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Simple Summary: Acute myeloid leukemia (AML) is a blood cancer caused by genetic aberrations
acquired by bone marrow progenitor cells, impeding healthy hematopoiesis. While AML is a
heterogenous disease and variable parameters can impact AML prognosis, the options for treatments
remain limited. The first line of treatment continues to be chemotherapy, usually followed by
a hematopoietic stem cell transplant (HSCT) obtained from a compatible healthy donor. Of those
transplanted patients, only about 50–60% will be long-term survivors. Consequently, the identification
of markers that may predict the resulting HSCT outcome is a medical need. To address this issue,
we applied different mathematical models at diagnosis to the transcriptome of AML patients who
were treated with standard chemotherapy and then subjected to HSCT, in order to uncover genes
associated with the clinical outcome post-transplant. By doing so we identified the ME1 gene,
whereby high expression of ME1 was associated with worse prognosis. Furthermore, ME1 expression
was correlated with energetic processes related to oxidative phosphorylation. Our study reveals that
ME1 is an important biomarker and a potential therapeutic target.

Abstract: Several laboratory and clinical variables have been reported to be associated with the out-
come of intensive chemotherapy for acute myeloid leukemia (AML), but only a few have been tested
in the context of hematopoietic stem cell transplant (HSCT). This study aimed to identify genes whose
expression of AML at diagnosis were associated with survival after HSCT. For this purpose, three pub-
licly available adult AML cohorts (TCGA, BeatAML, and HOVON), whose patients were treated with
intensive chemotherapy and then subjected to allogeneic or autologous HSCT, were included in this
study. After whole transcriptome analysis, we identified ME1 as the only gene whose high expression
was associated with shorter survival in patients subjected to HSCT. In addition, the inclusion of ME1
expression was able to improve the European LeukemiaNet risk stratification. Pathways related to
lipid biosynthesis, mainly fatty acids, and cholesterol were positively correlated with ME1 expression.
Furthermore, ME1 expression was associated with an M2 macrophage-enriched microenvironment,
mature AML blasts hierarchy, and oxidative phosphorylation metabolism. Therefore, ME1 expression
can be used as biomarker of poor response to HSCT in AML.
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1. Introduction

Allogeneic (allo-HSCT) and autologous (auto-HSCT) hematopoietic stem cell trans-
plantation (HSCT) are potential curative treatments for acute myeloid leukemia (AML) [1,2].
The most used transplant in AML is allogeneic HSCT, which is reported to reduce the risk
of relapse by more than 60% when performed in the first phase of complete remission [3].
However, undesirable events such as graft failure, graft versus host disease, and relapse can
occur and contribute to mortality [4]. Additionally, disease and donor characteristics are
associated with the outcome of allo-HSCT. As a result, the European Leukemia Net (ELN)
2017 (ELN2017) classification distinguishes three risk groups with significantly distinct
prognoses in patients with AML receiving allo-HSCT [5,6]. Furthermore, the allo-HSCT
seems to be a better option for high and intermediate-risk patients [3,7,8], while favor-
able and intermediate-risk patients presented promising results in clinical trials when
treated with chemotherapy alone or followed by auto-HSCT [9,10]. Despite this progress in
AML treatment, refinement of the ELN classification is needed [6,8]. In this context, several
biomarkers have been proposed as predictors of survival in patients treated with HSCT [11],
such as measurable residual disease (MRD) quantification based on the expression of cer-
tain genes, e.g., mutated NPM1 and WT1 or the expression of BAALC and MN1. Another
option is the identification of aberrant or asynchronous immunophenotypes [5,12,13], or the
stearic acid/palmitic acid ratio on day 7 after transplant [14]. Additionally, the combination
of the ELN2017 with early post-transplant MRD assessment refines the prediction of relapse
after allo-HSCT [5,15].

Herein, we performed a transcriptome analysis of three independent cohorts of adult
patients with AML to identify genes associated with survival after HSCT. We found that
Malic Enzyme 1 (ME1) gene expression levels in mononuclear cells of diagnostic samples
were associated with survival after HSCT. In addition, we demonstrated that ME1 po-
tentially refines the ELN risk categorization for HSCT-treated patients, while also being
correlated with a tumor-supportive microenvironment, non-GMP-like AML blasts subtype,
and specific AML drug sensitivity.

2. Materials and Methods
2.1. Patients and Gene Expression Profiling

Publicly available clinical and transcriptomic data of three adult AML cohorts whose
patients were treated with intensive chemotherapy and then subjected to allogeneic or
autologous HSCT were included in this study. RNA-sequencing data from two cohorts
were included: The Cancer Genome Atlas (TCGA, n = 69 patients), with 63 and 6 patients
treated with allo- and auto-HSCT, respectively [16]; and the BeatAML (n = 77), in which all
patients were subjected to allo-HSCT [17]. These data series were sequenced on Illumina
HiSeq2000 and HiSeq2500, respectively. Normalized gene expression and clinical data
for the TCGA cohort were retrieved from the Firebrowse data portal (www.firebrowse.
org, accessed on 1 August 2021), while for the BeatAML cohort, we used the Beat AML
Vizome data portal (www.vizome.org, accessed on 1 July 2021) and the cBioPortal for
Cancer Genomics (www.cbioportal.org, accessed on 1 July 2021). Data concerning the
HOVON cohort (n = 134) consisted of microarray gene expression analysis performed
using an Affymetrix Human Genome U133 Plus 2.0 Array [18,19]. In this cohort, 86
and 48 patients were treated with allo- and auto-HSCT, respectively, according to the
Dutch–Belgian Hematology–Oncology Cooperative Group (HOVON) trial. Normalized
gene expression data were retrieved from the Gene Expression Omnibus (GEO) database
(GSE6891 dataset) (www.ncbi.nlm.nih.gov/geo/, accessed on 1 July 2021). To compare the
gene expression between mononuclear cells from AML patients and normal hematopoietic
stem/progenitor cells, gene-expression data were retrieved from the Bloodspot database
(http://servers.binf.ku.dk/bloodspot/, accessed on 1 July 2021).

To evaluate the impact of ME1 expression in the prognosis of AML, we retrospec-
tively included a cohort composed of 80 consecutive patients with newly diagnosed
AML, followed from January 2003 to December 2021 at the University Medical Center
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www.firebrowse.org
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Groningen (UMCG). Of those, 32 patients corresponded to de novo AML, received in-
tensive chemotherapy, and were included for validation studies. Twenty of the patients
received HSCT as consolidation therapy. Gene expression of ME1 was analyzed by RT-
qPCR using the primers forward: 5′-CAACAGTCAGGAGATCCAGGT-3′ and reverse:
5′-GGAGATCCATTAAGAGAAGATACCTG-3′. The RNA derived from bone marrow
mononuclear cells (BMMC) was isolated using density gradients. The gene expression val-
ues of ME1 were calculated as relative quantification using the ∆Ct method. In compliance
with the Declaration of Helsinki and with the institutional review board-approved protocol
(#NL43844.042.13), informed consent was obtained from all patients. All AML subtypes
were considered eligible for study, apart from patients with acute promyelocytic leukemia.
Functional assays performed on AML samples included in the UMCG cohort (flow cytome-
try evaluation for macrophage profiling and ex vivo drug screenings/metabolic features)
were performed as previously published [20,21].

2.2. Searching Strategy and Derivation of Prognosis Associated Genes

The cohorts were dichotomized into groups with high and low gene expression. This
was carried out after calculating the optimal cut point value for each gene using the
receiver operating characteristic (ROC) curve for censored overall survival data. Then,
univariate and multivariate Cox proportional hazard regression was computed. According
to data availability, we adjusted prognosis prediction for confounders as follows: age (as
continuous variable), sex (male vs. female), white blood cell counts (WBC, as continuous),
type of transplant (allo-HSCT vs. auto-HSCT), and European LeukemiaNet categorization
(ELN2010 for TCGA and HOVON; ELN2017 for BeatAML). Additionally, we considered
only genes that generated Area Under the Curve (AUC) > 0.5, with sensitivity (sens) and
specificity (spe) > 0.5. These analyses were performed for each gene of the transcriptome in
each cohort. Then, genes consistently associated with prognosis were further investigated
after merging the results of the three cohorts. Kaplan–Meier (KM) plots were performed to
demonstrate stratification power. In addition, disease-free survival (DFS) and event-free
survival (EFS) were analyzed in the TCGA and HOVON cohorts, respectively, according to
data availability.

2.3. Biological Pathways, Cells Signatures, and Drug Sensitivity Prediction

To identify the biological roles of the genes associated with HSCT outcomes, we evalu-
ate the protein interactions using the STRING webtool (https://string-db.org/, accessed on
1 September 2021). In addition, we explored the biological pathways associated with these
genes by running the Gene Set Enrichment Analysis (GSEA) using the Broad Institute soft-
ware [22]. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Reactome databases were used in our analysis. Enrichment scores were calculated
based on Kolmogorov–Smirnov statistics and tested for significance using 1000 permu-
tations. Additionally, Spearman correlation was used as a metric for ranking genes. A
minimum gene size of five was set for gene sets. A pathway was considered enriched when
the nominal p-value and false discovery rate (FDR) q-value were <0.05. Next, with the aim of
predicting the tumor microenvironment complexity according to the genes associated with
survival, we evaluated the cell signatures of the AML samples using the CIBERSORT [23],
EPIC [24], xCell [25], MCP-counter [26], quanTIseq [27], and TIMER2.0 [28] algorithms
from the TIMER2.0 webtool (http://timer.cistrome.org/, accessed on 1 September 2021).
Additionally, we applied the deconvolution approach proposed by Zeng et al., 2022 [29] to
infer the abundance of seven leukemic cell types among non-tumor cells. For that purpose,
we applied the CIBERSORTx algorithm (https://cibersortx.stanford.edu/, accessed on
1 September 2021) [30] executed in absolute mode and applying S-mode batch correc-
tion using the single cell signature matrix and single cell reference sample available in
https://github.com/andygxzeng/AMLHierarchies (accessed on 1 September 2021). After
deconvolution, we normalized the malignant cell populations to 1. Then, we predicted the
four AML subtypes proposed by Zeng et al., 2022 [29] after clustering the AML patients
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based on their leukemia cell hierarchies. Finally, we decided to explore the correlation be-
tween drug response and the expression levels of the genes of interest. To do so, we used the
AUC values resulting from 157 and 159 drugs tested ex vivo by Tyner et al., 2018 [17] and Lee
et al., 2020 [31], respectively. Additionally, we evaluated 448 drugs tested in AML cell lines.
AUC values were available in the Genomics of Drug Sensitivity in Cancer (GDSC) resource
(https://www.cancerrxgene.org, accessed on 1 September 2021) [32]. The following AML
cell lines were considered: CMK, GDM-1, HEL, HL-60, KASUMI-1, KG-1, ME-1, MOLM-13,
MOLM-16, MONO-MAC-6, NOMO-1, OCI-AML2, OCI-AML3, OCI-AML5, OCI-M1, P31-
FUJ, PL-21, SIG-M5, and THP-1. Gene expression data of cell lines were retrieved from the
Expression Atlas database (www.ebi.ac.uk/gxa/experiments/E-MTAB-2770/, accessed
on 1 October 2021). Spearman rho coefficients > 0.3 or <−0.3 with p < 0.05 were used to
identify strong correlations.

2.4. Cell Lines and Drugs

All cell lines and in vitro cultures were maintained in a humidified atmosphere at
37 ◦C with 5% CO2. For the cell lines, mycoplasma contamination was routinely tested
to assure mycoplasma-free cultures. All leukemia cell lines were authenticated by short
tandem repeat analysis. The HL60 (CCL-240™) cells were obtained from the American
Type Culture Collection and grown in IMDM (for HL60; Gibco, Eindhoven, NL) with 10%
FCS. The MOLM13 (ACC 554) and TF1 (ACC 334) cell lines were obtained from the DSMZ-
German Collection of Microorganisms and Cell Cultures and grown in RPMI-1640 (Gibco,
NL) with 10% FCS + 1% sodium pyruvate. TF1 cells were cultured with 10 ng/mL of IL-3
(Sandoz, Almere, NL). Decitabine (DEC), 2-deoxy-glucose (2DG), and Midostaurin (PKC)
were obtained from Sigma-Aldrich (St. Louis, MO, USA) and cytarabine (citarax) was
obtained from Blau pharmaceuticals (São Paulo, Brazil). Venetoclax (VEN) was obtained
from Selleckchem (Houston, TX, USA). Ruxolitinib was obtained from MedChemExpress
(Groningen, NL).

2.5. Lentiviral Vectors and Lentivirus Production

For ME1 knockdown, two sequences for shME1 (shME1#1—TRCN0000064732 and
shME1#2—TRCN0000064730; Sigma-Aldrich, St. Louis, MO, USA) vectors were properly
expanded and validated as previously described [33]. A shRNA sequence that does not
target human genes (referred to as scrambled) was used as a control (hereinafter called
shCTRL—generated as previously described [33]).

2.6. In Vitro Assays
2.6.1. Apoptosis Assay

For the apoptosis analysis, 5 × 104 cells were seeded in 48-well plates and incu-
bated in complete medium for 72 h, in the presence of vehicle and the above-described
drugs. The apoptosis rate was determined using the Annexin V-APC and 4′,6-diamidino-2-
phenylindole (DAPI) binding assay (BD Biosciences, San Jose, CA, USA) in the presence
of calcium buffer. All specimens were acquired by flow cytometry using the FACS LSR-II
machine (Becton-Dickison, Franklin Lakes, NJ, USA) and analyzed with the FlowJo soft-
ware v.10 (Treestar, Inc., Ashland, OR, USA). All experiments were performed at least in
triplicate, and for each sample a minimum of 10,000 single cell events were acquired.

2.6.2. Oxygen Consumption (OCR) and Extracellular Acidification Rate
(ECAR) Measurements

Extracellular flux measurements were performed using a seahorse XF96 analyzer
(Agilent, Santa Clara, CA, USA) as described by the manufacturer. Briefly, the oxygen
consumption rate (OCR) and Extra Cellular Acidification Rate (ECAR) were measured
using the Seahorse XF96 analyzer (Seahorse Bioscience, Agilent, US) at 37 ◦C. For AML cell
lines, 1 × 105 viable cells (evaluated by DAPI-using flow cytometry measurements) were
seeded per well in poly-L-lysine (Sigma-Aldrich) coated (incubation at room temperature

https://www.cancerrxgene.org
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for 20 min) Seahorse XF96 plates in 180 µL XF Assay Medium (Modified DMEM, Seahorse
Bioscience), respectively, in the presence of 2 mM of Glutamine and NaOH to adjust the final
pH. For OCR measurements, XF Assay Medium was supplemented with 10 mM Glucose
and 2.5 µM oligomycin A (Port A), 2.5 µM FCCP (carbonyl cyanide-4-(trifluorometh oxy)
phenylhydrazone) (Port B), and 2 µM antimycin A, together with 2 µM Rotenone (Port C),
were sequentially injected in 20 µL volume to measure basal and maximal OCR levels (all
reagents from Sigma-Aldrich). For ECAR measurements, Glucose-free XF Assay medium
was added to the cells in addition to 10 mM Glucose (Port A), 2.5 µM oligomycin A (Port
B), and 100 mM 2-deoxy-D-glucose (Port C) (all reagents from Sigma-Aldrich). All XF96
protocols consisted of 4 times mix (2 min) and measurement (2 min) cycles, allowing for
determination of OCR at basal and in between injections. Both basal and maximal OCR
levels were calculated by assessing metabolic response of the cells in accordance with
the manufacturer’s suggestions. The OCR measurements were normalized to the viable
number of cells used for the assay.

2.6.3. T-Cell Mediated Cytotoxicity Assay

Cytotoxicity of T cells against AML cell lines displaying different levels of ME1 gene
expression was performed as described elsewhere [34]. Briefly, target cells (T) containing
stable expression of shME1#1/shME1#2 and shCT, were incubated with cell trace violet
(ThermoFisher, Waltham, MA, USA) stained T cells at 1:1, 1:2, and 1:5 effector-to-target
(E:T) ratios. Targets in media alone were used for assessment of spontaneous death. After
72 h of culture, viable cell counts (defined as Annexin-V-Viability marker-cells; Zombie NIR
was used as a viability marker—Biolegend, USA) was measured. The mean percentage of
specific lysis of technical duplicate samples was calculated as 100* (spontaneous death +
experimental death)/(spontaneous death—background). A total of 4 independent T cell
donors were used for these experiments. Cells were acquired using NovoCyte Quanteon
Flow Cytometer Systems (Agilent, Santa Clara, CA, USA), and a minimum of 1000 viable
cells per condition were acquired per sample.

2.7. Statistical Analysis

Overall survival (OS) was defined as the time from diagnosis to death from any
cause. Disease-free survival and event-free survival (DFS/EFS) were defined as the time
from CR achievement to the first adverse event; that is, relapse or death from any cause,
whichever occurred first. To adjust ME1 expression for confounding factors, we performed a
multivariate Cox proportional hazard regression. Kaplan–Meier (KM) plots were performed
to demonstrate stratification power. The Mann–Whitney test and Fisher’s exact test were
used to compare clinical and biological characteristics between patients. All p-values were
two-sided, with a significance level of 0.05. All calculations were performed using R 4.1.1
(The CRAN project) software.

3. Results
3.1. ME1 Gene Was Identified as an Independent Factor to Predict the Survival of AML Patients
Subjected to HSCT

To identify robust prognostic gene expression biomarkers for AML patients treated
with intensive chemotherapy and then subjected to allogeneic or autologous HSCT, we eval-
uated clinical and transcriptomic data of three publicly available adult AML cohorts: TCGA,
BeatAML, and HOVON. The cohorts were dichotomized according to gene expression by
using the ROC curve for survival. Then, the high and low expression categories were estab-
lished for each gene in each cohort to evaluate their impact on prognosis (Figure 1A). Sur-
prisingly, we identified only one gene, named ME1, whose high expression was associated
with shorter overall survival in all cohorts (Figure 1B, Supplementary Tables S1 and S2).
Kaplan–Meier plots showing the power of stratification of ME1 expression for overall
survival are shown in Figure 1C. AML patients with high ME1 expression had shorter
survival compared to those with low expression (median OS of 21.5 vs. 53.9 months for
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TCGA, 18.9 months vs. not reached for BeatAML, and 18.4 vs. 145.9 months for HOVON).
In addition, high ME1 expression levels were associated with shorter DFS (TCGA) and EFS
(HOVON) (median DFS of 10.2 vs. 20.6 months and median EFS of 12.9 vs. not reached)
(Figure 1D). Furthermore, we compared the ME1 expression between healthy hematopoietic
stem cells (HSCs; Lin−, CD34+, CD38−, CD90+, CD45RA−), common myeloid progenitors
(CMPs; Lin−, CD34+, CD38+, CD45RA−, CD123+), or granulocyte-macrophage progenitors
(GMPs; Lin−, CD34+, CD38+, CD45RA+, CD123+), with mononuclear cells from AML
patients. We detected that ME1 expression was comparable between leukemic cells and
HSCs, but higher in AML cells, when compared with healthy CMPs and GMPs (Figure 1E).
Supplementary Tables S3–S5 depict the main clinical and laboratory characteristics of each
cohort, and the association of these variables with the expression level of ME1.
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Figure 1. Identification of ME1 expression as a prognostic marker in HSCT AML. (A) Strategy to
discover genes associated with survival in HSCT AML. (B) Number of genes predicting survival.
(C) Overall survival (OS), (D) disease-free survival (DFS) and event-free survival (EFS), stratified
according to ME1 expression. (E) Comparison of ME1 expression between AML cells and healthy
hematopoietic stem/progenitor cells. NR: median survival not reached.
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As shown in Figure 2A–C, after multivariate Cox regression analysis, ME1 expression
remained an independent factor for overall survival, with a HR of 1.87 (p = 0.045) for the
TCGA, 3.74 (p = 0.039) for the BeatAML, and 2.08 (p = 0.003) for the HOVON cohort. In
addition, AUC values were higher than 0.5 for patients in the high-ME1 expression group
during the first 3 years of follow-up in all cohorts (Figure 2D). Next, we evaluated whether
ME1 expression could improve the prognostic power of ELN risk groups. As shown in
Figure 3A,E, the risk stratification of ELN2017 (Log-rank, p = 0.33) was refined after the
inclusion of ME1 expression (Log-rank, p = 0.014). In addition, when we compared the
impact of ME1 expression on survival of patients treated with HSCT vs. chemotherapy,
we found that ME1 was a stronger risk gene in patients treated with HSCT than with
chemotherapy alone. Similarly, survival predictions of ME1 were inconsistent when applied
to all AML cases irrespective of the treatment type (Figure 3F). In agreement with this result,
we verified whether the disease status at the end of induction was associated with high or
low ME1 expression, which could affect the outcome of HSCT. As shown in Supplementary
Figure S1A, there was no link between ME1 expression and complete response (CR/CRi) or
refractory case distribution. Next, we quantified ME1 expression by RT-qPCR in our own
cohort (UMCG), consisting of 32 de novo AML patients treated with standard chemotherapy
as induction therapy. ME1 expression was associated with short survival rates (Log-rank,
p = 0.046) (Supplementary Figure S1B). Twenty out of thirty-two patients received HSCT
as consolidation therapy; of these, six died after transplantation, and five cases presented
high ME1 expression (35.7 vs. 16.7%).
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Figure 3. ME1 expression improves ELN categorization in HSCT AML patients. (A) OS resulting
from ELN2017 categories. (B) ME1 expression stratification by ELN2017 categories. (C) Strategy
to improve the prognosis prediction of ELN including ME1 expression. (D) KM plot showing the
improvement of the OS stratification after ME1 inclusion. (E) Recategorization of ELN groups as a
consequence of ME1 inclusion. (F) Comparison of death risk by ME1 expression in patients treated
with chemotherapy alone or HSCT in consolidation therapy.
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3.2. ME1 Is Associated with an Immunosuppressive TME, Mono/cDC-like Leukemia, and
Increased Sensitivity to a Specific Set of Drugs

Previous studies have described ME1 to be a cytosolic protein that catalyzes the
conversion of malate to pyruvate while concomitantly generating NADPH from NADP [35].
Similar results were obtained in our STRING analysis (Figure 4A,B). Next, our gene set
enrichment analysis identified 853 and 304 biological pathways that were positively and
negatively enriched, respectively (Figure 4C). Notably, IL-10 and IL-1 signaling pathways
were positively enriched (Figure 4D), while processes such as RNA splicing, rRNA, and
tRNA processing pathways were negatively enriched in patients with high ME1 expression
(Figure 4E). Pathways related to the regulation of ROS production and lipid biosynthesis
and metabolism, as well as processes critically modulated by NADPH disposition, were
positively correlated with ME1 expression (Supplemental Table S6). Additional pathways
related to cellular stress and metabolism were consistently enriched in all three cohorts
(Supplemental Tables S6 and S7). Next, since IL-1 and IL-10 are mediators of polarization
of innate immune cells, we evaluated which immune and stromal cell signatures were
associated with ME1high leukemic blast cells in all three cohorts. We found that AML
cells with high ME1 expression have a bone marrow microenvironment infiltrated by M2
macrophages (Figure 5A), which was confirmed by flow cytometry in our validation cohort
(UMCG). The frequency of monocytic/macrophage cells (defined as SSChighCD45highHLA-
DR+) presenting the M2 marker, CD36, in AML primary samples was higher in patients with
high ME1 expression (Figure 5B). In addition, after performing a deconvolution analysis to
reveal the hierarchical cellular composition of AML samples (Supplementary Figure S2A,B),
we found a high abundance of non-tumor monocytes signature (Supplementary Figure S3).
Interestingly, we also found that ME1 expression was associated with high mono-like and
cDC-like AML burden, i.e., a mature AML phenotype, with a low count of GMP-like clones
and without differences in leukemic stem/progenitor clone’s abundance (Figure 5C,D).

Next, we determined the drug sensitivity of ME1highAML cells in an ex vivo drug
screen. Our results indicated that ME1high cells were more resistant to standard AML
chemotherapeutic agents such as cytarabine and daunorubicin, as well as to Bcl-2 family
inhibitors (obatoclax and venetoclax) (Figure 6A). In addition, AML cells with high ME1
expression showed increased sensitivity to several mTOR inhibitors, among other kinase
inhibitors. Drug sensitivity in AML cell lines showed that high ME1 expression was
correlated with resistance to histone deacetylase inhibitors (HDACi) and to ruxolitinib
(JAK1/2 inhibitor), while being sensitive to CDK9_5038, a CDK9 inhibitor, and ERK_6604,
an ERK1/2 inhibitor (Supplementary Figure S4A). To confirm these findings, we silenced
the ME1 gene in TF1, MOLM13, and HL60 cell lines (Figure 6B). Our results showed that the
knock-down of ME1 reduced the proliferative capacity of AML cell lines, demonstrating
the impact of ME1 on key processes contributing to leukemia progression (Figure 6C).
Next, we tested the drug-induced apoptosis by standard chemotherapeutic agents and
target therapies used in AML on silenced ME1 cells, and confirmed increased sensitivity
of shME1 cells to Bcl-2 inhibitors (VEN) and ruxolitinib (Figure 6D–F). Additionally, we
observed an increased sensitivity to cytarabine (AraC) and decitabine (DEC in MOLM-13
and HL-60 cells) when ME1 was silenced. We also noted an inverse correlation between
ME1 expression and decitabine-induced apoptosis in our set of ex vivo treated primary
AML cells (Supplementary Figure S4B).

Our ex vivo evaluation of primary AML blasts revealed that patients with high ME1
levels displayed increased mitochondrial metabolism, as demonstrated by increased mito-
chondrial membrane potential (MMP) levels and corroborated by the positive correlation
between ME1 expression and the basal oxygen consumption (OCR) rate of blasts (Figure 5B).
In line with this observation, we also noted that ME1high AMLs were more sensitive to com-
plex I inhibitors (rotenone and metformin) and displayed decreased levels of mitochondrial
membrane potential in their T cells (as indicated by the term in the left side—Lymphocytic
MMP) (Figure 5B). Altogether, these findings suggested that ME1high AMLs rely more on
oxidative phosphorylation (OXPHOS) for their energy. In addition, ME1high AMLs could be
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associated with immunosuppressive features by modulating T lymphocyte activity. To test
these hypotheses, we evaluated the extracellular flux rate of shME1 cells compared to their
control (shCT) in a seahorse experiment. We found that ME1 silencing strongly impacted
mitochondrial respiration, since the basal and maximum oxygen consumption rates (OCR)
of shME1 cells were clearly reduced (Supplementary Figure S5A). Contrarily, the glycolytic
state remained stable in all three cell lines (Supplementary Figure S5B). Finally, to test
whether differential ME1 levels impact the susceptibility of AML cells to T-cell mediated
cytotoxicity, we performed co-culture experiments using different T-cell donors and AML
cell lines transduced with shME1 and shCT. No differences were observed for TF1 cells
expressing differential ME1 levels, and only one shME1 clone of HL60 cells presented a
modest decrease in cell viability upon T-cell exposure (Supplemental Figure S5C). Overall,
these results suggest that ME1 levels do not directly affect the sensitivity of AML cells to
T-cells, suggesting that additional factors might play a role in the ME1-associated survival
prediction of AML patients subjected to HSCT.
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Figure 5. Estimation of cell type abundances according to ME1 expression in AML. (A) ME1 expres-
sion predicts increased M2 macrophages infiltrations in the bone marrow microenvironment of AML.
(B) High ME1 expression correlated with CD36 abundance in primary AML samples. (C) Decon-
volution of AML samples to predict AML hierarchy subtypes demonstrated that ME1 expression
was associated with mono-like clones. Patients were divided in three groups according to their ME1
expression levels, whereby low, intermediate, and high groups correspond to quartile 1, quartile 2 +
3, and quartile 4 of ME1 expression, respectively. (D) Mature AML subtype is frequent in high ME1
expression cells, while GMP is associated with low ME1 expression.
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Figure 6. Drug sensitivity according ME1 expression in AML. (A) Ex vivo drug sensitivity indicated
drug responses according to ME1 expression. (B) Knock-down of ME1 expression (shME1-1 and
shME1-2) in AML cell lines. (C) Proliferation rates of shME1 cells in comparison with control (shCT
cells). (D–F) Treatment of shME1 cells with different drugs confirming cell vulnerabilities against
standard drugs used in AML. * p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001.
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4. Discussion

In the present study, we show that ME1 expression is a predictor of post-transplant
survival in AML. ME1 gene belongs to a short family of malic enzyme genes (ME1, ME2,
and ME3) and encodes for a cytosolic enzyme that replenishes pyruvate from malate,
a process that generates NADPH [36,37]. As described by Pavlova et al. [36], pyruvate
is preferentially used for mitochondrial acetyl-CoA generation in quiescent tumor cells,
while in proliferating cells, the main use of reduced carbon is reserved for biosynthesis.
Here, our analysis indicates that ME1 expression is positively associated with both neutral
lipids’ biosynthesis, mainly fatty acids and cholesterol, and leukocyte proliferation capacity
(Supplemental Table S3), suggesting that AML cells with high ME1 expression have a
higher rate of proliferation. Corroborating this notion, the proliferation rate of three AML
cell lines was reduced upon ME1 silencing. In addition, our drug sensitivity test indicated
that AML cells with high ME1 expression are resistant to standard chemotherapy drugs
and sensitive to kinase inhibitors.

The malic enzymes have been recognized as the main cytosolic NADPH producers,
along with isocitrate dehydrogenase (IDH) enzymes and the pentose phosphate path-
way [38]. In addition to its critical role as a coenzyme in biosynthesis [36], NADPH is
relevant for redox homeostasis, protecting the tumor cells from increased reactive oxygen
species (ROS) production during cell proliferation [36]. Thus, NADPH can counteract
ROS via the reconstitution of reduced glutathione and thioredoxin proteins [36]. In line
with these previous studies, our results indicated an association between ME1 and the
regulation of the stress-related pathways, including ROS process metabolism (Supplemen-
tal Table S1). Although we did not explore the direct regulation of intracellular NADPH
concentration and ME1 expression, previous studies had already dipped into this issue.
In human osteosarcoma U2OS cells and normal diploid fibroblast IMR90 cells, the forced
expression of ME1 or ME2, or the addition of a malic enzyme substrate, increased the
cellular NADPH levels. The silencing of ME1 or ME2 consequently reduced the NADPH
levels [39]. Shao et al. [40] demonstrated that cancer cells preferentially depend on ME1-
mediated production of NADPH to support uncontrolled growth compared with healthy
cells. However, they also found an adaptability of cancer cells to ME1 silencing after long
culture periods [40]. Here, we identify that the silencing of ME1 compromised mitochon-
drial respiration of AML cells, but not glycolysis, demonstrating that ME1 plays an active
role during the replenishing of substrates for mitochondrial respiration.

Another possible explanation for the prognostic impact of ME1 in HSCT for AML is
its association with the TP53 pathway, which was mainly reported in solid tumors [41–43].
Downregulation of ME1 or ME2 increases ROS levels because of p53 activation, leading to a
strong induction of senescence [39]. In IMR90 and U2OS cells, the knockdown of TP53 led
to a significant increase in basal mRNA levels of ME1 and ME2 compared to p53-wild-type
cells [39]. In addition, when these cells were treated with genotoxic agents such as etoposide
and doxorubicin, a reduction in the expression of ME1 and ME2 was shown. However,
when TP53 was knocked down, the expression of these genes no longer responded to DNA
damage [39]. Jiang et al. showed that the induced expression of ME1 or ME2 in U2OS
cells diminished the activation of p53 induced by DNA damage, thereby enhancing tumor
cell growth [39]. We did not find differences between ME1 expression according to TP53
status in primary AML samples, although this analysis was limited by the number of cases
included in this study. Additionally, we did not observe differences in ME1 expression
between AML cell lines with different TP53 mutational status (Supplementary Figure S6
and Table S8). We cannot rule out that additional mutated genes, such as KRAS, could
interact with the ME1 function, since mutations in the latter were shown to increase ME1
mRNA levels in colorectal tumors [44,45].

Recently, by using single-cell RNA sequencing-based deconvolution methods, it was
demonstrated that the specific cellular hierarchy composition of AML is associated with
functional, genomic, and clinical properties, in addition to being associated with response
to chemotherapy or targeted therapies [29]. Based on this analysis, four distinct AML
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subtypes were defined: primitive (LSPC-enriched), mature (enriched for mature Mono-like
and cDC-like blasts), GMP (dominated by GMP-like blasts), and intermediate (balanced
distribution) [29]. By applying the same method, we found that AML cells with high ME1
expression are associated with mature AML phenotype and with low GMP-like subtype
burden [29]. In line with our findings, we observed that AML cells with high ME1 expres-
sion are more resistant to venetoclax and obatoclax, and more sensitive to mTOR inhibitors,
which was also reported by Zeng et al., 2022 when analyzing primitive and mature blasts,
respectively [29]. Furthermore, previous studies also reported monocytic AMLs to be more
resistant to venetoclax plus azacytidine schemes [46]. Next, our cell type signature analysis
also indicated increased infiltration of M2 macrophages in the leukemic microenviron-
ment, which has been associated with a poor clinical outcome in AML [20]. Within this
context, the top positive enriched pathway in AML cells with high ME1 expression was
IL-10 signaling, a cytokine with potent anti-inflammatory properties described to promote
M2 macrophage polarization [46] and stemness of AML cells [47,48]. Overall, AML blast
cells with high ME1 expression are more mature AML-subtypes, resistant to standard
chemotherapies and associated with an enriched M2 macrophage microenvironment.

Several cytogenetic, molecular, and immunological markers are predictors of the
outcome of AML upon first diagnosis [5,48–50], but only a few are predictive of outcomes
after allo-HSCT [51–54]. Higher levels of CD105 expression; mutations in WT1, RUNX1,
and TP53; and the partial tandem duplication of MLL, detected at diagnosis, have been
identified as predictors of short survival after HSCT [52]. Herein, our analysis of the entire
transcriptome of samples at diagnosis obtained from AML patients who had undergone
HSCT identified that ME1 is associated with survival rates in three independent cohorts.
The exact mechanism of how ME1 can impact the HSCT response in AML was not evaluated
here, but our data highlight the relevance of the microenvironment components, such as
M2-macrophages, and the metabolic state of AML cells.

5. Conclusions

In summary, high expression of ME1 is a poor prognostic marker for AML pa-
tients who have been treated with intensive chemotherapy and then subjected to HSCT.
Lipid metabolism, non-GMP-like AML blasts hierarchy, microenvironment-enriched M2
macrophages, and resistance to standard chemotherapy agents characterize the AML cells
with high ME1 expression, possibly explaining their association with poor outcomes in
AML-HSCT.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers15010296/s1. Table S1: Cox regression of genes whose high expression is asso-
ciated with poor prognosis in at least one cohort. Table S2: Cox regression of genes whose low
expression is associated with poor prognosis in at least one cohort. Table S3: Clinical and genetic
characteristics evaluated by ME1 expression (TCGA). Table S4: Clinical and genetic characteristics
evaluated by ME1 expression (BeatAML). Table S5: Clinical and genetic characteristics evaluated
by ME1 expression (HOVON). Table S6: Positive regulated pathways in AML cells with high ME1
expression. Table S7: Negative regulated pathways in AML cells with high ME1 expression. Table S8:
Mutational status of TP53 mutations in AML cell lines. Figure S1: Treatment response and validation
dataset by ME1 expression. (A) Induction response to chemotherapy according to ME1 expression.
(B) Comparison of overall survival analysis between ME1high and ME1low AML patients in UMCG
dataset. Figure S2: Deconvolution of AML samples to predict AML hierarchy subtypes performed
in samples from TCGA dataset. (A) K-means clustering. (B) Identification of AML hierarchy sub-
types: GMP-like, intermediate, Mature, and Primitive. Figure S3: Non-tumor cell type abundance in
the AML microenvironment by ME1 expression. The deconvolution approach, proposed by Zeng
et al., 2022 [29], was applied to infer the abundance of seven leukemic cell types among non-tumor
cells. Patients were divided into three groups according to the ME1 expression levels, whereby
low, intermediate, and high expression groups correspond to quartile 1, quartile 2 + 3, and quar-
tile 4, respectively. Figure S4: Correlation of drug sensitivity in AML cells with ME1 expression.
(A) Drug sensitivity in AML cell lines. (B) Correlation between decitabine-induced apoptosis and
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ME1 expression in primary AML cells. Figure S5: Metabolic activity and T-cell mediated cytotoxicity
in ME1 knockdown AML cell lines. (A) Basal oxygen consumption rate (OCR). (B) Extracellular
acidification rate (ECAR). (C) T-cell mediated cytotoxicity. Figure S6: Association of TP53 mutations
and ME1 expression.
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