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Simple Summary: Worldwide gastrointestinal (GI) malignancies account for about 25% of the global
cancer incidence. For some malignancies, screening programs, such as routine colon cancer screenings,
have largely aided in the early diagnosis of those at risk. However, even after diagnosis, many GI
malignancies lack robust biomarkers to serve as definitive staging and prognostic tools to aid in
clinical decision-making. Radiomics uses high-throughput data to extract various features from
medical images with the potential to aid personalized precision medicine. Machine learning is a
technique for analyzing and predicting by learning from sample data, finding patterns in it, and
applying it to new data. We reviewed the fundamental concepts of radiomics such as imaging data
acquisition, lesion segmentation, feature design, and interpretation specific to GI cancer studies and
assessed the clinical applications of radiomics and machine learning in diagnosis, staging, evaluation
of tumor prognosis, and treatment response.

Abstract: Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become
a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical
workflow of cancers, standard evaluation of different imaging modalities may provide limited
information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress
in quantitative imaging analysis techniques resulted in ”radiomics”, a promising methodical tool
that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer
vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In
the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification,
and categorization of malignancies and to predict outcomes using various endpoints. In addition,
machine learning is a technique for analyzing and predicting by learning from sample data, finding
patterns in it, and applying it to new data. Machine learning has been increasingly applied in this
field, where it is being studied in image diagnosis. This review assesses the current landscape of
radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic,
neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from
data acquisition and curation to segmentation and feature extraction. Furthermore, the applications
of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according
to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations
of radiomics in abdominal cancers and investigate future opportunities.

Keywords: radiomics; machine learning; abdominal cancer; integrated multi-omics; precision oncology

1. Introduction

Worldwide gastrointestinal (GI) malignancies affect up to 4.8 million people per year,
accounting for about 25% of the global cancer incidence [1]. Despite a decline over the past
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several decades, gastric cancer is the second most common cause of cancer deaths in the
US alone [2]. For some malignancies, screening programs, such as routine colon cancer
screenings, have largely aided in the early diagnosis of those at risk [3]. However, some GI
malignancies do not have effective screening tests and are extremely difficult to discern in
the early phase, such as pancreatic cancer [4]. Furthermore, diagnosis of GI malignancies is
often invasive, requiring biopsy and pathologic analysis following surgical resection. Even
after diagnosis, many GI malignancies lack robust biomarkers to serve as definitive staging
and prognostic tools to aid in clinical decision-making [5].

As medical imaging advanced, so too has image interpretation, particularly computer-
assisted analysis. First pioneered by Philippe Lambin in 2012, radiomics uses high-
throughput data to extract various features from medical images with the potential to
aid personalized precision medicine [6]. With the evolution of artificial intelligence (AI),
this field has grown rapidly and is being widely used in oncology [7]. Machine learning
(ML), which is strictly associated with AI, is a general concept indicating the ability of a
machine in learning and, thus, improving patterns and models of analysis [8,9]. In oncology,
by extracting certain features from medical images and translating them into quantitative
data for analysis, radiomics provides a noninvasive and efficient method for diagnosis,
classification, and differentiation of lesions, tumor subtypes, and prognosis prediction in
patients undergoing treatment [10,11].

Here, we reviewed the fundamental concepts of radiomics, such as imaging data
acquisition, lesion segmentation, feature design, and interpretation specific to GI cancer
studies. We also assessed the clinical applications of radiomics and ML in diagnosis,
staging the evaluation of tumor prognosis and treatment response. Finally, we discussed
the current challenges and limitations of radiomic, and investigate their future applications
in GI cancers.

2. Methodology of Radiomics Extraction in Abdominal Cancer
2.1. Data Acquisition and Curation

Radiomics pipelines start with the acquisition of medical images. The most com-
monly used imaging modality is CT, followed by MRI and positron emission tomogra-
phy (PET) [12]. When acquiring data using CT, critical parameters such as variations of
Hounsfield Units (HU), density, contrast resolution, and pitch are all critical factors. The
signal intensity of CT imaging allows for a direct correlation with tissue density. Slice thick-
ness is also an important parameter; the thickness of each image affects photon statistics
and, potentially, kilovoltage peak [13]. For most GI stromal tumors, CT imaging has been
used for radiomic feature extraction, with images being acquired in the venous (50%) and
arterial phases (40%) for analysis. Limitations of CT imaging for radiomic feature extraction
mainly include reproducibility [14]. PET is another imaging modality that is commonly
used in the workup of GI cancers. Similar to CT, the voxels in PET scans have quantita-
tive properties. Challenges with PET arise in the standardization of PET protocols across
and even within institutions. Inherent issues with PET protocols arise given the nature
of imaging acquisition, as a multitude of factors can include the standard uptake value.
These may be physiologic, including patient motion, inflammation, or blood glucose levels.
They may also be technical, including differences in calibration threshold, synchronization,
injection time, and method of delivery [15]. Specific to GI cancers, data acquisition may be
limited by radiopharmaceuticals used for certain GI cancers (e.g., DOTATOC for NETs),
in addition to the percentage threshold of the maximum standard uptake value used to
delineate the tumor of interest [16]. Figure 1 demonstrates the flowchart of the application
of AI in radiology for GI cancers [17,18].

Compared with CT and PET, the voxel values from MRI have limited quantitative
value, as they are influenced by a variety of intrinsic and extrinsic elements. As for MRI, in
a seminal paper from Buch et al., the group demonstrates great variety in texture features
when different MRI acquisitions were analyzed [19]. One group of GI cancers primarily
assessed with MRI is rectal cancer; the gold standard for local staging is completed using
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MRI, particularly high-spatial-resolution T2-weighted (T2W) imaging, as it demonstrates
critical anatomic landmarks of relevant structures. Acquisition parameters specifically
relevant for MRI-trained radiomic algorithms include the scanner type, field-of-view,
repetition time, inversion time, echo train length, number of signals averaged, and the
spacing of pixels [20,21].
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The information mined from the images contributes to a large pool of data that can
include disease outcomes, treatment time points, pathology information, genomic data, or
other clinical features which are used to create descriptive and predictive models in clinical
patient care. Taking into consideration the impact of inconsistent imaging acquisition
protocols and reconstruction methods across imaging centers and different manufacturers,
imaging data need to be preprocessed [22]. Commonly used procedures include resampling
and intensity normalization. Image resampling is applied for image quality improvement
and eliminates imaging resolution non-uniformity. The normalization of image intensity
improves the intensity variations between the subjects by transforming all images from
their original greyscale into a standard greyscale. In a previous study, liver signal intensity
was normalized depending on the spleen signal intensity on hepatobiliary phase images
and demonstrated better diagnostic value when compared with non-normalized data [23].

2.2. Segmentation

Segmentation of the region of interest (ROI) (2D) or of the volume of interest (VOI) (3D)
is the next step in the radiomics analysis process. This step delineates the image compo-
nents to be included in the analysis and used in the model. Segmentation can be divided
into manual, semiautomatic, and automatic processes. Radiologists performed manual
segmentation to annotate the location and precise lesion margin in most radiomics stud-
ies [24,25]. Another method of manual segmentation occurs by placing a rectangular/circle
box via deep learning (DL) analysis. Considering the possible intra-reader variability and
subjective judgement in manual segmentation, segmentations by multiple clinicians, at
different time points, are required to decrease the intra- and inter-reader variability.
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Automated image segmentation, though still in its infancy, is currently being explored
as a promising method to segment thousands of images with low error; however, many
algorithms are not yet fully generalizable [26]. In automatic segmentation, ROI annotation
is done using ML, whereas semiautomatic segmentation still requires partial manual
intervention before automatic segmentation can take place [9]. A study by Men et al.
showed that fully automated systems, such as a deep dilated convoluted neural network
(CNN) based model, may provide even better reproducibility performance compared
with U-Net methods in patients with rectal cancer [27]. The three categories of classic
segmentation algorithms are based on: (a) intensity thresholds and regions (global/local
thresholding, region growing and splitting, merging methods), (b) a statistical approach
(parametric mapping and maximization segmentation algorithms) as well as clustering
(k-means and fuzzy clustering) and deformable model approaches, and (c) an Artificial
Neural Network and Atlas Guided Approach [28].

Segmentation algorithms may depend on the clinical endpoint of interest. For exam-
ple, within gastric cancers, prediction of histological grade or tumor grading may require
segmentation of entire tumors before surgery on arterial and portal imaging phases or on
apparent diffusion coefficient maps, whereas segmentation for the purpose of predicting the
outcomes of surgical resection may rely on volumetric segmentations [29,30]. Reproducibil-
ity and robustness are critical aspects of ROI segmentation in radiomics and are assessed
through the calculation of intra-class correlation coefficients and concordance correlation
coefficients. While inter-viewer and intra-viewer variability have been studied in the seg-
mentation of other cancers, such as brain and lung cancer, it is of great current interest
for GI cancers [12,31]. Wong et al. recently assessed interobserver and interdisciplinary
(radiation oncology vs. radiology) agreement for tumor volumes in pancreatic cancer. They
concluded that there were large variations of intraclass correlation coefficients within both
groups, with radiation oncology having slightly higher stability in feature detection [32]. In
gastric cancers, delta radiomic models using semi-automated segmentation DL algorithms
have also been utilized to predict the response to chemotherapy for patients with advanced
gastric cancer; notably, a semi-automatic segmentation method using a V-net CNN DL
algorithm outperformed manual segmentation in reproducibility [33,34].

2.3. Feature Extraction

After the ROI is delineated, image characteristics are extracted. Manual engineered
(shape/histogram/texture-based) and DL features are the two main types of radiomic
features. Shape-based features describe the geometric attributes of the ROIs. Histogram
features capture the first-order statistical characteristics of the organ or the lesion. Textural
features, extracted from a series of high-order textural matrixes, outline the granular pattern
of the ROIs [35,36]. Table 1 provides a broad overview of texture or radiomic features.

Table 1. Summary of quantitative features used in radiomics workflow.

First Order Description

Energy Magnitude of voxel values; also referred to as
angular second moment or uniformity

Entropy Randomness in image values

Skew Quantifies asymmetry of distribution of a certain value

Kurtosis Measures the “tailedness” of values relative to the mean

Variance The squared deviation of a value

Uniformity Sum of the squares of intensity values
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Table 1. Cont.

First Order Description

Shape Features

3D

Volume
Mesh
Voxel

Can be calculated either using a mesh or without a mesh

Surface Area Quantifies space surrounding the outside of region of interest

Sphericity Assesses how similar the region of interest is to a sphere

Diameter The Euclidean distance between two points in the region of interest,
taking the shape mesh into account

Axis length Distance between two points in the region of interest,
regardless of the shape mesh

Elongation Quantifies the length of the first two largest principal axes

Flatness Quantifies the length of the largest and smallest principal axes

2D

Area Quantifies the space within a two dimensional region of interest

Perimeter Quantifies the borders surrounding a two dimensional region of interest

Sphericity Measures the similarity to a circle

Axis length Distance between two points in the region of interest

Elongation Quantifies the length of the first two largest principal axes

Higher-order texture statistics

Gray level co-occurrence matrix (GLCM) Quantifies pairs of pixels with certain gray level values

Gray level run length matrix (GLRL) Quantifies the length of pixels within the same gray value,
in 2 to 3 dimensions

Neighborhood gray tone difference matrix (NGTDM) Quantifies the relationship between a pixel with
surrounding gray level values

Filtering

Spatial filtering Based on neighborhood functions within the original image
(examples: Gaussian, Laplacian, etc.)

Multi-resolution filtering Based on variations in gray level differences within a region

Fourier transformations Operation that converts a time/spatial signal to a frequency domain signal

Shindo et al. used histogram analysis in a diffusion-weighted imaging (DW) MRI to
differentiate pancreatic adenocarcinoma from neuroendocrine malignancies by assessing
b-values; they demonstrated that the histologic entropy, skewness, and kurtosis of ADC
values were higher in adenocarcinomas [37]. Rectal cancers, commonly diagnosed by
MR, have also been assessed in a similar fashion; several recent studies have shown data
extracted from DWI and T2W sequences may be useful in response to chemoradiother-
apy [38,39]. In one notable radiomics study on a series of rectal cancer patients, data from
MRI scans were extracted for tumor intensities, textual features based on heterogeneity
within the segmented tumor, and textual features based on wavelet decompositions [40].
Indeed, automated segmentation, particularly using deep learning, has been emphasized
as a key method for improving reproducibility and performance in addition to superiority
in speed and time [41–43].

The DL network extracts supplementary high-dimensional features and encodes
medical images into shape abstract textural information via shallow and deep layers,
respectively. Wang et al. suggested a novel CNN-based method to extract DL features from



Cancers 2023, 15, 63 6 of 19

MRI automatically. They reported that DL features performed superior to textural features
in predicting malignancy in hepatic lesions [44].

3. Radiomics and Machine Learning in Diagnosis and Staging of GI Cancer
3.1. Gastric (Stomach) Cancer

Gastric cancer, often diagnosed at an advanced stage, has a poor prognosis and is often
resistant to therapy [45]. Gastric cancer is characterized by substantial heterogeneity, which
increases the chance of tumor relapse even after chemotherapy (CTx). Most of the radiomics
studies on gastric cancer are focused on prognosis and therapeutic response. However, we
found one study that focused on differential diagnosis. Gastric cancer can mimic other
gastrointestinal tumors with remarkably different management and therapy—these include
primary gastric lymphoma and stromal tumors [46]. It is difficult to differentiate these
tumors based on imaging characteristics, and a biopsy is usually required. Radiomics
analysis has shown promise in differentiating these tumors based on textural features.
Ba-Ssalamach et al. used texture analysis from CT scans to differentiate gastric cancer from
gastric lymphoma with a misclassification rate of only 3.1% [46].

3.2. Colorectal Cancer

The gold standard imaging modality for local staging and restaging after treatment is
an MRI, which can detect high-risk prognostic factors in colorectal cancer (CRC). Computed
tomography has been long-established to detect distant metastases [47]. However, CRC
characterizations remain measurable only—after surgery and histopathology assessment.
AI, radiomics, and ML are promising techniques that could further enhance the value
of medical imaging in this cancer, allowing the design and implementation of decision-
support tools based on quantitative data [7]. Hong et al. showed that a combined model
based on pre-operative CT radiomics and CT staging significantly outperformed the CT
staging-only model in detecting high-risk colon tumors [48]. In a study performed on
502 patients with CRC, the radiomics model based on portal-phase CT images achieved
substantial diagnostic performance with 84% accuracy and an area under the curve (AUC;
a two-dimensional area which has been calculated by using the integration formula) of 0.94
for differentiating hepatic lesions [49]. Moreover, radiomics provides a deep characteriza-
tion of tumor phenotypes regarding the underlying pathophysiology or genetic changes
by converting medical images into structural information and mineable data. CT-based
radiomics has predicted the mutation status in patients with CRC and in lung adenocarci-
noma patients for KRAS/BRAF and EGFR, respectively [50,51]. Several studies have shown
that the combination of clinical and radiomics models achieved good performance in the
prediction of MSI status in CRC patients [52–54]. A radiomics nomogram incorporating
radiomics signatures and clinical indicators achieved an AUC of 0.77 when predicting the
microsatellite instability (MSI) status [55]. In a recent study, Ying et al. reported that the
combined model based on pre-operative CT radiomic features and clinical variables had an
AUC of 0.90 in predicting the MSI status of patients with CRC [52].

Rectal cancer can be diagnosed with MRI, which can help identify patients who are
suitable for chemoradiotherapy and surgery, in addition to looking at vascular invasion
and spread to the mesorectal fascia [21]. Locally advanced rectal cancer (LARC) is most
commonly studied; several studies have demonstrated value in utilizing T2-weighted
sequences for the diagnosis of rectal cancer [56,57]. Additionally, assessment of radiomic
features may also aid in the staging of rectal cancer; using 119 rectal cancer patients, Sun
et al. created a model of MRI-derived characteristics that identified T stage with an AUC
of 0.852 [58]. Lymph node analysis, allowing for N staging, has also been explored using
MRI imaging. Some groups have been able to achieve algorithms to discriminate N0
from N1–2 patients with moderately strong sensitivities and specificities, in addition to
predicting nodal pathology following neoadjuvant chemotherapy (nCRT) [57,59].
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3.3. Pancreatic Cancer and Neuroendocrine Tumors

Pancreatic cancer is an insidious cancer that results in high rates of mortality, likely
because early presentations are particularly difficult to detect on imaging [60]. Surgical
resection is the only definitive treatment for pancreatic cancer. The most common subtype
of pancreatic cancer, pancreatic adenocarcinoma, arises from pancreatic exocrine glands and
accounts for more than 80% of pancreatic tumors. Most pancreatic cancers present in the
head of the pancreas (60–75%) which affects symptomatology and surgical resectability [61].
In addition, it is still debated to what extent surgical resectability is predicted by other
markers [62,63]. Notably, less than 20% of patients have resectable cancers at the time of
diagnosis [64]. After surgical resection, it is usually necessary for patients to complete
extensive neoadjuvant and adjuvant chemotherapy and radiotherapy (e.g., stereotactic
body radiation therapy) to prevent a recurrence. Even in these cases, due to the changing
tumor microenvironment, it is incredibly difficult to predict outcomes [65]. Similarly, the
incidence of neuroendocrine tumors has paralleled advances made in imaging; over the
past several decades, incidentally, the number of discovered pancreatic neuroendocrine
tumors has increased, with the increased detection of tumors < 2 cm [66,67]. The first-line
therapy for pancreatic neuroendocrine tumors is still surgery, although there are myriad
therapies depending on various biomarkers and tumor grades. Preoperative appraisal
of tumor grade has been demonstrated to be achievable with AUCs ranging from 0.7–0.9
using radiomic analyses [68].

Radiomics has been explored as a method to diagnose and stage pancreatic cancer.
Given that occult pancreatic cancer is often not discernable on imaging until much later
in the disease process, detection of lesions is not visible to the human eye, though ad-
vanced imaging and computational analysis techniques may facilitate earlier diagnosis
and management. In a Taiwanese population, Chen and Chang et al. used an ML model
using contrast-enhanced portal venous CT images to detect small (<2 cm) pancreatic ductal
adenocarcinomas. In this cohort, the authors demonstrated sensitivities of 94.7% and 80.6%
when used on Taiwanese and U.S. patient data sets [69]. Staging pancreatic cancer is also
clinically challenging, but it is important in determining surgical candidates and adjuvant
and neoadjuvant treatment regimens [70]. Various groups have created models to stage
pancreatic cancer with varying degrees of accuracy [71,72]. A study conducted by An et al.
utilized ML to predict lymph node metastasis for pancreatic adenocarcinoma. The Resnet
18 convolutional neural network was used to classify tumors into lymph nodes, positive
or negative. A clinical model was created as well as the DL model. The AUC for the DL
models outperformed the clinical model [73].

3.4. Liver Cancer

Radiomics enables non-invasive differentiation of focal liver lesions, the most common
primary hepatic malignancy being HCC but also including hemangioma and metastases.
CT is the most useful for imaging and grading liver cancer, specifically HCC. The pre-
contrast and portal phase CT have been shown to be effective at differentiating HCC
and non-HCC [74,75]. Radiomics signatures based on T2W-derived texture features of
focal hepatic lesions can help classify hepatic hemangioma, hepatic metastases, and HCC
with good diagnostic performances (AUC: 0.83–0.91) [76]. A previous study reported that
primary liver tumors could be differentiated from metastatic lesions with an accuracy of
83% using 3D CNN features extracted from DWI images [77]. Lastly, ultrasound image
analysis can also classify benign and malignant focal liver lesions (AUC: 0.94) and malignant
subtyping (AUC: 0.97) [78].

3.5. GI Stromal Tumors

GI stromal tumors (GIST) are another subset of GI tumors that have been at the
forefront of radiomics interest. Traditionally, predicting the behavior of GI stromal tumors
on imaging is difficult, as they are often (1) indiscernible in the early stages and (2) when
seen in imaging, they have already metastasized to distant locations [61]. Some models have
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assessed the ability to differentiate GISTs from non-GISTs to a good extent (AUC = 0.77), in
addition to differentiating GISTs from other gastric cancers, such as adenocarcinomas and
lymphomas [46,61,79]. Staging of GISTs is also of great interest; risk stratification using
radiomic data may aid in discerning those amenable to surgery and preoperative risk [39].

4. Radiomics and Machine Learning in Prognosis and Treatment Response Prediction
4.1. Gastric Cancer

Gastric cancer recurs after nCRT in up to 30–40% of patients within 5 years [80,81].
Given this frequent recurrence, there is growing interest in predicting and monitoring
treatment efficacy. A recent study by Cui et al. developed a radiomics nomogram that
demonstrated satisfactory performance in predicting prognosis and response to nCRT, with
an AUC of 0.829 and 0.827 in the training and validation cohorts [45]. Wang et al. applied
a radiomics model to extract diagnostically relevant RFs to predict patients’ response to
nCRT at the time of diagnosis [82]. Another study by Shin et al. successfully predicted the
prognosis of recurrence-free survival using only pre-operative CT scans [83].

Vascular invasion holds an unfavorable prognosis in gastric cancer. Unfortunately,
there are no reliable methods for the preoperative assessment of vascular invasion. Yang et al.
developed and validated PET-CT-based radiomics signatures for predicting vascular inva-
sion preoperatively. This study, and others assessing the efficacy of radiomics approaches
in other types of cancer, suggests that PET/CT-based radiomics analysis might serve as
a valuable tool for predicting vascular invasion and lymph node involvement in patients
with gastric cancer [84,85].

Lastly, due to late diagnosis, gastric cancer is often metastasized, particularly in the
peritoneal cavity, at the time of detection [86]. Thus, assessing peritoneal involvement
early and accurately is critical for determining prognosis and optimal therapy. PET/CT
is the main method for detecting peritoneal involvement. Xue et al. applied a radiomics
model to predict peritoneal involvement based on PET imaging (AUC = 0.86 and 0.87
in training and validation cohorts, respectively) [87]. Dong et al. developed a model to
identify peritoneal metastasis in patients in a multicenter cohort, demonstrating an AUC of
0.947, 0.928, and 0.920 in the three validation cohorts [88].

4.2. Colorectal Cancer
4.2.1. Evaluation of Tumor Vascular Invasion

A combined model, including MRI-based EMVI status and a radiomics score for
the lymphovascular invasion (LVI)/perineural invasion (PNI) estimation in patients with
CRC, showed significant predictive power. CT may also play a role and has been shown
to predict LVI and PNI in rectal cancer [89]. Imaging features, such as pre- and early
post-treatment MRI parameters assessing sphincter involvement and extramural vascular
invasion (EMVI), have been shown to be associated with patient outcomes [90,91]. In rectal
cancer, radiomic features extracted from a whole-tumor volume on T2W images have been
shown to outperform the combination of T2 and DWI in evaluating complete response
(CR) [92].

4.2.2. Prediction of Treatment Efficacy and Prognosis

CT may be used to classify treatment response and prognosis to varying degrees. GR
has been predicted using both contrast and non-contrast-enhanced CTs. A study that used
CT-based radiomics for the prediction of CR demonstrated that, while incorporating the
same initial features, an SVM model outperformed the deep neural network [34]. Multi-
modal models have also been used: PET/MRI and CT/MRI. The PET/MRI model perfor-
mance was similar to the PET model but yielded better performance than the MRI-only
model [93]. The CT/MRI outperformed the CT-only (AUC 0.91 vs. AUC 0.78, respectively)
but was comparable with the performance of individual MRI sequences. In addition to
treatment response, prognosis has been assessed. On MRI, multiple histograms, GLCM,
and gray level run length matrix (GLRLM) features were correlated with disease-free
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survival [94,95]. CT has also been utilized; in a study by Dai et al., radiomics signatures
were developed to predict recurrence-free and overall survival [96]. Some studies reported
heterogeneous primary tumors (i.e., higher entropy and lower uniformity) are correlated
with better OS, while other studies showed more homogeneous tumors are associated with
improved disease-free or progression-free survival [5,97].

MRI is another modality to predict treatment efficacy and prognosis. Contrast-
enhanced MRI may be more predictive than non-contrast MRI. The most frequently used
modalities in radiomic studies that focus on response prediction of the primary tumor
were T2W and DWI MRI [98]. Studies using ML classifiers, such as a support vector ma-
chine (SVM), random forest, and naive Bayesian network, resulted in promising results
to predict pathological CR (AUC 0.71–0.87) [99,100]. MRI-based radiomics derived from
T1W images of rectal cancer yielded moderate results to predict the pathological good
response (GR), with an Ada boost classifier-based model outperforming a logistic regres-
sion model [101,102]. DWI-based imaging biomarkers have also been evaluated, including
ADC, histogram features, and gray-level co-occurrence matrix (GLCM). These studies have
demonstrated heterogeneity in predictability and usefulness for prognosticating CR and
GR. Several studies have also combined multisequence models, which have outperformed
classifiers for response prediction [5,103–107]. The field of radiomics applied to rectal
cancer has mostly emphasized treatment after therapy, predominantly assessing locally
advanced rectal cancer using T2w MRI and diffusion-weight MRI [108]. The study by
Giraud et al. examined 2-year disease recurrence of anal squamous cell carcinoma using
logistic regression. The mixed radiomic and clinical model outperformed the clinical model
in the testing cohort, with an AUC of 0.898 compared with an AUC of 0.714 [109].

4.2.3. CRC Metastases

CT-based radiomics may predict a response to CTx in colorectal liver metastasis
(CRLM). Several studies have revealed that the predictive value of radiomics features is
dependent on treatment, including whether patients received monoclonal antibodies [35,94].
Using MRI, Shi et al. reported higher histogram variance and lower GLCM uniformity on
T2W images in responsive tumors [110]. Survival has also been assessed to varying degrees.
Some studies have reported an association between OS and the AUC of the cumulative
standard uptake value-volume histogram using 18F-FDG-PET/CT [111–113]. Simpson
et al. found a lower texture signal was correlated with better OS of patients after hepatic
surgery [114].

4.3. Pancreatic Cancer and Neuroendocrine Tumors

The prognosis of pancreatic cancer remains poor overall, with a five-year survival
rate ranging from 5% to 15% [115]. The only definitive option is surgical resection, al-
though only 20% of pancreatic cancers are amenable to resection by the time they are
diagnosed [115]. Immunotherapies are also being increasingly explored, but this requires
a detailed understanding of the tumor’s microenvironment and the ability to identify
biomarkers such as PD-L1 expression, tumor-infiltrating lymphocytes, various genetic
mutations, and immune checkpoints [116]. Although it is just in its infancy, radiomics
may provide the ability to assist in the prognosis of pancreatic cancer. Various models
have explored the ability to prognosticate in patients with pancreatic adenocarcinoma; this
cancer proves more challenging to prognosticate using classic methods given its inher-
ently poor prognosis [117,118]. Zhang et al. demonstrated a CNN-based approach can
outperform conventional cox proportional hazard modeling in predicting survival patterns,
although this method is still limited by relatively small sample sizes [118]. Using FDG-PET
radiomics, another group created a model using a gray-level zone matrix and gray-level
non-uniformity predictors to successfully stratify patients into three groups of poor prog-
noses [119]. Treatment response may also be determined by biomarkers, possibly predicted
using radiomics or radiogenomics, which would allow for non-invasive and inexpensive
surveillance. In one model, the authors demonstrate the AUC for radiogenomics-predicted
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p53 mutations to be 0.795, and that radiogenomic-predicted p53 mutations were associated
with poor prognosis [120]. Numerous studies utilized radiomics to determine the prognosis
and treatment response prediction in pancreatic adenocarcinoma [121–125]. The study
by Nasief et al. utilized a Bayesian regularization backpropagation neural network to
classify lesions into a good and poor response to treatment with an AUC of 0.92 [124]. The
study by Mukherjee et al. looked at four ML models to classify lesions into normal or
pre-diagnostic for pancreatic adenocarcinoma before a clinical diagnosis was made. These
models included SVM, Random Forest, KNN, and XGBoost. SVM had an AUC of 0.98,
Random Forests had an AUC of 0.95, KNN had an AUC of 0.95, and XGBoost had an AUC
of 0.96. For reference, the radiologists who reviewed the images had an AUC of 0.66 [125].

For neuroendocrine tumors, predicting outcomes has proved more challenging given
inherently smaller sample sizes [68,126]. Analysis of FDG PET/CT and Ga-DOTATOC have
been used to predict angioinvasion, metastases, and tumor aggressiveness [127–129]. Few
studies have demonstrated moderate performance using tumor heterogeneity to predict
peptide receptor radionuclide therapy (PRRT) [130,131].

4.4. Liver Cancer
4.4.1. Tumor Differentiation and Proliferation Measurements

After surgery, one of the risk factors of recurrent HCC with the highest importance
is the histologic grade of the tumor [132]. Two recent studies investigated the potential of
MRI-based radiomics as indicative biomarkers for HCC grade and aggressiveness charac-
terization. They have shown the potential of radiomics [133,134]. In a recent prospective
study, the tumor Ki-67 level could be assessed with good accuracy using pre-operative
radiomics analysis [135].

4.4.2. Evaluation of Tumor Vascular Invasion

It is critically important to detect microvascular invasion in HCC and differentiate
neoplastic and bland portal vein thrombosis preoperatively [136,137]. It has been previously
reported that the mean value of positive pixels and entropy can characterize portal vein
thrombosis [138]. Recent studies have shown good diagnostic accuracy can be achieved
using radiomic features extracted from CT for the prediction of microvascular invasion
prior to surgery [139,140].

4.4.3. Prediction of Treatment Efficacy and Prognosis

Previous studies have achieved an accurate prediction of prognosis and various therapy
assessments by radiomics analysis [141,142]. Multiple studies performed liver resection
evaluation, and one study was conducted for the assessment of liver transplantation [143–148].
Suh et al. reported that CT texture analysis can be helpful for prognosis prediction and
effective treatment selection between transcatheter arterial chemoembolization and hepatic
resection [149]. For HCC patients with prominent vascular invasion or extrahepatic spread,
systematic treatment is the standard of care recommended by current guidelines [142,150].
A multicenter large study on advanced HCC revealed that entropy extracted from contrast-
enhanced CT was associated with tumor heterogeneity, and entropy on portal venous phase
images was an independent predictor for OS [151]. Emerging evidence from a retrospective
multicohort study showed promising results in predicting immunotherapy response by
combining CT-based radiomics and genomic data [152].

4.4.4. Intrahepatic Cholangiocarcinoma (ICC)

Intrahepatic cholangiocarcinoma is an aggressive primary liver cancer originating
from the bile duct epithelium; the only definitive cure is surgical resection [153]. Recent
evidence revealed that early ICC recurrence after partial hepatectomy can be predicted with
an AUC of 0.77 using radiomics on preoperative arterial-phase MR images [154]. Radiomics
signature from portal venous phase CT has been shown to be predictive of lymph node
metastasis in biliary tract cancers (AUC: 0.80) [155].
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4.4.5. Metastatic Hepatic Malignancies

A study by Lubner et al. showed that tumor grade, mutation status and overall
survival were significantly associated with CT-derived texture features of CRLM prior to
initiation of the treatment [156]. Another study by Beckers et al. found that the proportion
between the lesion texture and the surrounding liver may reflect tumor aggressiveness,
chemotherapy response, and OS [157]. Although, it has been reported that radiomics from
liver parenchyma on portal venous phase CT cannot be used to predict the development
of hepatic metastasis in patients with CRC [158]. In addition to colorectal cancer, CT
texture features of esophagogastric liver metastases can help predict response to chemother-
apy [159].

4.5. GI Stromal Tumors

Similarly, there is also interest in using radiomics to predict molecular or genetic
features in order to aid with biologically targeted therapies for GISTs, although this too
remains in infancy [79]. In terms of treatment for GISTs, various studies have employed tex-
ture analysis of CT to predict the preoperative outcomes of GISTs [160,161]. Radiogenomics
is also being employed to assess Ki67, a tumor proliferative marker, as a prognostic in-
dicator [162]. Lastly, rectal cancer will also benefit from radiomics-predicted treatment
and prognostication. The current standard of care relies on imaging; although, given a
heterogeneous patient population, personalized treatment schemes are difficult to achieve
on standard imaging review.

Previous studies utilized radiomics in determining the prognosis and treatment re-
sponse prediction in GI stromal tissues and anal squamous cell carcinoma. The study by
Wang et al. examined the performance of various machine learning models for classifying
gastrointestinal stromal tumors (GISTs) into high or low malignant potential [163]. Similar
to the study conducted by Mukherjee et al., this paper used SVM, Random Forests and
logistic regression. Random forests had the best performance with an AUC of 0.9, SVM
yielded an AUC of 0.8, and logistic regression resulted in an AUC of 0.85. In the study
conducted by Chen et al., a radiomics nomogram was created which also incorporated sub-
jective CT findings and clinical indexes. These features were inputted into an SVM model
which outperformed the traditional radiomics model with an AUC of 0.867 compared with
an AUC of 0.858 [164].

5. Future Challenges and Opportunities

Despite considerable progress, there remain some challenges in the application of
radiomics to GI malignancies. First, any AI or ML tool is only as strong as the training
data provided. Predictive performance for automated tools remains limited by the lack of
optimal thresholds necessary to balance sensitivity and specificity during data acquisition
and curation [165,166]. Similarly, given that patient data is highly heterogenous due to
age, sex, race, and demographics, future algorithm and machine learning technologies
must account for such variations [167]. Furthermore, automated detection can still result in
high rates of false positives. Conversely, radiomics holds the potential to aid in potential
overdiagnosis when used in conjunction with other clinical tools [168–170]. It has been
challenging to reach Dice similarity coefficients > mid 80% for segmentation accuracy using
machine learning. Lastly, even the best machine learning systems do not yet perform at the
level of a radiologist, and it is apparent there is room for more advancement. Testing the
robustness of radiomics tools with prospective and retrospective real-life populations will
be paramount to integrating such tools into clinical practice.

6. Conclusions

Radiomics as an emerging quantitative technique is growing rapidly in GI cancer
management with consistently evolving methodology. The potential in diagnosis, treatment
assessment and prognosis prediction in several GI cancers have been previously discussed
despite the retrospective nature and single-modality basis of most of the studies. Therefore,



Cancers 2023, 15, 63 12 of 19

further multicenter and prospective validation is still required to validate its clinical utility.
The current main obstacles for the application of radiomics in cancer diseases consist of
limited high-quality data collection and a lack of biological mechanistic explanation. Data
sharing and collaborations on data cleaning and labelling across institutions may fill this
gap. To facilitate broader translation and clinical adoption, more accurate and interpretable
artificial intelligence algorithms need to be developed.
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