fields. In a second step, automatic
identification of the ROI in which the TSR is to be determined takes place. Finally, TSR
is calculated within this ROI. Moreover, the TSR for the complete WSI is calculated, and
both TSR values were shown to be statistically relevant for survival analysis. Smit et al.
(2023) [14] investigated how feasible semi-automated and fully automated TSR scoring
is. They used the same procedure as Geessink et al. (2019) for tissue segmentation. For
the semi-automated approach, the ROIs from the visual scoring were used. For their fully
automated approach, the WSIs were segmented and post-processed by a concave hull
algorithm to obtain the tumor region. They selected circular ROIs based on several rules
such as, e.g., size or lack of background.

Most of the works cited above focus on survival analysis based on TSR scoring [8,9,12,22,28].
An evaluation of the TSR values compared to those of human observers was performed
by Geessink et al., Hong et al. and Smit et al. [8,14,28]. Geessink et al. performed both
a comparison of the TSR values and a pixel-by-pixel comparison of the segmentation
results against manual annotations. Zaoh et al. [9] performed a thorough evaluation of the
segmentation and TSR determination of their method, but they only considered the tumor
and stroma.

Our work combines the most important aspects of previous works. We segment a
wide number of relevant tissue types in the tumor microenvironment (TME), including the
tumor, stroma, necrosis, mucus and background. Therefore, with our approach, the TSR
can even be determined in regions where necrosis or mucus are present. Almost all of the
methods mentioned above are based on patch-wise classification. We directly employ a
more finely grained segmentation method. The main difference between segmentation and
classification approaches is that the result of the former is a mask that assigns the contained
pixels of the considered image patches to the different classes, while classification assigns
the whole image patch to a single class. Classification yields a detailed segmentation map
by analyzing overlapping image patches (increasing the computational complexity) and by
post-processing, e.g., using conditional random fields.

The supervised training of a deep learning-based segmentation approach requires
pixel-precise annotations of a set of example images. Creating such annotations is a
very time-consuming and tedious task. Therefore, we have chosen a so-called few-shot
method [30] instead, which can be adapted to new segmentation tasks given only a few
new annotated examples (“a few shots”). In the case of prototype-based few-shot models,
this strategy can even be used without retraining the underlying neural network’s weights.
In contrast, only prototypes representing the classes to be segmented need to be adjusted,
which may represent one of the most attractive features of this few-shot approach. As a
comparative baseline reference, we train and evaluate a U-Net model [31], which is one
of the most widely applied algorithms for the segmentation of biological and medical
image data [32]. We present both an evaluation on a pixel-wise annotated test set and
a comparison of human observers’ TSR values with the TSR values derived from the
predicted segmentation results. Moreover, we examine in detail the causes of discrepancies
between the calculated and estimated TSR values as well as the inter-rater agreement.

2. Materials and Methods
2.1. Data

All the image data analyzed in this work originated from H&E-stained colon tissue
sections containing adenocarcinoma of various grades. They were digitized using a 3DHis-
tech MIDI scanner at a resolution of 0.22 µm per pixel at the University Hospital Erlangen,
resulting in whole slide images (WSIs). All WSIs were generated in a retrospective study
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approved by the scientific committee (CCC tissue biobank) of the Comprehensive Can-
cer Center (CCC Erlangen-EMN; application-No. 100030; date of approval 09.05.2012) of
the Friedrich-Alexander University Erlangen-Nuremberg. The study was based on the
approval of the Ethics Commission of the University Hospital Erlangen (No. 4607 from
18.01.2012). The study was performed in accordance with the Declaration of Helsinki, and
ethical guidelines relevant for retrospective studies were respected throughout. Tissue his-
tology was reviewed by two board-certified pathologists (AH and CG). Pathology reports
and medical records of patients who underwent an operation at our hospital were reviewed.

We selected 59 patients diagnosed with colon cancer at University Hospital Erlangen,
Germany between 1999 and 2006. All patients received primary surgical resection without
neo-adjuvant therapy. The median age at date of diagnosis was 67 years with a minimum
of 31 years and a maximum of 90 years. Overall, 37 individuals were male and 22 were
female, reflecting a typical distribution of gender and age in colon cancer.

Tumor grade was 2 in 37 patients and 3 in 22 patients. No grade 1 tumor was included.
The distribution of tumor stage (TNM 2017) was pT1 (n = 4), pT2 (n = 12), pT3 (n = 40) and
pT4 (n = 3), respectively. The lymph node status was negative in 35 (pN0) and positive
in 24 (pN+) cases. The tumor size was median 45–40 mm (min 10 mm and max. 110 mm,
respectively). All individuals had invasive adenocarcinoma of the colon; there was no other
primary or secondary entity. The carcinoma tissue was analyzed without taking adenoma
tissue into account if present. With the exception of diverticulosis, no further relevant
finding was reported by pathologists.

All patients received state-of-the-art open surgery with complete resection (R0) (ex-
tended mesocolon resection (no laparoscopic surgery)) including representative amount of
lymph nodes harvested (median: 34 lymph nodes; minimum 10 and maximum 97).

No other malignoma or metastases of primaries other than the colon were known.
Only 1 of 59 patients suffered from metastatic disease, which was in this case to the liver
(pM1(HEP)). Subtypes were represented as follows: most of the cases were tubular or
cribriform typical adenocarcinoma non-special other type (NOS) (n = 46), followed by
mucinous type (n = 8), medullary type (n = 4) and signet ring cell carcinoma (n = 1). This
reflects a typical distribution of subtypes in colon cancer.

2.1.1. Segmentation Dataset with Pixel-Wise Annotations

A new dataset with pixel-wise annotations was established, where each pixel was
assigned to one of the six classes: tumor, stroma, necrosis, mucus, background and artifact.
First, 44 regions of interest (ROIs) were selected manually from a set of 33 WSIs. These re-
gions had an average size of 1 mm × 1 mm, which corresponds to roughly 4500 × 4500 pix-
els in the native scan resolution. The WSI represented a tumor slide of routine work with
the tumor center and invasion front as well as the relevant growth pattern and grade of
each case. The location of the ROIs was chosen such that all the tissue classes of interest
(tumor, stroma, necrosis, mucus) as well as different tumor grades were present, if possible.

Afterwards, all ROIs were annotated, and the annotations were revised and approved
by an experienced senior pathologist (CG). Finally, the dataset was split into three disjoint
sets: one for training of the neural segmentation networks (training set), one for model
selection (validation set) and one for evaluation of the segmentation models (test set). The
training set contained 29 ROIs from 23 WSIs, the validation set contained 6 ROIs from
4 WSIs, and the test set contained 9 ROIs from 6 WSIs. Table 1 provides an overview of the
three datasets.
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Table 1. Distribution of different classes across the three datasets. The number of pixels assigned to
each class is stated. The artifact class was introduced for regions that should be ignored during the
training and evaluation.

Dataset # Tumor # Stroma # Necrosis # Mucus # Back-
ground # Artifact

training 306,215,439 226,924,661 36,776,447 33,136,244 77,120,642 3,289,067
validation 67,367,966 47,092,974 11,588,088 10,367,879 29,945,593 0

test 86,969,626 71,515,442 10,713,472 9,694,276 20,507,721 3,691,963

2.1.2. Survey Dataset

A second dataset was created to compare the TSR values of both models to TSR values
estimated by human observers. Therefore, care was taken to reflect the procedure in routine
clinical practice for TSR determination: first, a representative ROI of a defined size within
the tumor has to be selected. Then, the TSR is estimated by eyeballing without performing
any manual segmentation within the image. The dataset is comprised of 30 ROIs sized
2 mm × 2 mm, each from a different WSI. All ROI positions were determined by an
experienced pathologist (CG), ensuring that all observers estimate the TSR based on the
same ROI. The ROIs are stored in the original resolution (0.22 µm/pixel).

No image sections from any of these WSIs were part of the training or validation
set of the “Segmentation Dataset”. Additionally, in two of these ROIs, the tumor and
stroma tissue were manually annotated to allow a more in-depth comparison between the
calculated and estimated TSR values for these two examples.

2.2. Segmentation Methods

All of the following methods were implemented using the TensorFlow framework
(version 2.3.0) [33].

Two different deep learning-based segmentation methods were applied for the seg-
mentation of the image pixels into the five classes (tumor, stroma, necrosis, mucus, and
background). The first one was a so-called prototype-based few-shot approach. The main
idea is that assignment to a class is made based on the similarity to class prototypes in a
feature space (also called latent space) learned by the neural segmentation network. Specif-
ically, we used a reduced version of PANet, which was introduced by Wang et al. [30]. We
did not use prototype alignment regularization, which led to a simpler model we denote
the Basic Prototype Network (BPN). We furthermore used a modified MobileNetV2 [34] as
a feature extractor instead of the VGG-16 used in the original PANet due to its significantly
lower number of parameters and memory requirements. We removed all layers of Mo-
bileNetV2 after the 16th bottleneck layer as well as the last convolutional layer of the 16th
bottleneck layer, resulting in appropriately sized feature masks. Retaining all layers would
decrease the height and width of the feature mask by a factor of 32 each relative to the size
of the input image. Through this modification, the input size was only reduced by a factor
of 16. We also tested other variants of MobileNetV2 with an even bigger size of the feature
mask, but we obtained worse results on the segmentation dataset with that approach. As a
similarity measure, we used the negative squared Euclidean distance with a prefactor of
0.5 instead of the cosine distance. Figure 1 visualizes the determination of class prototypes.
For each class, some sample images (“supports”), including pixel-precise annotation of
this class, were required. In our setup, these images had a size of 512 × 512 pixels. The
images were propagated through the modified MobileNetV2, resulting in a downsampled
feature mask of size 32 × 32 pixels. Using the similar downsampled annotation mask,
masked average pooling was applied to the corresponding pixels in the feature mask. As a
result, one feature vector representing the average of all pixels belonging to this class in
this support image was obtained. Finally, the class prototype was calculated by averaging
all supports of this class. “Query” images to be segmented were also propagated through
the network, resulting in feature masks of size 32 × 32 pixels. For all pixels in these feature
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masks, the similarity to all class prototypes was calculated, and each pixel was assigned to
the class of its closest prototype. Lastly, the segmentation results were bilinearly upsampled
in order to obtain a mask in the full native resolution.

Figure 1. In the BPN approach, each segmentation class is represented by so-called prototypes in
latent space. Prototypes are calculated based on a few support examples per class. (a) For each class,
pairs of image patches (512 × 512 pixels) and corresponding annotation masks are given. Image
patches are propagated through an adapted MobileNetV2, resulting in a downsampled feature
mask of size 32 × 32 pixels. (b) Feature masks are fused with the downsampled annotation masks.
(c) Subsequently, average pooling with respect to the annotation mask is applied, resulting in one
feature vector for each support in latent space. The prototype for each class is given by the mean over
all supports.

The second segmentation method used a U-Net structure [31] with the typical con-
tracting and expansive paths interconnected with horizontal connections. The input for
the contracting path included images of size 512 × 512 pixels. The path used exactly the
same modified MobileNetV2 as described for the BPN case, extracting feature masks of
size 32 × 32 pixels. These were then used as the starting point for the expansive path.
This path consisted of four blocks. Each block started with an upsampling layer, whose
output was concatenated with the output of the last bottleneck layer of the contracting path
with the same spatial size. Afterwards, two convolutional layers with batch normalization
and a ReLU activation layer followed. The number of filters in the convolutional layers
is provided in Appendix A. At the end of the fourth block, the final convolutional layer
without batch normalization nor an activation layer reduced the number of channels to the
number of classes.

2.3. Training

The BPN models were trained with episodic training for up to 10,000 episodes. The
input to each episode was five supports per class and two query images with their corre-
sponding annotation masks. We used the Adam optimizer and a learning rate of 5 × 10−4.
The α parameter of the modified MobileNetV2 was set to 1.0. As the loss function, a pixel-
wise adaptation of the COREL-loss [35] with a γ value of 0.5 was chosen. The U-Net models
were trained for up to 5000 steps with a batch size of 25, 5 images per class, using the Adam
optimizer and a learning rate of 2 × 10−4. The α parameter of the modified MobileNetV2
was set to 0.75. A lower value of α was used to keep the number of parameters between
BPN and U-Net comparable. As the loss function, a pixel-wise cross-entropy was used.
For both models’ initialization, weights that were pre-trained on the ImageNet dataset [36]
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were used. Data augmentation was performed, following Kuritcyn et al.’s [37] suggestion
of H&E color, hue, and saturation augmentation. Afterwards, they were transformed to
have zero means and a standard deviation of 1.

The models were validated every 1000 steps (U-Net) or episodes (BPN), and the
weights with the best validation score were saved. Both BPN and U-Net were trained three
times with identical hyperparameters.

2.4. Evaluation Protocols

Both tasks—tissue segmentation into five classes and TSR estimation—were evalu-
ated separately. Thus, we used multiple evaluation protocols. The first is a pixel-wise
evaluation of our segmentation approaches on the test set of the “Segmentation dataset”
(see Section 2.1.1). This set was manually annotated, and a quantitative comparison to
the ground truth annotation was performed. The evaluation details are described in
Section 2.4.1.

The evaluation of the TSR estimation comprised three components. Similar to other
work [8,28], the calculated TSR values were compared with TSR values from human
observers. Our evaluation included less WSIs than the, e.g., Geessink et al. (2019) [8] or
Hong et al. [28], but the TSR estimates were provided by more observers with different
experience levels. Details on this evaluation are provided in Section 2.4.2. In addition,
a second evaluation assessed the mean segmentation quality of the models and whether
there was a direct relationship between the mean segmentation quality and the deviation
in TSR values between AI model and human observers (see Section 2.4.3). Finally, for two
selected ROIs, a time-consuming pixel-wise annotation was created and used as the gold
standard for TSR estimation.

2.4.1. Pixel-Wise Evaluation of Segmentation Approaches

The pixel-wise evaluation was performed on the segmentation test set. Since the test
images were larger than the image patches processed by the segmentation models, tiling
of the test images was required. Two different tiling methods were used. The first one
(denoted as tiling A in the following) was performed without overlap. Only at the right
and lower boundary did an overlap occur, because the width and height of the test images
were not multiples of the edge lengths of the image patches. Within the small overlapping
area, no averaging was performed, but the segmentation results of the last added patch
were taken. The second tiling method (denoted as tiling B in the following) discarded
the segmentation results for all pixels within the outer boundary of each patch except for
the boundaries of patches that coincide with the test image border, since the test image
would not be complete otherwise. The width of the boundary was set to 96 pixels for all
experiments, reducing the active output area per patch to 320 × 320 pixels (39%). To fully
segment the test image, input patches therefore had to overlap, whereby the overlap was
twice as wide as the boundary. Finally, the segmentation results of all test images were
compared to their manual ground truth annotation by pixel, resulting in a confusion matrix.
Based on this confusion matrix, other metrics such as recall, precision, intersection over
union (IoU), and F1 score were calculated (see Appendix C for further details).

Results were obtained by evaluating all three training runs and averaging the re-
sults for each combination of segmentation and tiling methods. In case of the BPN ap-
proach, in addition to the three training runs, the support set was also altered. A total
of NS = 100 supports were randomly drawn from the training set and prototypes were
calculated. Afterwards, these prototypes were used for evaluation on the test set together
with the underlying model. Every model was evaluated ten times with different supports,
resulting in 30 evaluations, and the results were averaged.

2.4.2. Comparison between Human Estimation and Automated TSR Assessment

An online survey (survey 1) was conducted in which a total of 10 observers, including
pathologists of different levels of experience and trained medical students, were asked to
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estimate the TSR for each ROI of the survey dataset (Figure A1). For all ROIs, the TSR was
also calculated based on the segmentation results of both models (BPN and U-Net). Hereby,
the tumor and stroma areas were given by the total number of pixels predicted as tumor
and stroma, respectively. Pixels assigned to the classes mucus, necrosis or background
were not counted toward the tumor or stroma area. The TSR was calculated as the ratio
between the tumor area and the sum of tumor and stroma areas. In the following, these
values will be referred to as AI-TSR values. Inter-observer agreement was assessed using a
two-way mixed effects, single-measurement, absolute agreement intraclass coefficient (ICC).
In addition to the overall ICC, ICCs of different observer groups, based on their experience
level, were determined as well. These groups were: senior (three observers), junior (three
observers), and beginner (four observers). For further analysis, only the results of the two
most experienced observers (m.e. observers) were used. Furthermore, the ICC and Cohen’s
kappa (using categorized TSR) for the m.e. observers were calculated. Agreement in TSR
estimation was assessed using the ICC and Cohen’s kappa between the m.e. observers
and AI models. Cohen’s kappa was calculated using categorized TSR. The categories used
were stroma-low (>50% TSR) and stroma-high (<50% TSR). Additionally, a threshold of
65% for stroma-low to stroma-high separation was used, following Hong et al. [28] and
Geessink et al. (2019) [8].

2.4.3. Survey 2—Assessment of Segmentation Quality

An additional survey (survey 2) was conducted to assess the quality of segmenta-
tion results obtained with the BPN model for all 30 ROIs. One senior pathologist and a
trained medical student independently graded the segmentation quality on a scale from
1 (insufficient segmentation) to 10 (excellent segmentation). The mean of their grades
was used for final quality assessment. This assessment was used to further examine the
difference between human and automated TSR estimations. The assumption was that a
high rating of segmentation quality with large TSR discrepancies between human and AI
models indicates human error or bias, whereas a poor rating of the segmentation quality
indicates errors of the automated TSR assessment.

3. Results and Discussion
3.1. Pixel-Wise Segmentation

Results of the pixel-wise evaluation on the segmentation test set for both methods
(BPN and U-Net) with both tiling methods are given in Table 2. Applying tiling B yielded
better results than tiling A. This might be expected, since poorer segmentation results of
pixels near the boundary of each patch were discarded in tiling B. For these pixels, less
context information is available from the neighborhood due to their position near the
boundary, which leads to less accurate results. The higher overall accuracies compared to
the means of the other metrics are due to the imbalance of the class distribution. The two
classes of tumor and stroma were more frequently represented than the others (Table 1),
and the segmentation of these classes was performed much better than that of the under-
represented classes of mucus, necrosis and background. This is reflected in higher F1 scores
(Table 3) as well as in the confusion matrix (Figure 2). Class-specific recall, precision and
IoU values (Tables A2–A4) show a similar trend as the F1 scores.

Table 2. Results of pixel-wise evaluation on segmentation test set. All classes were weighted equally
in the averaging, regardless of how many pixels belong to that class.

Metric BPN (Tiling A) U-Net
(Tiling A) BPN (Tiling B) U-Net (Tiling B)

accuracy 0.856 ± 0.007 0.858 ± 0.004 0.865 ± 0.005 0.867 ± 0.004
precision 0.784 ± 0.009 0.785 ± 0.007 0.801 ± 0.003 0.795 ± 0.007

recall 0.748 ± 0.014 0.755 ± 0.003 0.751 ± 0.021 0.767 ± 0.003
IoU 0.629 ± 0.007 0.635 ± 0.004 0.637 ± 0.017 0.650 ± 0.003

F1 score 0.761 ± 0.011 0.766 ± 0.003 0.765 ± 0.016 0.777 ± 0.003
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Figure 2. Confusion matrix obtained with the BPN model on the segmentation test set applying
tiling B. The rows represent the ground truth class labels, and the columns represent the predictions.
Thereby, the rows of the matrix are each normalized to 100% based on the number of pixels of each
class in the test set.

A closer inspection of the confusion matrix (Figure 2) and the class-specific metrics
such as F1 score (Table 3) indicates that the worst performance was achieved for necrosis and
mucus. Mucus was frequently misclassified as stroma, background or necrosis, whereas
necrosis was often misclassified as tumor, stroma and background. The pixel-precise
distinction between background, mucus and necrosis was equally challenging during the
ground truth annotation in areas where these three classes were mixed together, since
transitions between these classes are vaguer than those between the other classes.

Table 3. F1 score for individual classes and for pixel-wise segmentation.

Class BPN (Tiling A) U-Net
(Tiling A) BPN (Tiling B) U-Net (Tiling B)

tumor 0.913 ± 0.006 0.916 ± 0.004 0.921 ± 0.004 0.923 ± 0.004
stroma 0.881 ± 0.012 0.883 ± 0.007 0.895 ± 0.007 0.894 ± 0.006

necrosis 0.634 ± 0.020 0.622 ± 0.008 0.655 ± 0.013 0.638 ± 0.009
mucus 0.663 ± 0.061 0.695 ± 0.020 0.638 ± 0.069 0.712 ± 0.019

background 0.715 ± 0.004 0.715 ± 0.004 0.718 ± 0.004 0.719 ± 0.005

overall 0.761 ± 0.011 0.766 ± 0.003 0.765 ± 0.016 0.777 ± 0.003

Examples of segmentation results obtained with the BPN approach and tiling B are
shown in Figure 3. The difficulty of separating background, necrosis and mucus is apparent
in the images of columns (a) and (b). Columns (c) and (d) demonstrate the ability for high-
quality segmentation results of both stroma and tumor with only minor missegmentation.
Column (e) shows an example of mucus misclassified as stroma.
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Figure 3. The first row shows original image regions, the second row shows the corresponding
hand-annotated ground truth, and the third row shows the segmentation results obtained with
the BPN approach and tiling B. Each image region has an approximate size of 440 µm × 440 µm.
Columns (a–e) show different image regions. Class labels are color-coded: blue (tumor), orange
(stroma), yellow (necrosis), magenta (mucus), white (background).

Comparing the BPN and U-Net approaches shows a slightly better performance of the
latter on the segmentation test set (Table 2). However, the advantage of using a few-shot
based method lies in its adaptability to new tasks or data distributions with no need for
additional training. We conducted a preliminary experiment, where we compared a BPN to
a fine-tuned U-Net in the task of gland segmentation, with only a handful of image patches
for either prototype calculation or fine-tuning. The BPN did not only perform better, but
its adaption consumed less computation time, since no model re-training was involved. It
only required calculation of new prototypes based on a few example annotations (Figure 1),
which can be completed in a couple of seconds.

3.2. Evaluation of TSR Assessment

Figure 4 shows all TSR estimations from all observers (Figure 4a)) as well as the AI-TSR
values obtained with the BPN and U-Net approach, together with senior observer values
(Figure 4b)) for all 30 ROIs of the survey dataset. Individual estimations for one particular
ROI can differ significantly between observers. Even the ROIs with the closest agreement of
estimates varied up to roughly 20 percentage points. Both the BPN and U-Net approaches
yielded almost identical TSR values. For ROIs with higher TSR values (starting at about
50%), they tended to estimate a lower TSR value compared to human observers.

The ICC between all observers was 0.673 (95% CI 0.54–0.80), showing moderate to
good agreement according to Koo et al. [38]. The beginner and junior group had ICC values
of 0.617 (95% CI 0.40–0.78) and 0.594 (95% CI 0.36–0.77), respectively, both showing poor
to good agreement. The senior group had an ICC of 0.788 (95% CI 0.61–0.89), showing
moderate to good agreement. The two most experienced observers (senior 2 and senior
3)—denoted as m.e. observers in the following—had an ICC of 0.87 (95% 0.75–0.94),
showing good to excellent agreement. Cohen’s kappa between them was 0.734, showing a
substantial agreement according to Landis and Koch [39].

This value is consistent with previously stated values: 0.578 for Geessink et al.
(2019) [8]; 0.68 for Roeke et al. [21]; 0.74 for Moorman et al. [19]; 0.83 for Smit et al. [11];
and 0.89 for Huijbers et al. [3]
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Figure 4. TSR estimations (y-axis) for each of the 30 ROIs from (a) human observers as well as
(b) senior observers, BPN and U-Net method. The ROI ID (x-axis) was assigned based on the average
TSR estimation of senior 2 and senior 3 (m.e. observers), which means the ROI with ID 1 has the lowest
TSR value in the m.e. observers estimates, and the ROI with ID 30 has the highest value. Individual
observers and both models are represented by different colors and shapes. A color represent either
one of three observer groups or the models. Shapes are used to differentiate between members of
single groups.

In order to assess the concordance of the AI-TSR and the observers’ TSR to compare
it to the concordance between observers, all pair-wise ICC values were calculated and
are given in the Appendix (Figures A3–A5) including the lower and upper bounds of
the 95% CI interval. The pairwise ICC between the BPN model and “senior 2” was 0.552
(95% CI 0.14–0.78) and that between the BPN model and “senior 3” was 0.520 (95% CI
0.16–0.75), showing moderate agreement, with a significant uncertainty witnessed by large
confidence intervals. “Senior 2” and “senior 3” are the two most experienced observers.
The confidence interval for the pair-wise ICC values between two observers, or between
observers and AIs, was high for most pairs, which is partly due to the fact that it is designed
to measure the agreement within a group of more than two observers. Nevertheless, the
ICC values between the observer and AI (BPN and U-Net) were lower than those between
individual observers (see Figures A3–A5). The reduced concordance between the observer
and AI was mainly caused by two ROIs with large deviations in TSR values between the
m.e. observers and AI of more than 50 percentage points (ROI ID 16 and 19 in Figure 4).
Therefore, these ROIs were additionally annotated manually (Figure 5) and are discussed
in detail later on.

Calculating the ICC without these two ROIs led to ICCs between the BPN model and
the two m.e. observers of 0.750 (95% CI 0.33–0.90) and 0.689 (95% CI 0.38–0.85), respectively.
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The Cohen’s kappa values (applying a cutoff of 50% to generate the categorized TSR)
between the BPN model and the two m.e. observers were 0.400 and 0.333, respectively,
showing only fair to moderate agreement. Using a cutoff of 65% yielded kappa values of
0.502 for both observers, showing moderate agreement. For a cutoff of 50%, our Cohen’s
kappa values are higher than those of Geessink et al. (2019) [8] with 0.239, but they are lower
than their value of 0.521 with a threshold of roughly 65% and 0.623 from Hong et al. [28].

In order to assess whether differences between observer TSR values and AI-TSR
values were due to inaccuracies of human estimation or incorrect segmentation results of
the AI-models, the results of the second survey were used. In this survey, two observers
rated the segmentation quality obtained using the BPN approach for all 30 ROIs. The
assumption was that the evaluation of the segmentation result might be conducted more
reliably than the area estimation of tumor and stroma components in an ROI. Figure 6
shows the deviation between AI-TSR values (BPN approach) and each of the two most
experienced observers plotted against the rated segmentation quality. Four categories
(A to D) can be distinguished. Category A comprises ROIs that show a low rating of
segmentation quality and a significant deviation between the AI-TSR and m.e. observers
TSR. The poor segmentation rating suggested that the AI-TSR was incorrect, and one would
lean toward the observer assessment. However, further investigations carried out later
showed that neither was correct in their assessment for ROIs of category A. Category B
comprises ROIs with a high rating of segmentation quality but a significant deviation to the
m.e. observers TSR of more than 20 percentage points. Considering the good segmentation
ratings, the AI-TSR was likely correct (or at least close), which in turn implies the observer
assessment was biased. All ROIs in category C have a small deviation between AI-TSR and
m.e. observers TSR values, and the segmentation quality rating is high enough to assume
the AI-TSR as well as the human estimations were correct. Finally, the ROI contained in
category D is characterized by a poor segmentation quality rating with only small deviation
in TSR values indicating that both human and AI-TSR values were error-prone.

Figures 4b and 6 show that the AI-TSR tends to be lower than the TSR estimation of
the m.e. observers (or all observers). Without the information provided by the second
survey, this might suggest a bias in the AI-based segmentation approach. Considering only
the 17 ROIs for which the segmentation quality was rated 9.0 or above by human observers,
the mean deviation between the TSR obtained by the BPN model and the m.e. observers is
−11.5 (“senior 2”) and −11.1 (“senior 3”) percentage points, respectively.

This perspective suggests a bias in human estimations, specifically an overestimation
of the TSR. A possible explanation is that the task of estimation of a TSR can be divided into
two subtasks: (1) recognizing tissue types and (2) estimating their ratio. Whereas survey
1 (“Comparison between Human Estimation and Automated TSR assessment”) includes
both subtasks, survey 2 (“Assessment of segmentation quality”) yields insights on subtask
1 alone. Cases where the segmentation quality was judged to be good, but the resulting
TSR deviate significantly, indicate that subtask 2—estimation of area ratios—was prone to
human error.

Figure 5. Manual annotation of tumor (blue) and stroma (orange) regions in two ROIs with the
highest deviation between m.e. observers (average of seniors 2 and 3) and AI-based TSR values.
Both ROIs belong to category A in Figure 6. From left to right: original ROI ID 19, ROI ID 19 with
annotation overlay, original ROI ID 16, original ROI ID 16 with annotation overlay.
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Figure 6. The differences between m.e. observers and automated TSR estimations (BPN) are plotted
against the rated segmentation quality for each ROI. There are roughly 4 categories into which the
results can be classified. Category A: poor segmentation quality rating and very high deviation
between AI-TSR and estimated TSR. Category B: good segmentation quality rating but high deviation
between AI-TSR and estimated TSR. Category C: good segmentation quality rating and minor
deviation between AI-TSR and estimated TSR. Category D: poor segmentation quality rating but
minor deviation between AI-TSR and estimated TSR.

Examples of segmentation results with different ratings and the corresponding original
ROIs are shown in Figure 7. The first example (a) had a poor segmentation quality of only
1.5, with a deviation in TSR of −57.3 and −67.3 percentage points to the m.e. observers,
respectively, and it shows a special subtype of colon cancer: a signet ring cell carcinoma. The
stroma, mostly on the bottom and left side of the image, is easily recognizable. However,
the BPN approach misinterpreted most signet ring cells as mucus. The massive deviation in
TSR estimation hence is to be expected, given that signet ring cells are present throughout
the mucus. The most likely reason for the missegmentation observed is that the signet
ring cell subtype, especially with tumor cells surrounded by mucus, was not present in the
training data. Therefore, the model had no way of learning the characteristics necessary
for an accurate segmentation. The second ROI (b) had a segmentation quality rating of
5.0 and a deviation in TSR of −57.0 and −52.0 percentage points, respectively. The BPN
approach detected only part of the tumor, misclassifying part of it as stroma. Both examples
are contained in category A of Figure 6. The deviations in TSR values between AI and
m.e. observers for the ROI in (c) (6.8 and 9.8 percentage points, respectively) and for the
ROI in (d) (−9.4 and −5.4 percentage points, respectively) were small while having high
segmentation quality (rated with 9.0 and 10.0, respectively). Both ROIs (c) and (d) are
examples of category C. The two ROIs in (e) and (f) show examples of category B. The ROI
in (e) had a segmentation quality rating of 9.0 but a deviation of −26.0 and −41.0 percentage
points, respectively. The last ROI (f) also had a rated segmentation quality of 9.0 with a
deviation of −32.8 and −18.8 percentage points, respectively. Especially the ROIs in (d) and
(e) show that with our approach, TSR values can be determined even for areas containing
necrosis and mucus.
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Figure 7. Original ROIs (first and third row) and the corresponding segmentation (BPN approach)
results (second and fourth row) as color-coded overlay. Sub-figures (a–f) show different ROIs. Each
ROI has a size of 2 mm × 2 mm. Class labels are color-coded: blue (tumor), orange (stroma), yellow
(necrosis), magenta (mucus), white (background). The mean segmentation quality assessed by two
observers for these ROIs is given below the corresponding segmentation results. The rating ranged
from 1 (insufficient) to 10 (excellent).

Finally, we had a closer look at the two ROIs with the highest deviation between
the m.e. observers TSR and the AI-TSR values. Both ROIs (ID 16 and ID 19) belong to
category A in Figure 6. Within these two ROIs, stroma and tumor tissue was manually
annotated (Figure 5), and a TSR value was calculated based on these manual annotations.
In Table 4, the various TSR values for these two ROIs are given. Assuming that the TSR
value derived from the manual annotations is the gold standard, TSR values obtained
by both human observers and the AI were compared to it. The respective deviations are
given in Table 5. The comparison showed that the TSR estimates of the human observers
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as well as the AI-TSR showed considerable deviations from the TSR value based on the
manual annotations.

Table 4. Comparison of TSR values for two ROIs with the highest deviation between m.e. observer
TSR (averaged over the two m.e. observers) and AI-based TSR. Additionally, the TSR (“Manual”)
was calculated based on manual annotation of tumor and stroma.

ROI ID Manual m.e. Observers BPN U-Net

16 47.6% 72.5% 18.0% 21.1%
19 41.8% 75.0% 12.7% 24.8%

Table 5. Deviation of different TSR values to the “manual” TSR value derived from the manual
annotations for two selected ROIs. The deviation is noted in percentage points.

ROI ID m.e. Observers BPN U-Net

16 24.9 pp −29.6 pp −26.5 pp
19 33.2 pp −29.1 pp −17.0 pp

4. Conclusions

In this work, we presented two AI-based approaches (BPN and U-Net) to segment
ROIs from H&E-stained colon sections into five classes (tumor, stroma, necrosis, mucus and
background). Both approaches achieved a high accuracy of 86.5% and 86.7%, respectively,
when evaluated pixel-wise on a test dataset. The tumor and stroma classes were particularly
well segmented (with F1 scores of 0.921 and 0.895 (BPN) and 0.923 and 0.894 (U-Net)),
whereas segmentation of the other classes showed some limitations. Although the U-Net
approach performed slightly better than the BPN approach, the BPN approach offers the
advantage of adaptability to new tasks. The capability of these approaches to determine a
reliable TSR score was investigated in detail on a second dataset consisting of 30 ROIs with
a size of 2 mm × 2 mm from 30 different WSIs.

In direct comparison to ten human observers, the AI-TSR values achieved a lower
agreement (ICC as well as Cohen’s kappa) with the TSR values of the most experienced
observers. However, a further investigation showed that a good agreement of the TSR
values between the human observers does not necessarily mean that these TSR values
also objectively reflect the area ratios of tumor and stroma fractions in the ROI under
consideration. An assessment of the quality of the segmentation results by two human
observers (ranging from 1 (insufficient) to 10 (excellent)) yielded a rating of at least 7 for
90% of the ROIs, and for 57%, it yielded even a rating of at least 9.

In conclusion, a major challenge in the development of automated TSR scoring ap-
proaches is the generation of a reliable ground truth for the validation of these approaches.
The creation of a pixel-precise ground truth is very time consuming, but TSR scores esti-
mated by human observers are subject to bias. In this context, the addition of a qualitative
assessment of the segmentation quality can be useful. Overall, the evaluation results
are promising, especially if the training data are further extended to include additional
subtypes such as signet ring cells.

Further future work will focus on (i) overcoming the limitation that the proposed BPN
model predicts the segmentation mask in a limited resolution, (ii) the evaluation of the
few-shot model’s adaptability to other segmentation tasks, and (iii) aiming toward an
autonomous system that does not require human interaction.
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Abbreviations

The following abbreviations are used in this manuscript:
AI artifical intelligence
BPN basic prototype network
CI confidence interval
CNN convolutional neural network
DAB diaminobenzidine
GAN generative adversarial network
H&E hematoxylin and eosin
ICC intraclass correlation
IoU intersection over union
m.e. most experienced
PANet prototype alignment network
ROI region of interest
SVM support vector machine
TMA tissue microarray
TME tumor microenvironment
TSR tumor–stroma ratio
WSI whole slide image

Appendix A. Additional Information for U-Net Structure

The number of filters for all convolutional layers in the expansive path is 48, 48, 32, 32,
24, 24, 16, 16, and 5.

Appendix B. Additional Information about the Surveys

The surveys were conducted online using LimeSurvey. All ROIs were available in
native resolution. An example view is depicted in Figure A1.
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Figure A1. Example view of the online survey.

Appendix C. Evaluation Metrics

The pixel-wise comparison of the ground truth labels with the corresponding predicted
labels results in a confusion matrix. According to the five classes that are considered, it has
five columns and five rows (Figure 2). To calculate evaluation metrics such as precision or
recall for a specific class, a two-class confusion matrix (Table A1) has to be derived from
the original five-class confusion matrix. For instance, if the metrics are to be calculated for
the tumor class, this class will be considered as the positive class, and all four other classes
will be summarized in the negative class. Afterwards, precision, recall and F1 score are
calculated as defined in Equations (A1)–(A3).

Table A1. Confusion matrix for a two-class setting with one positive class (P) and a negative class
(N). “True positives” (TP) are all instances of class P that are correctly predicted. “False negatives”
(FN) are all instances of class P that are incorrectly predicted to belong to class N. “False positives”
are all instances of class N that are incorrectly predicted to belong to class P. “True negatives” denotes
all instances of class N that are correctly predicted.

Predicted

P N

A
ct

ua
l P TP FN

N FP TN

precision =
TP

TP + FP
(A1)

recall =
TP

TP + FN
(A2)

F1 score =
2 ∗ precision ∗ recall

precision + recall
=

2TP
2TP + FP + FN

(A3)
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Appendix D. Additional Results of Pixel-Wise Evaluation on Segmentation Test Set

Table A2. Recall for individual classes for pixel-wise evaluation on segmentation test set.

Class BPN (Tiling A) U-Net
(Tiling A) BPN (Tiling B) U-Net (Tiling B)

tumor 0.914 ± 0.016 0.918 ± 0.011 0.925 ± 0.014 0.929 ± 0.009
stroma 0.897 ± 0.006 0.897 ± 0.005 0.910 ± 0.009 0.902 ± 0.004

necrosis 0.648 ± 0.034 0.655 ± 0.062 0.682 ± 0.027 0.678 ± 0.062
mucus 0.582 ± 0.100 0.618 ± 0.033 0.525 ± 0.115 0.634 ± 0.029

background 0.701 ± 0.014 0.689 ± 0.028 0.710 ± 0.012 0.693 ± 0.028

overall 0.748 ± 0.014 0.755 ± 0.003 0.751 ± 0.021 0.767 ± 0.003

Table A3. Precision for individual classes for pixel-wise evaluation on segmentation test set.

Class BPN (Tiling A) U-Net
(Tiling A) BPN (Tiling B) U-Net (Tiling B)

tumor 0.912 ± 0.006 0.914 ± 0.004 0.917 ± 0.006 0.918 ± 0.003
stroma 0.866 ± 0.021 0.870 ± 0.010 0.881 ± 0.020 0.886 ± 0.008

necrosis 0.620 ± 0.017 0.601 ± 0.046 0.631 ± 0.018 0.611 ± 0.044
mucus 0.792 ± 0.033 0.797 ± 0.010 0.848 ± 0.046 0.811 ± 0.011

background 0.731 ± 0.015 0.746 ± 0.026 0.727 ± 0.017 0.749 ± 0.025

overall 0.784 ± 0.009 0.785 ± 0.007 0.801 ± 0.003 0.795 ± 0.007

Table A4. Intersection over union for individual classes for pixel-wise evaluation on segmentation
test set.

Class BPN (Tiling A) U-Net
(Tiling A) BPN (Tiling B) U-Net (Tiling B)

tumor 0.788 ± 0.019 0.791 ± 0.010 0.810 ± 0.012 0.808 ± 0.010
stroma 0.840 ± 0.010 0.845 ± 0.007 0.854 ± 0.007 0.858 ± 0.006

necrosis 0.464 ± 0.021 0.452 ± 0.009 0.487 ± 0.014 0.469 ± 0.009
mucus 0.499 ± 0.066 0.533 ± 0.023 0.472 ± 0.076 0.553 ± 0.022

background 0.557 ± 0.005 0.557 ± 0.005 0.560 ± 0.005 0.562 ± 0.006

overall 0.629 ± 0.007 0.635 ± 0.004 0.637 ± 0.017 0.650 ± 0.003

Figure A2. Confusion matrix obtained with the U-Net model on the segmentation test set applying
tiling B. The rows represent the ground truth class labels, and the columns represent the predictions.
Due to high imbalances in the number of pixels per class, a relative representation of the confusion
matrix was chosen. Thereby, the rows of the matrix are each normalized to 100% based on the number
of pixels of each class in the test set.



Cancers 2023, 15, 2675 19 of 21

Appendix E. ICC Values for All Possible Pairs

Figure A3. ICC values for all possible pairs, including both observers and AI.

Figure A4. Lower value of 95% CI of ICC values for all possible pairs, including both observers
and AI.

Figure A5. Upper value of 95% CI of ICC values for all possible pairs, including both observers
and AI.
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