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Simple Summary: Gastric cancer is the fifth most common cancer in the world. An important risk
factor in the development of alimentary tract cancers is the presence of pathogenic microbiota, such
as Helicobacter pylori. We previously showed that sporadic infection of Fusobacterium nucleatum is
associated with disease progression. Therefore, we examined the mutational landscape of F. nuclea-
tum-positive, resected gastric cancer tissues using the Illumina TruSight Oncology 500 comprehensive
panel to identify small nucleotide variants, small insertions and deletions, and unstable microsatellite
sites. We identified a number of recurrent genetic aberrations, especially activating mutations of
ERBB2, ERBB3, and PIK3CA and disrupted TP53. We found that the combination of F. nucleatum
infection and high tumor mutational burden was a strong predictor of poor prognosis. Thus, F. nu-
cleatum infection is correlated with increased accumulation of mutations and progression of gastric
cancer, and these factors may be useful in the prognosis of this disease.

Abstract: Co-infection of Helicobacter pylori and Fusobacterium nucleatum is a microbial biomarker for
poor prognosis of gastric cancer patients. Fusobacterium nucleatum is associated with microsatellite
instability and the accumulation of mutations in colorectal cancer. Here, we investigated the mutation
landscape of Fusobacterium nucleatum-positive resected gastric cancer tissues using Illumina TruSight
Oncology 500 comprehensive panel. Sequencing data were processed to identify the small nucleotide
variants, small insertions and deletions, and unstable microsatellite sites. The bioinformatic algorithm
also calculated copy number gains of preselected genes and tumor mutation burden. The recurrent
genetic aberrations were identified in this study cohort. For gene amplification events, ERBB2, cell
cycle regulators, and specific FGF ligands and receptors were the most frequently amplified genes.
Pathogenic activation mutations of ERBB2, ERBB3, and PIK3CA, as well as loss-of-function of TP53,
were identified in multiple patients. Furthermore, Fusobacterium nucleatum infection is positively
correlated with a higher tumor mutation burden. Survival analysis showed that the combination of
Fusobacterium nucleatum infection and high tumor mutation burden formed an extremely effective
biomarker to predict poor prognosis. Our results indicated that the ERBB2-PIK3-AKT-mTOR pathway
is frequently activated in gastric cancer and that Fusobacterium nucleatum and high mutation burden
are strong biomarkers of poor prognosis for gastric cancer patients.
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1. Introduction

Gastric cancer is the fifth most common cancer in the world. Besides the environmental
and dietary factors, one important risk factor for alimentary tract cancers is pathogenic
microbiota [1,2]. For the gastric epithelium, the cancer-induced bacterial pathogen is He-
licobacter pylori [3]. It was estimated that 1-2% of H. pylori-infected patients eventually
develop gastric cancer, prompting an effort to eradicate H. pylori infection to reduce the oc-
currence of gastric cancer [4]. In Taiwan, with decades of the H. pylori eradication program

Cancers 2023, 15, 269. https:/ /doi.org/10.3390/ cancers15010269

https://www.mdpi.com/journal/cancers


https://doi.org/10.3390/cancers15010269
https://doi.org/10.3390/cancers15010269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-8465-5204
https://orcid.org/0000-0002-5457-9623
https://doi.org/10.3390/cancers15010269
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15010269?type=check_update&version=2

Cancers 2023, 15, 269

20f12

and routine upper gastrointestinal tract endoscope screening through the National Health
Insurance, the incidence of gastric cancer indeed declined slowly [4]. However, according
to the latest 2019 Cancer Registry Annual Report, gastric cancer is still the seventh most
common cancer and the sixth in cancer-caused mortality in the male population. Further-
more, the 5-year survival rate is at about 40%, indicating the importance of improving the
efficacy of current therapy.

H. pylori directly promotes the transformation of gastric epithelial cells. The type IV
secretory machinery encoded by the cag pathogenicity island (cag PAI) allows the delivery
of the virulent factor CagA and bacterial peptidoglycan to the gastric epithelial cells [5,6].
In the host cells, CagA modulates the function of the cytoskeleton and junctions and
disrupts epithelium integrity [7-9]. Peptidoglycan, on the other hand, activates the PI3K-
Akt signaling pathway to decrease apoptosis and promote cell growth [10,11]. In addition,
H. pylori alters the microenvironment and incites a strong inflammatory response [9,12].
A change in the gastric microenvironment would allow further colonization of additional
pathogenic microbes [3,13]. It is reasonable to speculate that these secondary infections
could further promote cancer development and progression.

Fusobacterium nucleatum is a pathogenic bacteria found in oral microbiota. Recent stud-
ies demonstrated an enrichment of F. nucleatum in the colorectal cancer lesion-associated
microbiota [14-16]. Increased attachment of F. nucleatum to the colorectal cancer cells is
mediated through the interaction of bacterial lectin Fap2 with a tumor-specific Gal-GalNAc
moiety on the cell surface [17]. Diagnostic detection of F. nucleatum in the stool sample
could augment the fluorescence stool occult blood test and increase the detection sensitivity
to more than 90% without compromising the specificity [18,19]. F. nucleatum, unlike H.
pylori, possesses no molecular machinery to directly disrupt the intracellular signaling
of the colorectal epithelium. However, F. nucleatum produces hydrogen sulfide [20,21], a
secondary metabolite shown to exhibit DNA cytotoxicity [22,23]. This could be the under-
lying mechanism for the observation that F. nucleatum is specifically associated with high
microsatellite instability of colorectal cancer [14,24]. Together, it appears that Fusobacterium
nucleatum promotes oncogenesis by causing DNA damage.

Our previous studies discovered that not only sporadic infection of F. nucleatum
in gastritis patients, but also the abundance and frequency of F. nucleatum colonization,
greatly increases the gastric cancer-associated microbiota [25]. The risk of F. nucleatum
colonization progressively increases along with the disease progression, suggesting a tumor
microenvironment continuously becoming more favorable for F. nucleatum colonization. In
addition, gastric cancer patients with co-infection of H. pylori and F. nucleatum have poorer
survival than those with only H. pylori infection or those without infection [26]. Since the
patients included in our study all received gastrectomy, a poorer prognosis suggests that F.
nucleatum increased aggressiveness and higher probability of metastasis of the gastric cancer
cells. Thus, F. nucleatum could consecutively or synergistically collaborate with H. pylori
to further promote gastric cancer progression. F. nucleatum produces hydrogen sulfide, a
metabolite causing cell DNA damage and potentially increasing the mutations of the cancer
cells. In this report, we provide evidence demonstrating that F. nucleatum infection increases
the tumor mutation burden of gastric cancer and greatly shortens patients’ survival time.
Our findings suggest that F. nucleatum plays a pivotal role in aggravating the progression
of gastric cancer by accelerating the accumulation of mutations in cancer cells.

2. Materials and Methods
2.1. Study Cohort and Specimens

This study was approved by the Institutional Review Board of Chiayi Chang Gung
Memorial Hospital (Institutional Review Board, approval No.202001246B0). Acquisition
and use of clinical specimens were carried out in accordance with the Declaration of
Helsinki. Frozen resected cancer tissues were obtained from Chiayi Chang Gung Memorial
Hospital Tissue Bank. The status of H. pylori infection was determined by a standard
rapid urease test at the time of specimen collection. In all, 36 resected gastric cancer
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tissues were analyzed. The frozen tissues were pulverized in TRI reagent (Thermo Fisher
Scientific, Waltham, MA, USA) and centrifuged to remove undissolved debris. Total DNA,
including both cellular and microbial DNA, was extracted according to the manufacturer’s
protocol, and the concentration of DNA was determined by Qubit dsDNA high-sensitivity
fluorometric quantification assay (Thermo-Fisher). The presence of F. nucleatum in the
specimens was determined by nested PCR detection of the NusG gene, as described
previously [26].

2.2. Mutation Analysis

DNA mutation profile was analyzed using TruSight Oncology 500 panel (Illumina,
San Diego, CA, USA) [27,28]. This targeted panel interrogates the exon sequences of
523 preselected cancer-associated genes for mutation analysis. In addition, the panel
interrogates 125 microsatellite sites to estimate the microsatellite instability status. Copy
number gains for the selected 57 genes and tumor mutation burden were calculated from
the sequencing reads through bioinformatic analysis.

To perform the analysis, the specimen DNA was first enzymatically fragmented using
dsDNA fragmentase (NEB) and purified using magnetic size selection matrix (Agencourt
AMPure XP, Beckman Coulter, Brea, CA, USA). The average size and concentration of
fragmented DNA were analyzed by capillary electrophoresis using the D1000 ScreenTape
assay on a TapeStaton 2200 analyzer (Agilent, Santa Clara, CA, USA) and fluorescence
quantification (Qubit). Fragmented DNA was subsequently used as the input material
for TruSight Oncology 500 panel library construction. The manufacturer’s protocol was
followed closely. Briefly, fragmented DNA was first repaired to blunt-ended DNA. A single
A residue was then attached to the 3'-end of the blunt-ended fragments. In the next step,
the adaptor with unique molecular index (UMI) was ligated to the A-tailed DNA fragments.
Adapted-ligated fragments were purified using a magnetic size selection matrix, followed
by PCR amplification with Illumina i5 and i7 primers carrying index sequences. The library
was then mixed with biotin-labeled capture oligomers in the hybridization reaction on a
PCR cycler for 18 to 24 h. Target sequences were then captured using streptavidin magnetic
beads. The beads were then extensively washed to remove non-specifically bound DNA.
After washing, captured DNA fragments were released from the beads under alkaline
conditions, and the released DNA’s pH was neutralized by adding pH neutralizing buffer.
The enriched library was then subjected to a second round of biotin-labeled oligomer
hybridization for 4 h. Target sequence capture was carried out again using streptavidin
magnetic beads. After the second round of capture, the streptavidin in beads was washed
once using low salt buffer, and the recaptured library was eluted by alkaline buffer and
neutralized by pH neutralizing buffer. The enriched library was then amplified to yield
the final sequencing-ready library. The sequencing-ready library was then analyzed by
capillary electrophoresis and fluorescence quantification, as described above.

Sequencing was carried out on an Illumina NovaSeq 6000 sequencer for 300 paired-
end cycles. The resulting forward and reverse reads were trimmed to 100 bp as specified
by the manufacturer for subsequent bioinformatic analysis. Analysis was carried out
using a TSO500 local app 2.0.0.70 on a local workstation. The analysis pipeline first
mapped the sequencing reads to human genome hg19, followed by UMI collapsing and
remapping to hgl9 to produce the BAM files. The BAM files were annotated to create
the VCEF files. The VCF file was uploaded to Illumina BaseSpace Variant Interpreter for
variant visualization and classification analysis. The status of microsatellite instability
was represented as a percentage of the unstable sites among detected microsatellite sites.
The variants identified through the assay were then filtered against GnomAD Exome,
GnomAD Genome, and 1000 genomes database to remove common and frequent variants
in populations. The remaining variants were then used to calculate tumor mutation burden,
which was represented as the number of somatic mutations per Mb.
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2.3. Statistical Analysis

Statistical analysis of tumor mutation burden between F. nucleatum-negative and
positive patients was performed by Student’s t-test. Survival probability was calculated
with Kaplan—-Meier analysis.

3. Results

Our previous study demonstrated that co-infection of F. nucleatum and H. pylori
predicts poorer survival for gastric cancer patients. F. nucleatum was shown to produce
cytotoxic metabolites, such as H2S, and was associated with microsatellite instability-high
colorectal cancer, suggesting that F. nucleatum may cause hypermutation of the cancer
genome. We hypothesized that F. nucleatum promotes gastric cancer progression through a
similar molecular mechanism. An increase of mutations in the genome can be represented
by higher tumor mutation burden. To validate this hypothesis, we hence compared the
mutation landscape of resected gastric cancer tissues with co-infection of H. pylori and F.
nucleatum and those with only H. pylori infection. The TSO500 DNA panel queries the
exon sequences of preselected 523 genes and 125 microsatellite sites. The sequencing reads
were analyzed by the TSO500 local app provided by the manufacturer to identify variant
identification and unstable microsatellite sites. Using the sequencing data, the analysis
package calculated tumor mutation burden (TMB) and microsatellite instability (MSI) as the
percentage of unstable sites. The analysis pipeline also calculates the potential copy number
gains of 57 genes in the panel. The TMB obtained through the TSO500 analysis pipeline
is shown to be comparable to other FDA-approved clinical diagnostic services, including
Foundation One CDx. Hence, we selected the TruSight Oncology 500 comprehensive cancer
panel (TSO500) for achieving the experimental goal of assessing the mutation landscape of
the resected cancer specimens.

Following our previous investigation, we focused on the subset of H. pylori-positive
gastric cancer patients with or without F. nucleatum infection. In this study, 36 resected gas-
tric cancer tissue specimens, including twenty specimens with H. pylori infection, thirteen
specimens with co-infection of H. pylori and F. nucleatum, and three specimens with only F.
nucleatum infection, were analyzed using a TSO500 DNA panel. The age, gender, staging,
metastasis, and status of H. pylori and F. nucleatum infection for the analyzed specimens
are shown in Figure 1. Stratified by cancer stage, eleven specimens were from the patients
of early-stage (stages 1 and 2), while twenty-five specimens were from the patients of
late-stage (stages 3 and 4) disease. In the early-stage group, there were two specimens
positive for F. nucleatum, while fourteen specimens were positive for F. nucleatum infection
in the late-stage group. This is similar to our previous observation that patients with
late-stage gastric cancer are more prone to F. nucleatum infection. The two biomarkers for
assessing the overall genomic mutation load, TMB and MSI, are also shown in Figure 1.
However, MSI assessment indicated that only three specimens were considered MSI-high
(percentage > 20%). Although all three patients are female patients, it is likely a coincidence.
Other than that, there is currently no clear association of the MSI-high status with other
clinicopathological characteristics of the patients.

In contrast to MSI, TMB in the cohort ranged between 2.4 and 195, with the median at
45.5. We hence arbitrarily stratified the specimens into three groups based on the number
of TMB. Nine specimens with TMB smaller than 20 were considered as low TMB, eleven
specimens with TMB between 20 and 50 were considered as medium TMB, and sixteen
specimens with TMB larger than 50 were considered as high TMB. Using this arbitrary
cut-off to stratify the specimens, there were four low TMB (36.4%), two medium (18.2%),
and five high TMB (45.5%) specimens in the early-stage group. On the other hand, there
were five low TMB (20%), nine medium TMB (36%), and eleven high TMB (44%) specimens
in the late-stage patients. It appears that a similar percentage of patients have high TMB in
both early-stage and late-stage groups, hence indicating that high TMB is not associated
with cancer staging.
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Clinicopathological characteristics

Age 65 |66 [67 [ 737173 78 [ 84 [ 60 [ 60 [ 68 [ 71 [65 [ 60 [64 [ 68 [ 73 [ 86 [ 87 [ 87 [ 57 [6a [ 71 [ 76 [ 47 [ 50 [ 61 [ 60 [ 60 [ 75 [87 [ 47 [52 [67 [ 73 [ 74 |
Sex M|(M|M|M|M|M|F|F F F|F F
Staging 11 a1 ][ 1] 1]2]2]2 R
Metastasis - + + + + +
Infection status of H. pyloriand F.
H. py’on + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
F. nucleatum <n + Eh o> + + + + + + + + + + + +
Tumor mutation burden and microsatellite instability
TMB 13 |24 | 14 | 36 13 |§45 8.6 24|16 | 15 | 39 | 27 | 46 | 20 | 40
MSI (%) 17 00|37 |00|17 |37 |00 |48 16|91 |67 10|34 1862|0934 |34 |86|60|00]36
Copy number variation
CCND1 6.2|55[96|70|91|77 76|46 (517855 48 4.4 114 4.1 |106| 5.7 19|57 (6.0 |74
CCNE1 4271|5660 56 |73 74|63 |76|41|61 |44 5.2 [10.0 4.8 54|87 |69 60|66 51|67 |86 9.4
CDK4 7.2 |135| 85 |10.4| 6.8 | 9.7 |14.3 385| 56 [10.9] 7.2 [11.2| 95|82 | 56 | 56 [ 6.7 | 9.0 [15.1| 51 | 6.1 | 4.1 [ 7.2 |16.0/ 9.1 | 6.0 | 97 [10.1| 6.6 [11.4 44|56
ERBB2 7.7 |57 |78|44 |58 |80 72|52|57 |48 |64 50|93 4.1 41|83 |56 |47 |63 |55|45|6.6 [11.0 61.1
ERCC2 75| 6.5 [10.4]| 6.1 | 95 [10.3 45|41|93|46|79(74 |63 4.4 5.7 |11.9 4.3 47 [ 7.2 9.7 | 65|64 |80
FGF19 5.6 58|42 (53|65 6.2 51|55 |45 7.9 78|54 72| 44 5.7
FGF3 6.6 |59 (118 65 | 89 [11.0 83|48 (728059 46 5.9 |11.1 45 |11.7| 56 11|57 |67 | 86
FGFR3 47|97 |8288]6.1 53|42 |42|81]43 4.7 8750 6.9 |64 |45 |128| 43|58 |64 |43
FGF4 48|76 (6.3 (95|55 |78 [10.4 4.5 82|53|88|77 |72 4.8 6.0 |11.0 5 46 |11.2| 8.1 9.8 | 65|6.0 |88 41|43
FGFR4 57|54 (8454|7172 5.4 62|55 |53 4.1 44|94 78|63 9.0|50[60 58
FGF8 41|49 (10164 |79 |74 60|41 |56|73|57 46 6.9 |85 10.8| 7.3 10.9| 5.0 | 6.0 | 7.1
RET 64|51 |86|44|65|78 5.6 54|50 55 6.8 |83 10.3| 5.6 71|54 52|60
Age [] under 60 [7] 61-69 [] 70-79 [] above 80 H. pylori [[] negative [[] positive
Sex [[] male [] female F. nucleatum [ ] negative [T positive
Stagng  []stageTt  []stage2  [Mstage7s [ stage T4 TMBscore [ | TMB<20 []21<TMB<50 [H 51<TMB
Metastasis _[H] negatie Il positve MSI status [[] stable [T unstable
l CNV [[Ja<cnv<se [Je<TMB<7.9 [I] 8<TMB |

Figure 1. The clinical and pathological characteristics of the patients in this study. Resected cancer
tissues from gastrectomy were analyzed using TruSight Oncology 500 DNA panel. Tumor mutation
burden, microsatellite instability, and copy number variation calculated by TSO500 local app are listed.
TMB represents the number of somatic variants per megabase of targeted region, and micro-satellite
represents the percentage of unstable sites over all identified microsatellite sites. Copy number
variation represents the copy number calculated by the analysis algorithm.

In addition to TMB and MSI, copy number variation was also reported by the TSO500
local app analysis package. Frequent amplification events are shown in Figure 1. Among
these gene copy number gain events, amplification of ERBB2 is the indication for the
anti-HER2 treatment [29]. In our cohort, the amplification event of ERBB2 determined by
TSO500 was found in twenty-four (66.7%) specimens, much higher than the reported 6%
prevalence of HER2-positive gastric cancer in Taiwan. The standard diagnostic methods
for HER2-positive gastric cancer are immunohistochemistry staining and fluorescence in
situ hybridization. This discrepancy in the prevalence of HER2 amplification, hence, could
arise from the different sensitivities of detection methods. Alternatively, it is also possible
that the protein level is not directly associated with the copy number of ERBB2.

Besides the amplification of ERBB2, we also observed that CCND1, CCNE1, and CDK4
were also frequently amplified. Amplification of these cell cycle regulators likely pushes
cell cycle progression and promotes cancer growth. Particularly, CDK4 was found to be
amplified in nearly all specimens we examined (88.9%). CDK4 is also a therapeutic target,
although anti-CDK4/6 therapy is currently indicated for metastatic breast cancer [30,31].
Whether anti-CDK4/6 therapy provides clinical benefits to gastric cancer patients remains
to be determined. Other frequently amplified genes are members of the fibroblast growth
factors and the receptors. Here, we identified the amplification of FGFR3 and FGFR4.
The oncogenic role of the FGFs and FGFRs in gastric cancer have been previously demon-
strated [32]. Anti-FGFR3 activation mutation therapy is approved for the treatment of
bladder cancer carrying FGFR3 activation mutation, but we did not observe activation
mutation of FGFR3 in these specimens. Hence, whether FGFR amplification in gastric
cancer could be a therapeutic target remains to be investigated.
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All variants with variant allele frequency (VAF) larger than 1% were analyzed for
recurrent features. We first focused on those variants classified as likely pathogenic and
pathogenic in the ClinVar database. Recurrent variants are listed in Figure 2. The analysis
showed that the activation mutation of ERBB2 p.(Arg678GlIn) was identified in stage-1 and
stage-3 specimens that have ERBB2 copy numbers of 5.8 and 5, respectively. Additional
pathogenic mutations, including KRAS p.(Ala59Thr), PIK3CA p.(Thr1025Ala), and PIK3R2
p-(Lys564Glu), were identified in that particular stage-3 specimen, suggesting that the
tumor is refractory to the anti-HER2 treatment [33-35]. On the other hand, the stage-1
specimen carries an additional ERBB3 p.(Val1l04Met) mutation. In addition to this specimen,
two other stage-4 specimens carry the ERBB3 p.(GIn809Arg) mutation. HER3 is known
to form a heterodimer with HER2 and may also contribute to treatment resistance [36,37],
although the precise role of ERBB3 in gastric cancer remains to be investigated.

I Staging

F. nucleatum

ERBB2 ¢.2033G>A p.(Arg678GIn)

ERBB3 ¢.2426A>G p.(GIn809Arg)

53% 13%

ERBB3 ¢.310G>A p.(Val104Met)

KRAS ¢.175G>A p.(Ala59Thr)

PIK3CA ¢.1634A>C p.(Glu545Ala)

2.0%

2.0%| 1.4 4.9% 1.8% 1.9% 2.1% 2.0%|2.5%

PIK3CA ¢.3073A>G p.(Thr1025Ala)

PIK3CA c.3140A>G p.(His1047Arg)

71% 26%

PIK3R2 ¢.1690A>G p.(Lys564Glu)

TP53 ¢.1024C>T p.(Arg342Ter)

2.3%

TP53 c.469G>T p.(Val157Phe)

TP53 ¢.493C>T p.(GIn165Ter)

38%

TP53 ¢.537T>A p.(His179GIn)

29%

TP53 ¢.610G>T p.(Glu204Ter)

TP53 ¢.637C>T p.(Arg213Ter)

5.7% 23%

TP53 ¢.659A>C p.(Tyr220Ser)

9.4%

TP53 ¢.733G>T p.(Gly245Cys)

TP53 ¢.737T>C p.(Met246Thr)

6.3%

TP53 c.743G>A p.(Arg248Gin)

46%

TP53 c.759del p.(lle254SerfsTera1)

13%

TP53 c.764_766del p.(lle255del)

15%

TP53 c.783-1G>A

19%

TP53 ¢.817C>T p.(Arg273Cys)

ovctaton ] conlctng tr

ion [] likely

i D pathogenic ‘

Figure 2. The pathological and likely pathogenic variants identified in the study cohort.

In addition to ERBB2 and ERBB3 mutations, PIK3CA was also frequently activated in
our study cohort. Amongst the specimens with PIK3CA p.(Glu545Ala) mutation, one with
PIK3CA p.(Thr1025Ala) and two with PIK3CA p.(His1047Arg) were identified. The speci-
mens with activated PIK3CA accounted for one-third of analyzed specimens. The PIK3CA
activation mutations are the indication for the PIK3CA inhibitor regimen for advanced
or metastatic breast cancer, but their efficacy on PIK3CA-mutated gastric cancer is still
under investigation. Besides cancer-driving activation mutations, frequent loss-of-function
of TP53 was identified in our cohort as well. In fifteen specimens, there were eleven
pathogenic, three likely pathogenic, and one VUS (variant of uncertain significance; con-
flicting interpretation), TP53 mutations. Activated PIK3CA mutations and loss-of-function
of TP53 were concurrently found in seven specimens. These mutations appeared to not be
associated with the status of F. nucleatum infection since approximately equal numbers of F.
nucleatum-positive and F. nucleatum-negative specimens carry these mutations.

The TSO500 local app analyzed the variants in the SNV /INDEL VCEF file and filtered
against the population database, including GnomAD and 1000 Genomes, to produce the list
of variants used to calculate TMB. We next investigated whether those variants identified in
the specimens have common features. The analysis result is shown in Figure 3. The finding
demonstrates that many recurrent mutations were found in multiple specimens, regardless
of the status of F. nucleatum infection. Among these mutations, the missense mutations
and the frameshifting mutations are expected to produce novel protein sequences and
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could be processed and presented to the adapted immune system. Hence, the variants
identified here could be further examined for their potential to stimulate an anti-tumor
immune response.

= 2 [ i e [ 2 1 M- EEE B . s .
Gene | gencmic location | HGVS
MTOR | chei:11190636 | 5562 S56NnsCAA  p(Giu1854_Sar1855neGin) 0.0% 125%) 20% [ 10% 0.2% | 2% 1% o ’ma. s osxn[1en] | ]
MTOR | chri:11190638 | c.5560nl ) osx|  [ow 2w [ fozw 2w 12% 0% % 0% | 14%
SPTA1 chr1:158653241 | ¢310A>T P{Lys104Tar) 12% | 10% | 10% | | 12% |
ABL2  |che1:170077450 | c2010p b (ProfsTrrisTerb2) 5% | 10% | 12% 6% % 5% s1%| 1% 52% | 04%
ABL2 | ch1:179078191 | 221008l P (G737 A Ter20) 6% | 1% 5% o owslose| | | 7% 4% | 04%
MOMA | chv1:204518617 | c1280T>A PAANATLystsTer29) 23% | 29% | 23% | 10w 1% | 7%
RANBP2 | chr2:109383825 | co830C>T b (Proz2TLew) 5.5% 6% 0% sen| | 61% 79%
RANBP2 | cv2:109383888 | c6890M>T piAsp2298Val) 6.7% 6.5% T0% 63% |6.6% I‘“ sS1% 63%
POK1 C2 173420919 | cA1G>A p(Glyl4Asp) 0% % TN | 26% 1o
SFIB1  |che2108257803 | c.3849C>T p(Pro1271Ter) 6% | 19% [0.9% [s.4% 73% | |
EPHBY | ched134873115 | c419G>C P.(GlaT3sp) 11% [8.9% [8.9% 71% | [
P63 3189455603 | ©139_1400.0 PAASOATLystsTer29) 21% | 22% | 16% | 18% . 65%
DHX1S  |chva24572298 | ¢680G>C p(Ser227The) 7o [1ow [7on| | a9% [
POGFRA |chva 55152086 | €2518G>A P (AI8B40TH) 16% | 1% 1% A%
RF2 chrd: 185320122 | cB41T>C plvaziaNa) 5.6% |5.8% | 1% 1% [59% T2% 64% 54% 58% 55% 7% "%
ROS!  |ched: 117708088 | c2110G>C P VOITOTLew) 1% | 19% | 15% [ 59% 8% [ "%
NKX31 | chvB23540357 | c46G>C p(Oly16A1g) s [7.9% [s9% 54 82% 74%
SMC3 | chr10:112343228 | c009GT PAGNZITTer) 205 | 1% | 19% [s.0% 0.5% 18% 6%
ATM chet1:108173659 | c5399A°G P{Gl1800GY) 7% | 10% | 18% 14% o o 52% e
ATM ch11:108139167 | ¢. 2669T>A P.{LewsBIOGIN) 15% |54 [7.5% 5.6% 2.1% |
KOMSA | chr12472185 | co15_616msT P (G0 Ter) 5% "% 6%
B 1591303442 | < 115408l PAThIBStfsTer7) 12% | 19% 1% | 1% 1% 12% o Il
PLCG2 | chv16:81953246 | €2212G>T p(OW738Ter) s | 5% a5%
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Figure 3. The variants in the SNV /INDEL identified in the specimens share common features.

The hypothesis that F. nucleatum increases mutation burden was then examined using
the TMB reported by the TSO500 local app. Analysis was performed to examine the
TMB between the F. nucleatum-positive and F. nucleatum-negative specimens. The result
of statistical significance was achieved when all specimens of all stages were included for
analysis (p = 0.0309), specimens of stages 2 to 4 (p = 0.0011), or specimens of stages 3 and
4 (p = 0.0281) were included for analysis (Figure 4). The analysis clearly demonstrated
that the F. nucleatum-positive specimens indeed have higher TMB than the F. nucleatum-
negative specimens.

We then analyzed the association between TMB, F. nucleatum infection, and patients’
survival. When the specimens were stratified into two groups using the status of F. nuclea-
tum infection, the survival was significantly worse in the group positive with F. nucleatum
infection (Figure 5a). The result is consistent with our previous study that F. nucleatum is
a poor survival factor. The median TMB of all specimens in this study cohort was 45.5.
Hence, we used TMB 50 as the stratification criteria to stratify the patients. The survival
analysis showed that the prognosis of the patients with TMB > 50 was significantly poorer
than in patients with lower TMB (Figure 5b). The status of F. nucleatum infection and TMB
were further combined to stratify the patients into four groups for analysis. The results
showed that patients without F. nucleatum infection and TMB < 50 could expect an excellent
prognosis (Figure 5c). On the other hand, F. nucleatum infection and TMB > 50 each exerted
a slight impact on patient survival, but the number of specimens was not large enough
to reach a statistical and conclusive result. Strikingly, the survival curve of the patients
positive for F. nucleatum infection and TMB > 50 decreased precipitously. Hence, our results
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clearly show that the combination of F. nucleatum and TMB served as an effective biomarker
for gastric cancer prognosis.
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Figure 4. The statistical analysis of TMB between the F. nucleatum-positive and F. nucleatum-
negative specimens. (A) All specimens of all stages were included for analysis (Fn— group n = 20,
Fn+ group n = 16). (B) Specimens of stages 2 to 4 were included for analysis (Fn— group n = 12,
Fn+ group n = 13). (C) Specimens of stages 3 and 4 were included for analysis (Fn— group n =9,
Fn+ group n = 10).
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Figure 5. The Kaplan-Meier analysis of the patients. (a) The analysis carried out by stratifying the
patients into the F. nucleatum-negative and -positive groups. (b) The analysis carried out by stratifying
the patients into the TMB < 50 and TMB > 50 groups. (c) The patients were striated into four groups
for survival analysis according to the status of F. nucleatum and TMB. The statistical significance was
obtained between the patient without F. nucleatum infection and TMB <50 and those with F. nucleatum
infection and TMB > 50.

4. Discussion

The interaction between microbiota and host cells plays a pivotal role in cancer de-
velopment and progression. Besides H. pylori, F. nucleatum has been demonstrated to be
associated with poor clinical prognosis of gastric cancer. In this report, we further showed
that F. nucleatum promotes the accumulation of tumor mutations in gastric cancer. Analy-
sis of our study cohort using a TSO500 comprehensive panel and the analysis algorithm
indicated that TMB 50 could serve as an effective cut-off to predict the survival of the
patients. In addition, TMB augments the survival prediction power of F. nucleatum, and
these two factors together form a compound biomarker for poor prognosis with extremely
effective prediction power. However, the size and population characteristics of the study
cohort were limited, so it is unclear whether similar observations can be made in other
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patient populations. In addition, the findings are correlational, and the underlying mecha-
nism remains to be illuminated. Our studies, nevertheless, provide observational evidence
to suggest how E. nucleatum plays a role in gastric cancer. First, the patients infected with H.
pylori have a higher risk of secondary F. nucleatum infection, likely due to the alternation
of a gastric environment that favors F. nucleatum colonization. According to our study,
only three patients were infected with F. nucleatum in the absence of H. pylori infection,
and approximately one-third of the thirty-three H. pylori-positive patients were infected
with F. nucleatum. In the mouse model, F. nucleatum was unable to consistently colonize the
gastric epithelium [38], supporting the conjecture that pre-colonization of H. pylori could
be a precondition for F. nucleatum colonization.

Mutation profiling shows a mismatch between clinical pathogenic mutations with
the F. nucleatum infection status. This finding suggests that F. nucleatum does not promote
cancer aggressiveness by inducing specific cancer-driving mutations. In contrast to the
incidental arising of specific cancer-driving mutations, the analysis reveals a strong correla-
tion between F. nucleatum and high TMB (>50). The survival analysis clearly indicates that
high TMB predicts poor prognosis, suggesting that high TMB is associated with increased
aggressiveness. This pathogenic effect could be mediated through the release of genotoxic
hydrogen sulfide. On the other hand, it could be possible that F. nucleatum exerts additional
pathogenic effects to further increase the aggressiveness and, likely, the metastasis poten-
tial of gastric cancer. One such mechanism is through the suppression of the anti-tumor
response [16,39]. F. nucleatum has been shown to modulate the immune response in colorec-
tal cancer [40] and is correlated with a better response of immune checkpoint inhibitors
through the upregulation of PD-L1 in cancer cells [41]. Hence, F. nucleatum infection could
alter the tumor microenvironment in a way that allows rapid evolution and escape of the
cancer cells.

For gastric cancer treatment, the majority of patients would receive gastrectomy to
remove the lesion. However, the recurrence rate is high, and the prognosis of gastric cancer
remains relatively poor. Anti-HER?2 treatment is the standard treatment regimen for those
HER2-positive gastric cancer patients [29]. Our analysis showed that ERBB2 and ERBB3
were either amplified or activated in a significant portion of specimens. Furthermore, one
of the downstream pathways of HER2 is the PI3K-AKT-mTOR pathway. Our finding that
the PIK3CA activation mutation is found in a relatively high percentage of specimens
suggests that the PI3K-AKT-mTOR pathway may be frequently activated to bypass HER2
activation [33]. Together, activation of the HER2 signaling could be one of the common
oncogenic mechanisms in gastric cancer. If so, restoring the sensitivity by targeting activated
HER? or its downstream pathway should provide clinical benefits to those HER2 treatment-
refractory patients.

In addition to targeted therapy, immune checkpoint inhibitor immunotherapy was
approved by FDA to treat advanced gastric cancer. In 2019, immunotherapy for gastric
cancer was included in the reimbursement plan of Taiwan National Health Insurance.
However, since the overall response rate for liver and gastric cancers was less than 20%,
the reimbursement plan was revised to remove liver and gastric cancers from the reim-
bursement plan in just one year. It is likely that the low response rate of immunotherapy
was due to the lack of effective inclusion criteria. Hence, it is essential to search for a
more effective predictive biomarker for the immunotherapy of gastric cancer. TMB has
been investigated as a predictive biomarker for clinical response to immune checkpoint
inhibitor immunotherapy. High TMB is associated with clinical response in melanoma and
lung cancers, but the evidence for the usefulness of TMB in guiding the immunotherapy
of gastric cancer was promising but remained inconclusive [42-44]. It was shown that
the gut microbiota is associated with the response and toxicity of immune checkpoint
inhibitor treatment. Similarly, the gastric cancer-associated microbiota may also play a role
in response to immunotherapy [45-47].
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5. Conclusions

Future investigation is required to examine whether F. nucleatum could augment TMB
to more effectively identify the patients who will benefit from immunotherapy. On the
other hand, eradication of F. nucleatum could provide clinical benefits and meaningfully
extend the survival of the patients.
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