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Simple Summary: Endometriosis is a risk factor for some histologic types of ovarian cancer de-
fined as endometriosis-associated ovarian cancers (EAOC). Although the mechanism promoting
the carcinogenesis leading from endometriosis into the EAOC has been not completely known, the
possible role of endometriosis stem cells (ESCs) in this process may be important and is discussed
in this article.

Abstract: Endometriosis is a serious recurrent disease impairing the quality of life and fertility,
and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated
ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for
the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources
have been described. The similarly disturbed expression of several genes, miRNAs, galectins and
chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer.
The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated.
Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the
EAOC are not completely known, they have been discussed in several articles. However, the role of
endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs
may be a main target for the carcinogenesis of EAOC and present the possible sequence of events
resulting finally in the development of EAOC.

Keywords: endometriosis; endometriosis stem cells; stem cells; endometriosis-associated ovarian
cancer; ovarian cancer

1. Introduction

Endometriosis is an inflammatory, estrogen-dependent disease characterized by the
presence of both endometrial epithelium and stroma outside the uterine cavity [1]. The term
“endometriosis implant”, “endometriosis focus” or “endometriosis lesion” is histologically
identical and exchangeable with the term “ectopic endometrium” and is used in this context
further in the text. The term “eutopic endometrium” characterizes the endometrial tissue
localized normally inside the uterine cavity. The real frequency of endometriosis in the
population of reproductive-age women is unknown but estimated to be approximately
10%. However, it is much more frequent in a population of infertile women (estimations
vary from 20–50%) [2]. According to the localization endometriosis could be classified as
peritoneal, ovarian (endometriotic or chocolate cysts), deep-infiltrating endometriosis DIE
(inter-organ spaces or organ walls usually in the pelvis), endometriosis localized in distant
places (i.e., lungs, brain, nose) and iatrogenic endometriosis of abdominal wall in the
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proximity of the scar after cesarean section [3,4]. The typical syndromes of endometriosis
are dysmenorrhoea and painful intercourses, however, up to 25% of affected patients are
asymptomatic [5]. Endometriosis also impairs fertility, especially when presented in an
advanced stage which negatively influences oocyte quality, tube motility and implantation
environment [6]. The predisposition to endometriosis seems to be hereditary, as female
first-degree relatives of patients with recognized endometriosis have a six times higher risk
for the disease [7]. Genome-wide associated studies (GWAS)s identified single-nucleotide
polymorphisms (SNPs) associated with endometriosis risk; [8–10]. The identified loci-
containing genes were responsible for stem cell function (WNT4), ovulation (FSHB, ESR1),
and estrogen signaling (ESR1, GREB1, CCDC170, CYP2C19) [3]. These associations were
also noticed for both breast and ovarian cancer. However, no germline mutations of
these genes have been noted in familial cases of endometriosis. It seems that the pattern
of inheritance is not dependent on a single gene. Instead, it seems that the etiology
is multifactorial and genetic, epigenetic and environmental factors all contribute to the
occurrence and progression of the disease [11].

An association between endometriosis and increased risk for ovarian cancer has been
demonstrated by a large registry study of Swedish women. The standardized incidence
ratio SIR was 1.9 for women with a follow-up exceeding 10 years, and the risk was higher
in patients with early diagnosed or long-lasting endometriosis (SIR 2.01 and 2.23, respec-
tively) [12,13]. Another large epidemiological study found an increased risk for ovarian
cancer with an odds ratio OR 1.46, and a significant association between endometriosis and
defined histological sub-types of ovarian cancer, mainly clear-cell ovarian cancer (CCOC)
OR 3.05, endometroid ovarian cancer (ENOC) OR 2.04 and finally low-grade serous ovar-
ian cancer (LGSOC) OR 2.11. The history of endometriosis is associated with a lifetime
risk of 1.5% of developing these types of cancer [14]. However, endometriosis is not a
risk factor for high-grade serous ovarian cancer (HGSOC) and mucinous ovarian cancer,
which suggests a different etiology of these tumors. In the group of patients operated on
because of CCOC or ENOC, the incidence of concomitant endometriosis was 26% and
21%, respectively, while for other ovarian cancer types incidence did not exceed 6% [15].
The atypical endometriosis in ovarian cysts has been suggested as a precursor lesion for
both CCOC and ENOC [16,17]. Another possibility is the malignant transformation of
endometriotic lesions localized on the ovarian surface or the malignant transformation of
tubal endometriosis [18]. The coexistence of tubal endometriosis and endosalpingiosis (the
presence of ectopic tubal epithelium) was also found to be a risk factor for EAOC [19].

The etiology of endometriosis has not been completely elucidated. The most accepted
theory has been proposed by Sampson, who suggested that retrograde menstruation
transported exfoliated endometrial cells into the peritoneal cavity where they were able to
implant and grow to form endometrial lesions [20]. Sampson’s theory explains peritoneal
and ovarian endometriosis, however, does not explain the presence of DIE or endometriosis
in remote localizations, as well as cannot explain endometriosis after the hysterectomy or
in the rare cases of endometriosis in men subjected to the hormonal treatment of prostate
or bladder cancer [21–23]. Lymphatic or hematogenous spread of endometriosis cells could
explain DIE or remote localizations, but in the remaining cases, metaplasia from progenitor
stem cells could be a possible explanation.

The presence of stem cells inside the endometrium and endometriotic lesions, and the
connection between endometriosis and EAOC cancers pose the question about the possible
involvement of endometriosis stem cells in the carcinogenesis of EAOC tumors.

2. Stem Cells Inside the Endometrium

Adult stem cells are multipotent cells, which means that they are capable to differ-
entiate into several but not all cell types (usually within the same germ lineage) and to
renew their own population. The human endometrium regenerates in the menstrual cycle
as well as after labor, which indicates the presence of the cell population having stem cell
properties. The characterization of this population has not been well defined, however,
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there are several candidate populations described. Endometrial stem cells could be de-
rived either from adult stem cells residing locally inside the endometrium or from bone
marrow-derived stem cells which home the endometrium in response to physiological
(menstruation) or pathological injury [24].

2.1. Epithelial Stem Cells

The evidence of putative endometrial and epithelial stem cells was first shown by
Chan et al. in 2004 [25]. They described small populations of cells present inside endome-
trial epithelium and stroma and comprising 0.22% and 1.25% of cells, respectively. These
populations showed clonogenicity and regenerative properties. Transforming-growth
factor-α (TGF-α), epidermal growth factor (EGF), platelet-derived growth factor (PDGF),
leukemia-inhibitory factor (LIF), hepatocyte growth factor (HGF), stem cell factor (SCF)
and insulin-like growth factor-1 (IGF-1) supported clonogenicity of epithelial cells, while
TGF-α, EGF, PDGF and basic fibroblast growth factor (bFGF) supported clonogenic stromal
cells [25]. Clonogenic stromal cell cultures contained both fibroblast and myofibroblast cells.
Gargett et al. described the presence of epithelial EpCAM+ progenitor cells showing signif-
icant clonogenicity and the ability to reconstitute epithelial glandular pattern [26]. These
cells possessed self-renewal capability, high proliferative potential and were rather unipo-
tential. Similar populations of epithelial N-cadherin+, stage-specific embryonic antigen-1
(SSEA-1/CD15)+ or Axin2+ stem cells/ progenitors capable to form glandular lineages
have been described by others [27,28]. Further studies showed that endometrium con-
tained the progenitor cells possessing stem cell properties and contributed to endometrial
growth which was characterized by the presence of stemness markers including transcrip-
tion factor OCT-4, CD117, CD34 and endometrial carcinoma protein Musashi-1 [29–36].
Molecules OCT-4 and CD117 are considered stemness-related markers for many different
cells [37]. Marker CD34 is expressed on both endothelial and epithelial progenitors, and
some mesenchymal stem cells (MSCs) [30,31,38,39].

2.2. Perivascular Progenitor/Stem CD34+KLF-4+ Cells

Another marker of stem endometrial cells could be the transcription factor Kruppel-
like factor-4 (KLF-4) found to be up-regulated in some progenitor CD34+ cells [38]. The
population of CD34+KLF-4+ progenitor/stem cells located inside endometrial stroma in
perivascular regions has been noticed. These cells proliferate vigorously and migrate to
the sites of endometrial injury [40]. Small ubiquitin-like modifiers (SUMO) are a group
of proteins that through covalent attachment to different proteins (called SUMOylation)
are capable to modify their function, mainly in processes of intracellular transport, tran-
scription regulation, apoptosis and cell proliferation. SUMOylation is reversed by SUMO
endopeptidases (SENPs) [41–43]. SUMOylation has been connected to the regulation of
stemness by influencing transcription factors OCT-4, SOX-2 and NANOG and could be
engaged in endometrium decidualization [44–46]. SUMOylation of estrogen receptor-α
(ER-α) up-regulates proliferative activity of CD34+KLF-4+ progenitor/stem cells and sup-
ports endometrial regeneration [40]. SENP1deletion increases ER-α SUMOylation resulting
in endometrial hyperplasia or endometrial cancer as shown in mice with a stromal SM22α-
specific SENP1 deletion (SENP1 smKO). Moreover, in SENP1smKO mice, delayed oocyte
growth and follicle maturation were observed [47].

2.3. “Side Population” Cells

Cells of stem-like properties have been also isolated from short-time cultured endome-
trial cells and characterized as classical “side population” (SP) cells. This population is
defined as a population of cells displaying low Hoechst-33342 dye fluorescence in cyto-
metric analysis and possessing the functional properties of recovery of the tissue of cell
origin [48]. Human endometrium contains approximately 1–7% of SP cells [33]. Studies
indicated that SP cells are more heterogenic than initially has been thought, and originate
from the endothelial lineage (CD31+), hematopoietic lineage (CD34+CD45+), epithelial
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lineage (EMA+) and mesenchymal lineage (CD90+CD105+CD146+) [49,50]. Endometrial SP
cells were characterized as having either epithelial or stromal origin. Epithelium-originated
SP cells indicated CD9+CD90+CD105+CD73+ CD45+CD34+CD31+CD133+STRO-1+ pheno-
type and capability to form adipocytes and osteocytes. Stroma-originated SP cells showed
CD90+CD73+CD45+ CD34+CD31+CD133+STRO-1+Vimentin+ phenotype and also differ-
entiated to adipocytes or osteocytes [50]. Another population of endometrial SP cells was
phenotyped as CD9−CD13−CD45−CD34−ABCG2+ cells and were isolated in the high-
est numbers during menstruation and from early proliferative phase endometrium [51].
In vitro differentiation of endometrial SP cells resulted in the growth of CD13+ stromal
endometrial cells, CD31+ endothelial cells and cytokeratin+ endometrial epithelial cells [52].
In the xenotransplantation model endometrial SP cells were able to reconstitute endometrial
tissues in NOD/SCID/γ(c)null mice including stromal, epithelial and vascular compo-
nents [53]. Endometrial SP ABCG2+ cells were localized not only inside the basalis layer
of endometrium but also in its functional layer, and were preferentially situated in small
capillaries which could suggest their bone-marrow origin [51]. The distribution of estrogen
receptors differs between endometrial finally differentiated cells and endometrial SP cells.
While differentiated cells express ER-α receptor, SP cells show mainly the expression of
ER-β (similarly to bone marrow-derived endothelial progenitor cells) [54]. The highly
ER-β expressive endometrial SP cells could be involved in the pathogenesis of aggressive
endometrial adenocarcinomas as well as in endometriosis, as they show remarkable pro-
liferative, migratory and angiogenic activity [55,56]. Aldehyde dehydrogenases (ALDH)
are considered markers of both normal tissue and CSCs. ALDH1A1 and ALDH1A3 are
expressed in the epithelium of the basalis layer of eutopic endometrium, showing that
progenitor/stem cells are present in eutopic endometrium and play a role in its physiol-
ogy [57]. The identification of cells with high ALDH expression is associated with poor
outcomes in several gynecologic malignancies [58]. Because ALDH isoforms contribute to
the stemness of cancer cells, therapies using different ALDH inhibitors to target CSCs are
needed.

2.4. Bone Marrow-Derived Stem Cells (BMDSCs)

Another population of endometrial stem cells is the bone marrow-derived stem cells
(BMDSCs) [26]. The presence of this population was confirmed in the endometrium of
bone marrow human female recipients and in a mouse model where recipient female mice
transplanted with the bone marrow-derived from male donors showed the Y chromosome-
positive BMDSCs [59,60]. The BMDSCs constituted around 1–8% of epithelial and 8–10% of
stromal cells in the endometrium, respectively [61]. They were recruited toward the sites of
endometrial injury and were probably responsible for the regrowth and regenerative prop-
erties of the endometrium [62]. MSCs are an example of such BMDSCs multipotent cells
which have been identified in the bone marrow and endometrium [26,63,64]. The presence of
stromal cells of MSCs phenotype (CD29+CD44+CD73+CD90+CD105+CD140b+CD146+CD31-
CD34-CD45-) was first observed by Gargett et al. [26]. The cells were multipotent and
differentiated into adipocytes, chondrocytes, myocytes and osteocytes. Gurung et al. have
described the population of perivascular CD146+PDGFRβ+, known also as CD146+CD140b+

cells showing the characteristics of MSCs with the same phenotype and differentiation
capability as the stromal cells described by Garrett et al. [65]. Resident perivascular cells
like CD34+KLF-4+ or CD146+PDGFRβ+ could both be the source of endometrial stem
cells [40]. CD146+PDGFRβ+ cells express strongly genes associated with angiogenesis,
hypoxia, steroid hormone response, inflammation, and stemness (NOTCH, Hedgehog,
IGF) [66]. Interleukin-6, CXCL1 and CXCL5 increase the proliferation and self-renewal
potential of CD146+PDGFRβ+ cells [67]. A novel marker of endometrial MSCs is the sushi
domain containing 2 (SUSD2+) molecules. The SUSD2+ MSCs are localized in perivascular
space in both basal and functional layers of the endometrium. They express MSCs mark-
ers, like CD29, CD44, CD73, CD90, CD105, CD117, CD140b, CD146 and STRO-1, while
lacking the expression of CD31 and CD45 [68]. They can differentiate into adipocytes, my-
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ocytes, chondrocytes, osteocytes and endothelial cells. SUSD2+ MSCs cells play important
role in the decidualization of the endometrium [69]. While TGF-β inhibits proliferation
and colony-forming efficiency of SUSD2+ MSCs cells, Sonic hedgehog (SHH) signaling
augments the regenerative abilities of these cells [70,71]. SUSD2+ MSCs cells could effec-
tively influence immunity. They inhibit the maturation of dendritic cells (DCs), stimulate
tolerogenic CD4+CD25+FoxP3+ T-regulatory cells (Tregs), CD19+CD10+ B-regulatory cells
(Bregs) and M2-type macrophages. They also decrease the secretion of pro-inflammatory
cytokines, like IL-1β, TNF-α and IL-6 [51]. In the mice model, the treatment of Asherman’s
syndrome was performed using the BMDSCs, followed by a successful pregnancy in 90%
of treated animals vs. 30% of untreated [72]. An experimental treatment has also already
been conducted in women with Asherman’s syndrome, with a very promising pregnancy
rate [73].

2.5. Menstrual Stem Cells (MeSCs)

The most active part of the endometrium in the context of regenerative ability is the
basalis layer of the endometrium which stays unshed during the menstrual cycle, however,
endometrium-derived stem cells (EDSCs) were found also in the menstrual blood [74].
Even after menopause, a small population of stromal cells with MSC properties can be
found [75]. The phenotype of menstrual stem cells—MeSCs is characterized by the presence
of MSCs and stem cell markers like CD9, CD29, CD41a, CD44, CD59, CD73, CD90, CD105,
SSEA-4 and NOTCH1, while their multipotent functions were confirmed by differentiation
into endothelial, pancreatic, hepatic, adipocytic and neurocytic cells [76]. EDSCs are also
capable to secrete growth factors including PDGF, EGF, vascular-endothelial growth factor
(VEGF) and metalloproteinases, as well as indicate pro-angiogenic potential [77]. EDSCs
have a higher proliferative potential than BMDSCs [54]. Similarly to SUSD2+ cells, EDSCs
have a pro-tolerogenic and inhibitory activity on immune cells [78,79].

In summary, the landscape of stem/stem-like cells in the endometrium is quite com-
plex. Data are supporting the evidence of both intrauterine and extrauterine unipotent or
multipotent cells. They are localized in the endometrial epithelium and inside the stroma.
The epithelial cells have been identified as SP epithelial-originated endometrial cells or ep-
ithelial progenitor/stem cells. The first ones behave as multipotent cells having phenotype
suggesting extrauterine hematopoietic or vascular-associated origin (CD31+CD34+CD45+).
The second ones seem to be unipotent (only epithelial glandular lineages) intrauterine cells.
Stroma-derived stem cells have characteristics of either fibroblasts (intrauterine origin) or
bone marrow MSCs and are multipotent. They reside inside the stromal compartment of
the endometrium, and in the case of bone marrow-derived cells, they collect exclusively
around or even inside microvessels.

3. Stem Cells and Endometriosis
3.1. Endometrium-Derived Stem Cells

Endometrium-derived stem cells could be responsible for the generation of endometrio-
sis being shed during menstruation into the peritoneal cavity, where they could be im-
planted, or transported via hematogenous/lymphatic spread. It was noticed that women
with endometriosis showed more progenitor stem cells originating from the basalis layer of
endometrium compared to healthy women [80]. Expression of SSEA-1 in ectopic epithelium
corresponds to the expression observed in the basalis layer of eutopic endometrium that
confirms retrograde menstruation theory [81].

The eutopic endometrium of women with endometriosis in the mid-secretory phase
expressed significantly higher levels of CD44+ cells including CD44v6 molecules. The
concentration of soluble CD44 in the serum and endometrial fluid of endometriosis patients
was higher than that of healthy women [82]. In the mouse model of endometriosis, the
role of epigenetic regulation of B-cell lymphoma 9 (BCL9)/Wnt/β-catenin/CD44 signaling
pathway indicated, that exosomes containing miR-30c were able to inhibit invasion and
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migration of endometrial epithelial cells in ectopic lesions by blocking BCL9/Wnt/CD44
axis [83].

Expression of stemness marker OCT-4 was confirmed in epithelial cells of endometri-
otic lesions and was found to be increased in endometriosis compared to ectopic en-
dometrium (32% vs. 3.5%, respectively) [84,85]. OCT-4 mRNA expression was also
increased in endometriosis compared to eutopic endometrium in patients and healthy
controls. Moreover, mRNA expression was correlated with the expression of several
migration-associated genes [86]. Another transcription factor associated with cellular
stemness, SOX-2, was found to be highly expressed in the stromal component of ectopic
endometrium. Increased expression of RNA-binding protein Musashi-1 associated with the
proliferation of neural and epithelial progenitor cells was noted inside ectopic endometrial
lesions [35]. Other markers of cell stemness, CD117, NANOG, NOTCH and NUMB were
also up-regulated in endometriosis implants [84,85]. The cells of stem cell properties were
isolated from ovarian endometriomas. They expressed stemness markers (SALL4, CD133
and MSI-1 molecules). Cells originated from both epithelial (EpCAM+cytokeratin+α6-
integrin+) and stromal (CD90+CD10+ fibroblast markers) lineage (0.09% and 0.13% of
endometrioma cells, respectively) and showed expression of ER-α and ER-β receptors.
Cells showed colony-forming and self-renewal capacity in functional tests. Moreover,
endometriotic stromal cells were able to differentiate in vitro into mesenchymal cell lin-
eages, including adipogenic, myogenic, osteogenic and chondrogenic ones [25]. Isolated
from ovarian endometrioma MSCs were stimulated by 17β-estradiol to form colonies and
proliferate. Moreover, upon stimulation, they showed increased expression of OCT-4,
CD133 and ALDH1 stem markers. Expression of the nuclear transport receptor importin-13
which is responsible for stem cell differentiation and transcriptional regulation of cellular
response against hypoxia was found to be increased in ectopic endometrium [87]. Recent
investigations showed evidence of ALDH1 family molecules in endometriotic lesions.
ALDH1A1, ALDH1A2 and ALDH1A3 molecules were expressed in the epithelium of
ovarian endometrioma posing the possibility that ALDH1+ stem cells could play a role in
endometriosis pathophysiology [57]. Immunoreactivity of endometriotic epithelial cells
to EpCAM and N-cadherin was significantly higher compared to eutopic endometrium,
which suggests that overexpression of EpCAM is engaged in Epithelial-Mesenchymal
Transition (EMT) in endometriosis [88].

Menstrual stem cells (MeSCs) from women with endometriosis indicate increased
proliferative and invasive activity compared to MeSCs of healthy women. MeSCs from en-
dometriosis patients show also up-regulated CD9, CD10, CD29, indoleamine 2,3-dioxygenase-1
(IDO-1), COX-2, IL10, IFN-γ and monocyte chemoattractant protein-1 (MCP-1) expres-
sion [89].

3.2. Tubal-Derived Stem Cells

Endometriosis of fallopian tubes is a frequent reason for tubal obstruction, adhesions
and hydrosalpinx resulting in considerable subfertility. The occurrence of tubal endometrio-
sis is estimated to be 0.3% to 14% [90,91]. Paik et al. first identified epithelial stem-like cells
that were concentrated in the distal end of the tubes and expressed CD44, EpCAM and
integrin α 6 [92]. These cells were capable of multi-lineage differentiation and self-renewal
in vitro. The fimbrial part of the tubes contains a population of cells expressing markers of
stemness including leucine-rich repeat-containing G-protein-coupled receptor-5 (LGR-5),
which is a known marker of stem cells in various epithelia, as well as CD44, SSEA-4 and
ALDH molecules. These cells can recapitulate the epithelium of the fimbrial end of the tube
and are subject to hormonal regulation by estrogen and progesterone [93,94]. Inflammatory
reaction in the tubes and the pelvis induces the proliferation of the epithelium inside
the tubes, stimulates the stemness of epithelial stem cells, and promotes the growth of
tubal endometriosis [95]. Moreover, chronic infection of the fallopian tube organoids with
Chlamydia trachomatis leads to increased epithelial cell proliferation and stemness [95].
Shedding of tubal endometriosis into the peritoneal cavity and ovarian surface could be



Cancers 2023, 15, 111 7 of 39

a risk factor for EAOC, and the importance of stem cells from tubal endometriosis in this
phenomenon could not be excluded [18].

3.3. Bone Marrow-Derived Stem Cells (BMDSCs)

Another source of stem cells inside endometriotic lesions could be bone marrow which
produces MSCs that circle into peritoneal and remote locations and augment the formation
of endometriotic lesions [96]. Human endometrial MSCs were isolated from both eutopic
and ectopic endometrium in endometriosis patients, however, MSCs from endometriotic
lesions showed increased migration, proliferation, invasiveness and vasculogenic potential
in comparison to processes described in normal endometrium—as mentioned in previous
chapter [97]. Sites of injury and inflammation in the uterus and in endometriosis lesions
attract BMDSCs. The recruitment of BMDSCs stem cells into endometriosis ectopic sites is
dependent on estrogen and is a very effective phenomenon, as ectopic lesions can attract
BMDSCs more than eutopic endometrium [98,99].

BMDSCs secrete cytokines that promote the proliferation of ectopic endometrial le-
sions, which in turn stimulate BMDSCs differentiation [100,101]. Infiltration by both
immune and BMDSC cells is mediated by the pro-inflammatory microenvironment of
peritoneal fluid [102]. Vascularization of endometriotic lesions is mediated at least partly
by endothelial progenitor cells (EPCs) originating from hematopoietic stem cells and bone
marrow progenitors [103]. Mobilization of EPCs occurs under the regulation of VEGF
and fibroblast growth factor (FGF) which are up-regulated in endometriotic implants.
The process is estradiol-dependent [104]. The presence of SUSD2+ MSCs stem cells was
confirmed in endometriotic implants at a higher frequency than in eutopic tissue. They
are engaged in the net of interactions between inflammatory cytokines from peritoneal
fluid (IL-6, IL-8, TNF-α) and indicate increased expression of activin A-specific receptor
(ALK4) and connective tissue growth factor (CTGF). Activin A is a member of TGF-β
cytokine family responsible for the regulation of inflammation, fibrosis and wound repair.
Its expression was revealed in inflammatory and autoimmune diseases, as well as in several
malignancies [105]. CTGF factor plays a role in cell proliferation, migration, angiogen-
esis, wound repair, fibrosis and carcinogenesis [106,107]. There is a strong supposition
that MSCs/activin A/ CTGF network could be at least one of the mediators of peritoneal
inflammation and secondary fibrosis with adhesions formation. Its role in endometriosis-
associated carcinogenesis should also be taken into account. The up-regulated expression
of activin A may be involved in carcinogenesis by reducing TGF-β-mediated signals in-
hibiting cell growth in human endometrial adenocarcinoma tissues [108]. Loss of CTGF
function may be a factor in the carcinogenesis of ovarian cancer in early stages of a tumor,
while in endometrial cancer high CTGF expression was an independent risk factor for a
worse prognosis [109,110]. The molecular pattern of stem cells from ectopic lesions differs
compared to the pattern displayed by stem cells from eutopic endometrium. Ectopic stem
cells showed reduced expression of PTEN, ARID1A and TNF-α, and abnormal expression
of c-kit, HIF-2α and E-cadherin [111]. Down-regulation of PTEN expression was also
frequently observed in both endometroid and clear-cell endometriosis-associated ovarian
cancers [112]. Loss of ARID1A expression was found in high frequency in endometrial
endometroid cancer and in EAOC [113].

3.4. Endomeriosis Stem Cells Movement

Stem cells are also able to move between endometrium and endometriosis lesions.
In the mice model the presence of cells from endometriotic foci of green fluorescent pro-
tein (GFP) transgenic donor mice was confirmed in the ectopic endometrium of recipient
mice [114]. These cells showed a distinct genetic profile compared to normal endometrium,
showing activation of genes responsible for epithelial-to-mesenchymal transition (EMT).
However, stem cells were homing endometrial stroma instead of epithelium, which dis-
rupted the endometrial receptivity through the change in the Wnt-signaling in the cells
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which could have a potentially negative influence on implantation. In humans, advanced
endometriosis is one of the main causes of implantation failure [115].

The traffic of stem cells from bone marrow and between eutopic and ectopic localiza-
tion depends on the function of chemotactic molecules. Endometrial stromal cells express
CXCL12, while BMDSCs express its receptor, CXCR4. The existence of the CXCR4-CXCL12
attracting pathway was confirmed earlier in cancer and places where inflammation or
tissue injury occurred. Signaling via CXCR4-CXCL12 pathway influences the expression
of metalloproteinases and VEGF [116,117]. The function of the CXCR4-CXCL12 pathway
was confirmed in vitro where estradiol-stimulated endometrial stromal cells and BMD-
SCs showed induced expression of chemokines followed by chemoattraction of BMDSCs
towards endometrial stromal cells [55]. The activity of the CXCR4-CXCL12 pathway in
endometriosis foci was significantly increased [118], therefore, endometriosis successfully
competed with eutopic endometrium for the BMDSCs. The endometriotic cells are also
present in the blood of endometriosis patients as circulating endometrial cells (CECs),
which show characteristics of stem-like cells [119].

In summary, endometriotic lesions contain cells of epithelial and stromal lineage show-
ing markers of stemness, like OCT-4, SOX-2, MSI-1, NANOG, NOTCH, NUMB, SALL-4,
CD133 or CD117. There are also bone marrow-derived BMDSCs cells with are attracted in
greater numbers to ectopic than to eutopic endometrium and show increased migration,
proliferation and angiogenic properties. They also orchestrate with the peritoneal net of
inflammatory cytokines and growth factors. The expression of several genes and molecules
responsible for the regulation of endometriotic implant growth is similar in its pattern to
expression observed in both endometrial and endometriosis-associated ovarian cancers.
The components of the epithelial stem cells niche in endometriosis are shown in Figure 1.
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Figure 1. Niche for endometriosis epithelial stem cells Endometriosis epithelial stem cells (SCs) are 
regulated by several components of the endometriotic niche. Immune cells (natural killers (NK), 
Th1 and Th2 lymphocytes, Th17 lymphocytes, T regulatory cells (Tregs) and M1/M2 macrophages) 
are engaged in both elimination and supporting of endometrial lesions and their resultant action 
followed by secretion of cytokines and chemokines has a deep influence on survival of endometri-
osis epithelial SCs. Repeated injury and tissue repair (ReTRIAR) syndrome changes the ECM com-
ponents and promotes fibrosis of implants. Fibrogenesis-mediated changes of gene expression, 
together with a pro-inflammatory environment could account for DNA damage in epithelial SCs. 
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Figure 1. Niche for endometriosis epithelial stem cells Endometriosis epithelial stem cells (SCs) are
regulated by several components of the endometriotic niche. Immune cells (natural killers (NK),
Th1 and Th2 lymphocytes, Th17 lymphocytes, T regulatory cells (Tregs) and M1/M2 macrophages)
are engaged in both elimination and supporting of endometrial lesions and their resultant action
followed by secretion of cytokines and chemokines has a deep influence on survival of endometriosis
epithelial SCs. Repeated injury and tissue repair (ReTRIAR) syndrome changes the ECM components
and promotes fibrosis of implants. Fibrogenesis-mediated changes of gene expression, together with
a pro-inflammatory environment could account for DNA damage in epithelial SCs. The mutational
pressure of oxidative stress and heme metabolism products could depend on the fibrotic status of
the endometriosis lesion. Oxidative stress, hypoxia and iron overload are highly mutagenic for
epithelial SCs. Mesenchymal SCs are a relevant component of epithelial SCs niche. The participation
of mesenchymal SCs in activin-A/ connective tissue growth factor (CTGF) pathway augments
peritoneal inflammation and fibrosis in ectopic endometrial lesions. Disturbances in activin-A/CTGF
pathway may be involved in carcinogenesis. Bone marrow-derived stem cells (BMDSCs) through
cytokine secretion promote proliferation in endometriotic lesions. Estradiol is a hormonal mediator
of mobilization of endothelial progenitor cells into endometrial implants, and in chemoattraction of
BMDSCs into endometriosis implant’s stroma. Estradiol has also a stimulatory effect on inflammation
and proliferation of implants. Finally, the components of diet and environmental toxins could
modulate the function of endometriosis epithelial SCs.
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4. Stem Cells in Endometrial Cancer

Stem cells are difficult to identify in the tissue of high proliferative and regeneration
potential as endometrium. It is also not an easy task in endometrial cancer (EC). Many
different molecules have been studied as markers of stemness in EC. One of them is CD117
(c-KIT) which upon SCF stimulation was shown to have significant proliferative activity
and colony-forming capacity in EC. Other markers of EC stem cells are CD44 and CD55.
CD44 is an adhesion molecule engaged in migration and metastases of EC, and is present
on the cell surface of the spheres composed of CD44+CD133+ stem-like EC cells. CD55 is a
cell surface complement inhibitor, and its high expression on the EC cells characterized the
population of self-renewable and chemo-resistant stem-like cells [120,121]. Another marker,
CD133 also called prominin-1, plays a role in the organization of the cell membrane [120].

EC CD133+ cells possessed more aggressive behavior and showed colony-forming
ability and chemo-resistance. The side population (SP) of EC cells co-expressing ATP-
binding cassette (ABC) transporters (ABCG2) and CD133 was shown to have a high
proliferation rate and stemness features [122]. Endometrial cancer SP cells were also able to
undergo EMT transition [48]. Signaling pathways playing a relevant role for CSCs function
have been identified in EC stem cells. Regulators of NOTCH signaling pathway, MSI-1
protein, as well as expression of OCT-4 and SOX-2 transcription factors were found to be
up-regulated or dysregulated in EC stem cells [123]. SOX2 is responsible for maintaining
stem cell properties and differentiation restriction and was found to be upregulated only in
low-grade EC [123]. Wnt/β-catenin pathway which activation promotes the proliferation
and migration of cells was also up-regulated in EC CSCs [124]. Mutation in this pathway
is generally regarded as a primary driver of carcinogenesis. Another signaling pathway
engaged in the promotion of stemness in EC cells is the Hedgehog pathway. The increased
expression of components of this pathway was noted in EC CSCs. Its aberrant activation
leads to nuclei accumulation in β-catenin [125].

5. Stem Cells in Ovarian Cancer

Several surface cell markers identifying ovarian cancer stem cells (OCSCs) isolated
either from patient samples or experimental animals and cancer cell lines have been
described. Molecule CD44 is a cell-surface glycoprotein that is a receptor for hyaluronic acid
receptor. The population of CD44+ OC cells possesses self-renewal, tumor-initiating and
sphere-forming capacities. Recurrent OC shows higher expression of CD44-positive cells
compared to primary tumors which is correlated with poor prognosis [126]. CD44 exists in
alternatively spliced variants. Between them, CD44v6 was found in excess on OCSCs from
distant metastases indicating metastasis-initiating activity. In patients with FIGO stage I-III
OC distant metastasis-free survival was better in patients with CD44v6-low tumors [127].
CD117 recognizes a population of sphere-forming non-adherent OC identified with the
“side population” of cells. The presence of CD117+ OC cells correlated with resistance
to standard chemotherapy and shorter recurrence intervals in treated patients [128,129].
Double-positive CD44+/CD117+ cells are highly capable to recapitulate the original tumor
after being transplanted into experimental animals [130]. It was found that CD133 mediates
metastatic homing of ovarian cancer implants into the peritoneal tissue. Expression of
intracellular stemness markers OCT4 and SOX2 is higher in CD133+ compared to the
CD133− cells [131]. The correlation between CD133 expression and advanced clinical
stage, presence of ascites, and tumor non-responsiveness to chemotherapy, as well as
patients’ survival, has been observed [132]. EpCAM (+) OC cells have greater tumor-
initiating potential compared to EpCAM (−) cells, and EpCAM expression is increased in
chemo-resistant tumors and correlates with unfavorable outcomes [133]. Another group
of stemness markers is enzymes and intracellular molecules and transcription factors.
Aldehyde dehydrogenase-1 (ALDH1)-positive cell phenotype identifies OCSCs population
possessing self-renewal and stemness properties, and being capable of sphere formation and
restoring the tumor. ALDH-1+ cells were found in both serous and CCOC ovarian cancers
and were related to the worse survival of patients. Tumors exhibiting low expression of
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CD44+ALDH-1+ cells showed a better response to chemotherapy and longer progression-
free survival [134]. Recurrent platinum-resistant ovarian tumors compared to primary
tumors are enriched in the population of CD44+CD133+ALDH1A1+ OCSCs. Similarly,
CD44+/CD24+/EpCAM+ cells show OCSCs properties having increased migratory and
invasive potential and chemo-resistance [135]. Musashi-1 and ALDH1 expression were
significantly higher in HGSOC, mucinous adenocarcinomas and CCOC compared to benign
tumors and normal tissues, as well as in advanced and lymph node metastatic tumors
compared to early stage lymph node-negative tumors [136]. Overexpression of MSI-1
alone is also associated with an unfavorable prognosis in OC patients. Inhibition of MSI-1
function reverses chemo-resistance and promotes apoptosis of cancer cells [137]. Expression
of NANOG in OCSCs cells correlates with clinical stage and high grade, as well as resistance
to standard chemotherapy [138]. Over-expression of SOX2 is related to the stemness of
cells via up-regulation of resistance to apoptosis. In OC SOX2-positive cells were identified
in the tubal epithelium of patients with high-grade OC tumors of poor outcome and in
patients with germline BRCA1/2 mutations [139,140]. Similarly, up-regulation of OCT4
in OCSCs was correlated to tumor progression and chemo-resistance [141]. NANOG,
OCT4 and SOX2 were over-expressed both in tumor tissues and in cellular spheres built
from OCSCs cells circulating inside ascites [127,142]. The higher expression of SUSD2 in
HGSOC ovarian cancer was correlated with worse overall survival, recurrence, platinum
chemoresistance and lymph node metastases. Over-expression of SUSD2 promotes EMT
and metastatic capacity of cancer cells through the regulation of EpCAM [143]. SUSD2 is
one of the Notch3 downstream genes, while high SUSD2 expression is associated with the
OC progression. In Table 1 similarities between stem cells in endometriosis and ovarian
cancer have been shown.

Table 1. Stem cells in endometriosis and ovarian cancer and their role in both pathologies.

SCs Markers in Endometriosis SCs Markers in Ovarian Cancer

Eutopic endometrium of patients with
endometriosis contains increases numbers of

CD44+ cells.
The BCL9/Wnt/CD44 axis is engaged in

growth of endometriotic implants

[82]
[83]

Higher expression of CD44+ cells in recurrent
OC

CD44v6+ OCSCs present in cancer with
increased metastatic potential

Patients with low-CD44v46+ tumors have
better metastasis-free survival

CD44+/CD24+/EpCAM+ cells show OCSCs
properties with increased invasiveness and

chemo-resistance

[126,127,144]

[145]

CD117 is up-regulated in endometriosis
implants [84–86]

CD117+ OC cells correlated with resistance to
chemotherapy and shorter recurrence -free

interval
CD44+/CD117+ cells are able to recapitulate

tumors after transplantation into experimental
animals

[128,129]
[130]

CD133+Musashi-1+ cells were isolated from
ovarian endometrioma [146]

CD133+ correlated with cancer advancement,
ascites, chemo-resistance

Increased expression of Musashi-1 is correlated
to unfavorable prognosis in OC patients

More aggressive and
advanced ovarian tumors have higher
numbers of Musashi-1+ALDH1+ cells

[132]
[137]
[136]

Mesenchymal CD133+OCT-4+ALDH1+ stem
cells were isolated from ovarian

endometrioma
[147] CD44+CD133+ALDH1A1+ OCSCs cells are

present in chemo-resistant recurrent OC [148]
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Table 1. Cont.

SCs Markers in Endometriosis SCs Markers in Ovarian Cancer

ALDH1+ cells were present in endometrioma [57]

ALDH1+ cells are OCSCs population
possessing stemness properties, and being

capable to restore the tumor
ALDH-1+ cells were found in HGSOC and
CCOC ovarian cancers, and were related to

worse survival of patients

[149]
[150]

Expression of SOX-2 is increased inside the
stromal component of endometriotic lesion [35]

Over-expression of SOX2 is related to stemness
of cells and up-regulation of resistance to

apoptosis.
[151,152]

Expression of OCT-4 and OCT-4 mRNA is
increased inside the epithelial component of

endometriotic lesion
[84–86]

Up-regulation of OCT4 in OCSCs was
correlated to tumor progression and

chemo-resistance
[153]

SUSD2+ mesenchymal SCs are more frequent
in endometriotic lesions [51] SUSD2 expression in HGSOC was correlated

with EMT, metastases and chemo-resistance [143]

Mesenchymal SCs in endometriosis
indicated increased expression of activin-A

specific receptor and CTGF.
Upon estrogen stimulation mesenchymal SCs

showed increased expression of OCT-4,
CD133 and ALDH1

[105]
[152]

Up-regulated expression of activin-A and
disturbed CTFG expression may be involved in

carcinogenesis
[108,109]

Immunoreactivity of EpCAM epithelial cells
is increased in ectopic compared to eutopic

endometrium
[88]

EpCAM (+) OC cells have greater
tumor-initiating potential compared to

EpCAM (−) cells
EpCAM expression is increased in

chemo-resistant tumors

[133]

6. ARID1A/PI3K/AKT Pathway in Endometriosis and EAOC

ARID1A is considered a cancer-inhibiting gene that encodes ARID1A protein belong-
ing to the chromatin remodeling complex. It plays an important role in carcinogenesis as a
tumor suppressor. Mutation of ARID1A gene results in reduced expression and dysfunc-
tion of ARID1A protein followed by a change in expression of several genes regulating the
proliferation of cells and change in the activity of PI3K/AKT signaling pathway. Mutations
in the ARID1A gene have been found in various cancers, but are particularly frequent in
CCOC and ENOC, as well as in endometroid and clear-cell endometrial cancers [154,155].
Activation of PI3K/AKT pathway regulates cell proliferation, adhesion and resistance to
apoptosis thus increasing the growth and survival of cancer cells [156].

6.1. ARID1A/PI3K/AKT Pathway in Endometriosis

Mutation of the ARID1A gene was demonstrated in atypical endometriosis originating
from ovarian endometriomas and localized adjacent to ovarian CCOC and ENOC tumors.
Mutations were not present in remote non-atypical endometriotic lesions of the same pa-
tients [136]. However, there is still controversy existing at which stage of endometriosis
ARID1A mutation does occur. Immunohistochemical studies proved a high correlation be-
tween ARID1A gene mutation and loss of ARID1A protein expression in the studied tissue.
Therefore, although the sequencing studies in non-atypical endometriosis are lacking, the
IHC studies could serve as a good approximation of mutational ARID1A gene status. These
studies indicated that loss of ARID1A expression could be shown also in the cases of non-
atypical endometriosis in ovarian endometriomas. The study of Yamamoto et al. showed
that 86% of tumor-associated non-atypical endometriosis and 100% of atypical endometrio-
sis were ARID1A-deficient [157]. Samartzis et al. investigated samples of non-atypical
ovarian and deep-infiltrating endometriosis (DIE) showing the lack of ARID1A expression
in 15% and 5% of endometriomas and DIE, respectively [158]. In Xiao et al. study the
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loss of ARID1A expression was observed in 20% of non-atypical endometriomas [159].
Moreover, as was noticed earlier, ectopic stem cells from endometriotic non-atypical le-
sions showed reduced expression of ARID1A [160]. ARID1A low expression is observed
in regenerating tissues and enhances tissue repair processes. Inactivation or epigenetic
silencing of the ARID1A gene in the epithelial component of endometriosis may result from
chronic inflammation and cyclic regeneration [161,162]. Activation of PI3K/AKT pathway
was described in endometriosis [163]. PI3K/AKT pathway regulates inside endometrium
expression of forehead-box O family FOXO1 protein and insulin growth factor binding
protein-1 (IGFBP-1) which both are engaged in the decidualization of the endometrium.
Increased activation of PI3K/AKT pathway causes reduced decidualization both in en-
dometriotic lesions and in eutopic endometrium of patients with endometriosis [164]. This
mechanism may be responsible for reduced decidualization in response to progestins in
endometriosis [165].

6.2. ARID1A/PI3K/AKT Pathway in EAOC

Somatic mutations of the ARID1A gene was observed in 46–57% of CCOC and in
30–48% of ENOC, respectively [166,167]. Most of the mutations correlated with a loss of
ARID1A expression in IHC—73% of mutated CCOC tumors and 50% of mutated ENOC
tumors, respectively [166]. Mutations of the ARID1A gene are regarded as the main genetic
disturbances present in CCOC and ENOC cancers [168].

Activation of PI3K/AKT pathway is a quite common event in CCOC and ENOC, and
in the case of CCOC it occurs in 14–40% of tumors dependent on the type of activating
mutations, which could originate from AKT2 amplification, loss of PTEN expression or
activation of catalytic p110α subunit of PI3K [169,170]. Overactivity of PI3K/AKT path-
way in ovarian cancer could augment chemo-resistance, especially in CCOC tumors [171].
The coexistence of PIK3CA mutations that encodes p110α subunit and loss of ARID1A
expression was found in 47% of ARID1A-deficient CCOC tumors. An association between
PIK3CA and ARID1A mutations was also reported for endometrial endometrioid can-
cer [158]. Animal studies indicate that ovarian carcinogenesis may demand both mutations
to occur [172]. In this context, the loss of ARID1A expression in atypical endometriosis
might be an initial but not sufficient step in ovarian carcinogenesis, which starts after the
second mutation event concerning the PI3K/AKT/PTEN pathway [173].

7. Other Gene Mutations in Endometriosis

The mutations of genes in endometriosis could result from the natural history of
endometriotic lesions in which progressive fibrogenesis occurs which may influence gene
expression. Fibrogenesis is a pathological process of deposition of excessive amounts of
extracellular matrix (ECM) components resulting from uncontrolled tissue repair. There is
no doubt that cyclic bleeding and subsequent tissue repair do occur in endometriotic lesions
and ovarian endometriomas leading to “repeated injury and tissue repair” (ReTIAR) syn-
drome [174–176]. Fibrotic tissue is present in the endometrioma capsule, in peripheral parts
of peritoneal implants and DIE. The sequence of events may start from platelet activation,
followed by platelet-derived TGF-β secretion, which initiates smooth muscle metaplasia
(SMM) and fibrosis, through EMT and fibroblast-to-myofibroblast differentiation (FMT).
The pro-inflammatory environment inside the peritoneal cavity could modulate this se-
quence [177]. The fibrogenesis in the liver in the course of ReTIAR syndrome following
viral hepatitis is characterized by similar changes mediated by TGF-β, growth factors and
pro-inflammatory cytokines [178]. Moreover, in both diseases inflammation and fibrosis
cause hypoxia which promotes angiogenesis. The similarities go even further, as both in
chronic hepatitis and in endometriosis (especially endometriomas) iron overload generates
ROS, inflammation and oxidative stress which induce fibrosis [179]. Finally, it is known,
that fibrogenesis is one of the strongest risk factors for hepatocellular cancer [178]. The
question comes up if fibrogenesis and fibrogenesis-mediated changes of gene expression
could be a risk factor for the progression of endometriosis into EAOC. The disturbances in
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the expression of the markers of DNA damage like 8-hydroxydeoxyguanosine (8-Oh-dG)
and histone protein γ-H2AX which were found in the proximity or inside the endometriotic
lesions seem to support this suggestion [180,181]. The mutational pressure of oxidative
stress, iron overload and hypoxia on endometriotic lesions could be dependent on the status
of the lesion and differ in non-fibrotic and fibrotic lesions [180]. Moreover, endometriotic
implants show an increased level of DNA damage and decreased DNA repair activity in
the course of the disease [182]. Mismatch repair (MMR) activity differs in stromal and
epithelial components of the lesions, being lower in stromal and higher in epithelial cells,
respectively [183]. Microsatellite instability (MSI) associated with the inactivation of MMR
protein MLH1 has been described in the malignant transformation of endometriosis [184].
Loss of MMR activity was noted in 10% of EAOC tumors [185].

TP53 is a tumor suppressor gene frequently mutated in several malignancies. The
results on TP53 mutation in endometriotic lesions are conflicting, as both over-expression
and down-regulation of TP53 were reported [186–188]. However, based on more detailed
genetic studies [189,190] there is a rational supposition that TP53 is down-regulated or
silenced in endometriotic lesions. Loss of TP53 activity leads to increased fibroblast activa-
tion, decreased immune surveillance, ECM deposition and fibrosis. Micro RNA miR-125b
inhibits TP53 expression and promotes fibrogenesis, and miR-125b over-expression was
found in endometriosis [191,192]. Similarly, activation of the Wnt/β-catenin pathway and
inactivation of peroxisome proliferator-activated receptor gamma (PPARγ) observed in
endometriotic lesions could further augment fibrosis [193]. Inactivation of TP53 observed
in endometriotic stromal cells may not be univocal with pre-malignancy, however, could
influence carcinogenesis in favorable conditions [194].

PTEN is another tumor suppressor gene. PTEN mutations have been recognized in
21% of endometriomas and half of advanced rASRM III/IV grade lesions. Loss of PTEN
expression was also reported in endometriosis malignant transformation [195–197]. Inhibi-
tion of PTEN and activation of the PI3K/AKT pathway enhances proliferation and reduces
apoptosis in endometriotic stromal cells and fibroblast [198–200]. In fibrotic diseases, PTEN
expression is decreased or absent [201]. Some modulators of PTEN expression, like miR-21
or CTGF were found to be up-regulated in endometriosis [202]. Enhancer of zest homolog-2
(EZH2) participates in histone methylation and mediates transcriptional repression [203].
EZH2 expression is elevated in endometriosis and it functions as a stimulator of EMT and
inducer of PTEN inhibition leading to enhanced fibrosis in endometriotic lesions [204,205].

KRAS is an oncogenic protein encoded by KRAS-2 gene and engaged in the EGFR sig-
naling pathway [206]. KRAS can be activated by many factors including TGF-β, EGF, PDGF
which are activated in endometriosis [207,208]. Elevated KRAS expression was described in
the eutopic endometrium of patients with endometriosis [209]. KRAS mutations were also
described in 29% of ENOC tumors [210]. KRAS protein is capable to activate downstream
signaling via the ERK pathway. ERK activation is crucial for EMT and fibrogenesis. TGF-β
can stimulate ERK/MAPK/JNK signaling pathway to induce EMT and fibrogenesis. The
members of this pathway were all found to be engaged in the pathogenesis of endometrio-
sis. KRAS activates also SCF which binds to c-KIT/CD117 receptor and activates ERK
and PI3K-dependent pathways. Increased concentrations of SCF as well as c-KIT were
described in peritoneal fluid and ectopic implants of endometriosis patients [85,211].

NOTCH1 is a protein responsible for the signaling pathway regulating cell prolifera-
tion, differentiation, apoptosis and cell stemness or quiescence [212]. Protein is encoded
by gene NOTCH1 which due to the multifunctional role of the protein is viewed as both
like oncogene and cancer suppressor [213]. NOTCH1 was found to be elevated in localiza-
tions adjacent to peritoneal endometriosis implants but decreased in eutopic endometrium
in endometriosis patients [214]. Increased expression of MSI-1 which acts as a positive
regulator of NOTCH1 was reported in endometriosis [35]. Elevated NOTCH1 has been
found to stimulate renal fibrosis, while loss of NOTCH1 activity has decreased pulmonary
fibrosis [215]. Oxidative stress in endometriosis activates NOTCH1 signaling and promotes
fibrosis in implants [216].
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GATA-binding protein-2 and -6 are transcriptional factors and key regulators of steroid
hormones receptor expression in both eutopic and ectopic endometrium. The epigenetic
regulation (DNA methylation) of genes GATA2 and GATA6 has been noticed in endometrio-
sis. The GATA2 was found to be unmethylated and abundant in stromal cells of eutopic
endometrium, but methylated and inactive in stromal cells of endometriosis. On the oppo-
site, GATA6 was found to be methylated and inactive in eutopic endometrium stromal cells,
while was active and unmethylated in endometriosis stroma [217]. GATA2 is expressed
in healthy endometrial cells and up-regulates genes engaged in endometrial decidualiza-
tion. Ectopic expression of GATA6 prevents decidualization of ectopic endometrium and
pushes it toward pathological phenotype [218]. Depletion of GATA2 decreases the expres-
sion of progesterone receptor (PR) in the endometrial epithelium in mice, and in humans
reducing the markers of decidualization. Over-expression of GATA6 in endometriosis
resulted in changes in the expression of hormone receptors—reduction of ERα and PR, and
stimulation of ERβ [3]. Disturbed ERβ/ERα ratio in endometriotic stromal cells prevents
induction of the PGR gene (gene for PR receptor). It also stimulates cell proliferation and
survival. Through interactions with IL-1β and steroid receptor coactivator-1 (SRC1), ERβ
prevents cell apoptosis and enhances inflammatory reaction [219]. In endometrial stromal
cell cultures, GATA6 alone is essential but not sufficient for estrogen formation and needs
cooperation with the nuclear receptor subfamily 5, group A, member 1 (NR5A1). The
presence of both GATA6 and NR5A1 is required for estradiol production, which is critical
to the transformation of stromal cells into endometriotic-like cells [217]. High expression
of GATA2 was correlated with better survival, while high expression of GATA6 was an
unfavorable prognostic factor in OC patients [220].

The next-generation sequencing technology applied to genetic profile evaluation of
endometriosis and ENOC indicated that several mutated genes were common for both
types of pathology and that similar pathways were altered in both endometriosis and
ENOC. However, there were also identified mutated genes that were characteristic for each
group: JAK3, KRAS and RB1 for endometriosis; and ATM, BRAF, CDH1, EGFR, NRAS,
RET and SMO for ovarian ENOC. There were also genes methylated in endometriosis,
mainly PYCARD, RARB, RB1, IL2, CFTR, CD44 and CDH13; and ENOC—MLH3, BRCA1,
CADM1, PAH [221].

8. Galectins in Endometriosis and EAOC

Galectins are glycan binding proteins specifically binding to β-galactoside sugars.
They contribute to intercellular interactions, extracellular matrix-cell interactions, apoptosis,
migration, angiogenesis and inflammation [222]. Among several known galectins, there are
galectin-1, -3 and -9 which are engaged in both progression of endometriosis and OCs [222].
Galectin-1 is expressed in both epithelium and stromal component of the endometrium,
while galectins-3 and -9 are present in epithelium and decidua, but not in the stroma [223].
Galectin-1 was shown to be over-expressed both in the endometriotic lesions and in eutopic
endometrium of patients with endometriosis. Galectin-1 facilitated inflammation and
angiogenesis in ectopic endometrium. Monoclonal antibodies against galectin-1 were able
to slow the growth of endometriotic implants [223].

Analogically to galectin-1, galectin-3 expression was enhanced in endometriosis and
eutopic endometrium of endometriosis patients [224]. Loss of galectin-3 activity resulted
in down-regulation of VEGF, TGF-β and cyclooxygenase-2 (COX-2) in endometriotic le-
sions [225]. Galectin-3 was shown to interact with KRAS upon epidermal growth factor
(EGF) stimulation, followed by the stabilization of the KRAS-GTP complex, which regulates
cell proliferation and inhibits apoptosis [226]. Increased concentrations of galectin-9 were
found in the serum of patients with endometriosis [227].

Galectins modulate the pathways controlled by oncogenes and tumor suppressor
genes, therefore their aberrant expression could facilitate carcinogenesis, especially in the en-
vironment characterized by chronic inflammation like in the case of endometriosis [228,229].
The interaction of galectin-1 with extracellular matrix components could promote cancer
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survival and migration [230]. In EAOC the expression of galectin-1 was found to be in-
creased, while high expression in the stromal tumor compartment was a poor prognostic
marker. In CCOC the higher expression of galectin-3 was associated with increased tumor
invasiveness, through the up-regulation of the NF-κB signaling pathway. Galectin-3 ex-
pression is correlated also with fast-growing, advanced and chemo-resistant tumors [231].
Galectin-9 functions as a modulator of the anti-tumor immune response. Through interac-
tion with receptors on the surface of T cells, galectin-9 could induce their apoptosis and
enhance the tolerance toward tumor cells [228].

9. Chaperones in Endometriosis and Cancer Stem Cells

Chaperones are a class of proteins that regulate the folding of polypeptide chains
and conformational changes of so-called client proteins [232]. The heat shock proteins
(HSPs), glucose-regulated proteins (GRPs), TNF receptor-associated protein-1 (TRAP1),
calreticulin and others belong to this class of molecules [233–235]. Chaperones HSP70 and
HSP90 stabilize cytosolic proteins, prevent their aggregation, stimulate their degradation,
regulate their maturation and modulate intracellular signal transduction [236]. GRPs and
calreticulin are responsible for the regulation of transport and processing of proteins inside
the endoplasmic reticulum, while TRAP1 functions similarly inside mitochondria [235,237].
Inducible forms of HSPs are a part of the “heat stress response” resulting from different
stressors like acidosis, hypoxia, ROS, or environmental toxicity. This reaction is mediated
by heat shock transcription factor-1 (HSF1) [238]. Chaperones function also in cancer cells
inducing their resistance to a hostile environment and toxic therapy, and the up-regulated
levels of some HSPs were observed in several malignancies [236]. Among the HSPs client
proteins are regulators of cell stemness which contribute to the renewal and survival
of cancer stem cells (CSCs). The client proteins for HSP90 include: survivin, HIF-1α,
metalloproteinases MMP2 and MMP9, EGFR and AKT [239,240]. Elimination of HSP90
activity in tumor cells inhibited their migration, invasiveness and metastatic potential, while
activation of the NANOG-dependent HSP90/TCLA1/AKT signaling pathway augmented
significantly the stemness of tumor cells [241,242]. HSP90 function was also important for
AKT/ERK/JAK/STAT3 signaling pathway responsible for the generation of CD44+CD24-
ALDH1+ CSCs phenotype [243]. Another HSP protein, HSP70 is the key element of the
HSF1-mediated response to stress. HSP70 is capable to diminish the adverse effects of stress
on the cell, and to inhibit pro-apoptotic pathways in the cell subjected to stress [236]. Tumors
indicate up-regulation of HSP70, which is correlated with their aggressiveness and chemo-
resistance. Enhanced expression of HSP70 was found in cells showing stemness markers
and high metastatic potential, while inactivation of HSP70 resulted in a decrease of CSCs
and impairment of both tumor invasion and metastases formation [244]. In ovarian cancer
HSP70 knockdown down-regulated the EMT- and stemness-associated proteins [245].
Activation of HSF1 also could support stemness and population of CSCs. Triggers of HSF1
activation, like hypoxia, acidosis, and inflammation are also activating stimuli for EMT and
acquirement of CSC phenotype. HSF1 was shown to induce tumorigenesis and metastases
in mice model of cancer, as well as in human ovarian tumors [246,247]. In breast cancer, the
HSF1 expression was correlated to stemness markers expression and chemo-resistance [248].
Stress-induced phosphoprotein-1 (STIP-1) coordinates functions of HSP90 and HSP70 in
protein folding. Increased expression of STIP1 was described in ovarian and endometrial
cancer [249]. Both epithelial and stromal cells of endometriotic lesions showed expression
of STIP1, and serum levels of STIP1 were higher in endometriosis patients compared to
controls [250]. It was also shown that HSP70 induced pelvic inflammation and was probably
involved in the growth of endometriotic implants [251]. Moreover, the HSF1 expression
was increased in endometriosis and promoted endometriosis development through the
enhancement of glycolysis in endometriotic cells [252]. Endometriosis cells, similarly
to tumor cells, use preferably aerobic glycolysis to get energy. This type of glycolysis
in cancer promotes angiogenesis, cell invasion and tumorigenesis, while endometriosis
activates survival signals [253]. Chaperons are also represented by small HSPs (HSP27,
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HSP20, alpha B-crystallin) which prevent the mistaken folding of proteins, inhibit apoptosis,
induce proliferation and metastases in cancer [254–256]. Elevated concentrations of small
HSPs were found in exosomes, serum and peritoneal fluid of patients with ovarian and
endometrial cancer, but also endometriosis [257].

10. miRNA and Endometriosis

Micro RNAs (miRNA) are a population of small non-coding RNAs that function as
regulators of gene expression through changes in gene translation and post-translational
modification of mRNA stability [258]. One of the most discussed miRNAs in the patho-
genesis of many diseases is the miR-200 family. Down-regulation of miR-200 family RNAs
induces an EMT transition in several cancers including endometrial cancer [259]. MiR-200
was also found to be down-regulated in ectopic endometrium [260]. Another miRNA,
miR-199a through its down-regulation, targets and enhances the expression of IL-8 and
NF-κB molecules. Down-regulation of miR-199a was confirmed in ectopic endometrium
and ovarian endometriomas and may be responsible for increased invasive potential and
infiltration of the implants [261]. Cytokines TGF-β and IL-8 are engaged in inflammation
and tissue repair in endometriosis. MiR-20a targets regulatory signals for TGF-β and
IL-8 secretion and its down-regulation increases concentrations of these cytokines and the
growth of endometriotic implants. The next miR-143 molecule was found in higher con-
centrations in the serum of endometriosis patients. Up-regulation of miR-143 inhibits the
expression of fibronectin type III domain containing 3B (FNDC3B) and stimulates invasion
and migration of endometriotic cells [262]. Siruin-1 (SIRT1) is the regulator of chromatin
remodeling and cellular signaling via its action on histones, p53, forehead box O (FOXO)
and NF-κB proteins [263]. MiR-34a functions as one of the regulators of SIRT1 expression,
and over-expression of miR-34a decreases SIRT1 level. Mir-34a together with p53 and SIRT1
participate in the miR-34a/p53/SIRT1 pathway having important regulatory properties
in endometriosis and cancer [264,265]. In endometrial lesions miR-34a, p53, pro-apoptotic
Bax, Bcl-2, and FOXO-1 proteins were found to be down-regulated, while SIRT1 and anti-
apoptotic Bcl-xL proteins were up-regulated. This observation supports the notion that
the miR-34a/p53/SIRT1 pathway plays a role in decreasing cell apoptosis in endometrial
lesions [266]. The regulation of SIRT1 by miR-34a could also influence angiogenesis in
endometriotic implants [267]. The enhanced expression of another miR-125b was noticed
in both endometriosis and cancer. MiR-125b plays important role in the regulation of the
proliferation and migration of cells [268,269]. A negative correlation between miR-125b
and TP53 expression was found in endometriosis. While miR-125b was significantly over-
expressed in ectopic endometrium, there was a decrease of TP53 expression observed, both
in ectopic and eutopic endometrium of endometriosis patients. This observation implies
a possible role of the miR-125b/TP53 pathway in the pathogenesis of endometriosis and
its pro-cancerous potential [270]. The next important miRNAs in the pathogenesis of en-
dometriosis are the let-7 family members. Let-7 family miRNAs regulate cell differentiation
on many different levels and are considered as tumor suppressors, because of the negative
regulation of Ras oncogenes and loss of activity observed in many cancers [271]. Low levels
of the let-7 expression resulted in KRAS activation and progesterone resistance in severe
endometriosis [272,273].

Many studies have shown several both up-regulated and down-regulated miRNAs in
the serum of endometriosis patients. The panel of miRNAs was different in low-grade early
(I/II) and high-grade advanced (III/IV) endometriosis, respectively. Among up-regulated
miRNAs in early endometriosis were: miR-185, miR-242, miR-296, miR-424, miR-502,
miR-542, miR-550 and miR-636 [274]. In advanced endometriosis up-regulated miRNAs
were as follows: miR-18a, miR-125b, miR-342, miR-500a and miR-451a [268]. Down-
regulated miRNAs in advanced endometriosis were: miR-34c, miR-9, let-7b, miR-125a,
miR-3613, and miR-6755 [268,275]. These serum miRNAs were studied as potential
biomarkers of endometriosis and their meaning for endometriosis growth and possible
malignant transformation has not been studied precisely. The serum panel of miRNAs
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described in the serum of CCOC and serous OC patients was shown to differ from the
miRNAs panel described in endometriosis, but again the importance of this observation for
malignant transformation of endometriosis into EAOC is uncertain [276,277]. The profiling
studies in endometriotic tissues have given more stable results. More than one research in-
dicated disturbed expression of the following miRNAs: miR-1, miR-29c, miR-34c, miR-100,
miR-141, miR-145, miR-183, miR-196, miR-200 a-c, miR-202, miR-365 [278]. Most of them are
known regulators of angiogenesis, cell proliferation, adhesion and invasion, as well as EMT
transition. The most frequently identified targets for disturbed miRNAs in endometriosis
were signaling pathways engaging estrogen and progesterone receptors, homeobox protein
transcription factor HOX-A10, c-Jun, Wnt/β-catenin, AKT and cyclin D1 [279,280]. Other
targets identified were VEGF, metalloproteinases MMP-3 and MMP-9, tissue inhibitors
of metalloproteinases (TIMP), and regulators of EMT like ZEB1 and TGF-β1 [281]. In
ovarian cancer members of the miR-200 family (miR-141, miR-200a, miR-200b, miR-200c)
and miR-199a, miR-140, miR-145, miR-125b were dysregulated similarly as in the case of
endometriosis [282].

11. Transformation of Endometriosis into EAOC

The mutations of several genes were found in all types of endometriosis including
iatrogenic incisional endometriosis. Between them, somatic mutations in cancer-driver
genes like KRAS, PI3KCA, PTEN, and TP53 were noted [283,284]. These mutations were
present in the epithelium of endometriotic lesions. What is interesting, some of these
mutations have been also observed in normal eutopic endometrium [285–287], meaning
that mutations in regenerating cyclically tissue like endometrium or endometriosis may
be an evolutional advantage allowing for fast renewal of this tissue. Therefore, muta-
tions are probably not associated directly with carcinogenesis. From another point of
view, the frequency of mutations in endometrium increases along with the progression
of women’s age, and the vast majority of endometrial cancers are recognized in peri- and
postmenopausal women. It is possible that other factors affecting the pre-mutated cells
could play a role as a trigger mechanism for carcinogenesis [288]. They could consist of
the “second-hit” mutation of DNA polymerase epsilon (POLE) or MMRd genes [288]. Al-
ternatively, they could originate from a unique environment existing inside endometriotic
lesions, mediated by stromal cells. In contrast to epithelial cells, a stromal component of
endometriotic lesions lacks any cancer-driver mutations. However, stromal cells show
epigenetic defects influencing estrogen regulation, progesterone deficiency and the creation
of a pro-inflammatory environment [289]. The features of the endometriotic microenviron-
ment are: hypoxia, inflammation, extracellular matrix, changed metabolism, and steroid
hormones. Their orchestrated action could push the endometriotic epithelial cells toward
cancer. Hypoxia in endometriotic lesions stabilizes HIF-1α, which enhances proliferation
and angiogenesis. The IHC studies showed a correlation between HIF-1α expression in
endometriosis precursor lesions and matched CCOC. Hypoxia and inflammation accom-
panying the cyclic menstrual changes in endometriosis stimulate the tissue factor (TF)
which could trigger hyper-coagulation [290]. The increased risk for thromboembolism is a
typical clinical symptom of CCOC. Fibroblasts and ECM components play important role
in endometriosis. Endometriotic ECM components mediate signaling between epithelial
and stromal cells [291]. Fibroblasts in endometriosis indicate an over-expressed ERK signal-
ing pathway, progesterone resistance increasing their proliferation and pro-inflammatory
phenotype [292,293]. Similarly, in ovarian cancer ECM components and cancer-associated fi-
broblasts (CAFs) constitute the indispensable components of the cancer stem cells niche [37].
Immune cells and cytokines are very important components of the endometriotic environ-
ment. Macrophages are the necessary stimulator of endometriotic lesion growth, and their
recruitment toward the lesions is mediated by hypoxia, iron overload and inflammation.
Cytokines TGF-β, TNF-α and IL6, IL8 and monocyte chemotactic protein-1 (MCP-1) play a
key role in inflammation inside implants and peritoneal fluid [220,294]. In ovarian cancer
tumor-associated macrophages and inflammatory environment in the cancer niche also
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enhance the proliferative abilities of CSCs [37]. Ovarian endometrioma contains hemolyzed
blood with an excess of iron and heme products which further contribute to chronic inflam-
mation and produce fibrosis, oxidative stress and predisposes to gene mutations [295,296].
Therefore, iron overload in endometriosis may promote highly mutated cells possessing
higher survival rates [297]. Elevated lactate levels and acidosis resulting from glycolysis
in ectopic endometrium promote cell survival [298]. The analogical mechanism supports
stemness in CSCs niche in ovarian cancer. Endometriotic lesions indicate high expres-
sion of aromatase (CYP19A1) which converts androstenedione and testosterone to estrone
and estradiol. High levels of estradiol promote inflammation. Aromatase is also stimu-
lated by prostaglandin E2 [295,299]. The role of estradiol in EAOC cancer biology needs
further studies, but its proliferative activity could account for malignant transformation.
MiRNAs are a frequent target for dysregulation in both endometriosis and EAOC. One of
the miRNAs with disturbed expression was miR-126, which down-regulation was observed
in ectopic compared to eutopic endometrium, as well as in CCOC and ENOC, where its
decreased expression was a predictor of poor outcome [300,301]. Some other miRNAs
were observed in endometriosis and ovarian cancer in general. MiR-135 was found to
be down-regulated both in endometriotic lesions and ovarian cancer, which correlated
with increased expression of HOXA10 and worse survival [279,302]. Over-expression of
miR-325 and miR-492 was also observed in endometriosis and ovarian cancer. The first one
is engaged in the regulation of autophagy in hypoxic conditions, while miR-492 decreases
PTEN expression [303,304]. Besides miRNAs, other mechanisms of epigenetic regulation,
like DNA methylation, have been probably engaged in the malignant transformation
of endometriosis. Promoter hypermethylation followed by inactivation of Runt-related
transcription factor 3 (RUNX3) was noted in 60% of patients with EAOC, and was also
present in eutopic endometrium of EAOC patients [305]. Progressive hypermethylation
of RUNX3 could be implicated in the malignant transformation of ovarian endometriosis.
Similarly, the absence of MLH1 expression resulting from the hypermethylation of the gene
promoter was associated with the malignant transformation of ovarian endometriosis [306].
The methylation of genes engaged in the estrogen ER-α receptor signaling pathway was
connected with the progression from endometriosis to CCOC [307].

12. Environmental Risk Factors—Endometriosis and Ovarian Cancer

Epidemiological studies revealed several risk factors associated with the development
of endometriosis. Toxins defined as endocrine disrupting chemicals (EDCs) are well known
factors causing harmful effects on female reproductive organs. Dioxin (TCDD-2, 3, 7,
8-tetrachlorodibenzo-p-dioxin), polychlorinated bisphenol (PCBs) and phthalates belong to
this category of toxins. Dioxin is a by-product of plastic and fuel burning and in the produc-
tion of plastic compounds and pesticides. Its presence was confirmed both in the air and
water [308]. PCBs are used in rubber, adhesives and paint industry and besides circulation
in the environment can concentrate in adipose tissue [309]. Phthalates are frequently used
in plastic, toy and cosmetic industry, and are found in both serum and urine of humans
exposed to them. The animal Rhesus monkey model indicated, that contamination with
the above-mentioned TCDD provoked the development of endometriosis dependent on
the concentration of chemicals [310]. In mice and rat model, exposure to TCDD resulted
in a significant increase in the diameter of endometriotic lesions [311]. Phthalates have a
proliferative effect on endometrial tissue, and patients with endometriosis were shown to
have increased concentrations of phthalates in both serum and urine [312].

Other environmental risk factors considered in endometriosis are alcohol consumption,
as well as smoking. Alcohol use is a risk factor for endometriosis, and the odds ratio for
development of the endometriosis in moderate and heavy drinkers were 1.7 and 1.8,
respectively [313]. The possible mechanism underlying that connection is an increase in E2
concentration and impairment of immunity resulting from alcohol consumption [314,315].
Smoking has probably both beneficial and negative effects on endometriosis. Smoking
alters the metabolism of E2 and inactivates estrogens, thus protecting against endometriosis.
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However, from another point of view, dioxins present in cigarette smoke could have adverse
effects on the growth of endometriosis [316]. Another problem is a possible association
between diet habits and the risk of endometriosis [317]. It was shown, that a higher intake
of citrus fruits was correlated with a lower risk of endometriosis [318]. Similarly, a diet
containing low nickel concentrations was able to reduce gastrointestinal and gynecological
symptoms in endometriosis patients [319]. The results of the prospective cohort study
indicated that red meat intake was associated with a 56% higher risk of endometriosis [320].
The connection between red meat and endometriosis may be based on the observation that
meat and fat consumption influences the sex hormone metabolism and increases the heme
iron intake. The latter connection may be explained by an increase in inflammation and
oxidative stress mediated by heme iron in meat consumers [321,322]. Moreover, the meat-
rich diet contains omega-6 fatty acids which are responsible for the enhancement of estrogen
synthesis, inflammation and promotion of endometriosis [323]. Women with endometriosis
seem also to consume fewer vegetables, dairy products and omega-3 unsaturated fatty
acids [324,325].

In ovarian cancer, a high-fat diet could promote carcinogenesis by stimulating the
effect of estrogen synthesis [326]. The same effects were associated with a pro-inflammatory
diet rich in saturated fatty acids and sugar [327]. Omega-3 unsaturated fatty acids in
the diet seem to decrease endogenous estrogen synthesis and reduce the risk of ovarian
cancer [323]. The higher consumption of meat was connected with worse survival in OC pa-
tients, conversely to the vegetables and fruits which seemed to prolong survival [328–330].
However, the systematic review of papers devoted to dietary habits and OC risk failed to
produce conclusive recommendations [331].

In endometrial cancer, a higher fat intake and a sugar-rich diet were both risk fac-
tors (OR 1.72 and 1.84, respectively) [332,333]. Meta-analysis revealed that consumption
of omega-6 fatty acids and meat is also a risk factor for endometrial cancer in obese
women [334].

13. Stem Cells and Environmental Risk Factors

Exposure to environmental toxins could result in the accumulation of DNA dam-
age and epigenetic alterations [335]. These changes could be particularly dangerous for
the population of somatic stem cells and could have a potential role in malignant trans-
formation. Stem cells possess increased capability to repair DNA, however recurrent or
prolonged exposition to environmental toxins could exhaust DNA repair possibilities or
could affect epigenetic regulation followed by the changes in gene expression [336]. Even
subtle toxin-mediated epigenetic changes could result in profound changes in the function
of transcriptome if they occur in the periods of the individual increased susceptibility
called “critical windows” [337]. These may influence the individual predisposition to
malignant diseases or could be passed to the next generation changing children’s gene
expression. Epigenetic transgenerational inheritance of adult-onset disease induced by
bisphenol and phthalates was observed [338]. Dioxins were shown to bind to aryl hydro-
carbon receptor AhR which functions as a transcription factor regulating the expression
of genes responsible for cell growth, differentiation and drug metabolism [339]. Several
toxins and heavy metals can modify DNA methylation and increase oxidative stress, which
could alter gene expression in stem cells contributing to malignant transformation [340,341].
Pesticides were found to change the expression of miRNAs regulating Wnt/β-catenin and
p53 pathways [342]. Besides pesticides there are heavy metals, organic pollutants and
cigarette smoking that can alter miRNA function, also the improper or unbalanced diet
could detrimentally affect stem cells. The high-fat diet was found to induce the proliferation
and function of LGR-5+ intestinal epithelial stem cells and augment their capacity to create
tumors [343]. A high-fat diet has also been shown to enhance tumor aggressiveness and
enrichment in CSCs in a mouse model of glioblastoma [344], and to increase metastatic
potential in oral squamous cancer [345]. Contrarily, an in vitro model of triple-negative
breast cancer showed, that starvation (low serum, low glucose) reduced the proportion of
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CD44+ and ALDH-1+ stem cells, and in tumors transplanted to mice, it slowed down cancer
growth and initiated tumor cell apoptosis [346]. Caloric restriction in the diet reduces CSCs
renewal in breast cancer and affects CSCs function through PI3K/AKT/mTOR/S6kinase
signaling-dependent mechanisms [347,348]. A proper diet could also influence the niche
of CSCs and diminish the pro-inflammatory environment [349]. The connection between
diet and CSCs function is based on the AMPK/mTOR/SIRT1 pathway. Low ATP levels in
cells as a result of fasting activate AMP-activated protein kinase (AMPK) which modulates
glucose and lipid metabolism, as well as mTOR pathway and SIRT function. This sequence
of actions is followed by an increase in CSCs apoptosis, a decrease in proliferation, and
disturbed response to hypoxia and autophagy [350–353].

14. Working Hypothesis

Endometriosis is a proliferative disease that in many aspects behaves similarly to
neoplastic tumors. It can infiltrate tissues, migrate into distant locations, create its blood
vessels, proliferate vigorously and avoid the effective immune response of the host. An ex-
planation that this analogy is only a sign of the high regenerative capacity of endometriosis
does not seem to be convincing, although a low rate of progression from endometriosis
to EAOC (merely a few percent of cases) could support such a notion. The similarity of
mechanisms ruling the development and progression of endometriosis and cancer is proba-
bly not accidental. Long-lasting and advanced endometriosis more frequently progresses
into the atypical lesion and finally into ovarian cancer. The older age (>45 years) and larger
size of endometrioma are also considered risk factors for the progression of endometriosis
into EAOC [354]. These observations suggest that in non-treated patients the true risk
of progression into a malignant tumor could be higher than the reported 1.5% during
the lifetime. The reason for the low malignant transformation rate could be the fact, that
patients with symptomatic endometriosis and infertility are diagnosed and treated laparo-
scopically and pharmacologically. Thus, the natural evolution of endometriosis is stopped
by medical treatment, and only a few cases have enough time to progress toward EAOC.
Another explanation is, that progression of endometriosis toward cancer is a multistep
long-lasting process dependent on many risk factors. Genetic predisposition resulting from
inherited polymorphism or mutations of several genes or alternatively from epigenetic
transgeneration gene modification could be one of the main risk factors. Other ones are
exposition to environmental toxins and improper nutritional habits. Finally, inflammatory
local reaction, oxidative stress and mutational influence of heme products could account
for the malignant transformation of endometriosis. We propose, that the main common
target for the action of all these factors are endometriosis epithelial stem cells, and that
stromal mesenchymal/bone marrow-derived stem cells are one of the most relevant modu-
lators of carcinogenesis via CTGF secretion, and modulation of the endometriotic niche
(shaping resistance to hypoxic stress, regulation of mesothelial-to-mesenchymal transition
and fibrosis, ECM remodeling and angiogenesis). The endometriosis SCs could probably
originate from epithelial stem cells of eutopic endometrium and tubal endometriosis, or al-
ternatively from SP stem cells able to differentiate into both epithelial and stromal SCs cells.
ARID1A gene mutation and activation of PI3K/AKT pathway may be an initial change in
endometriosis SCs, followed by gene modifications caused by ReTIAR syndrome and DNA
damage resulting from oxidative stress and action of heme products. In some cases, the
“second hit” mutation in other genes (TP53, POLE, KRAS, PTEN, NOTCH1 or GATA) could
initiate carcinogenesis. The niche of endometriosis SCs is modified by BMDSCs, disturbed
function of galectins, chaperones, pro-inflammatory reaction and immune cells infiltrating
endometriotic lesions. Epigenetic modulation of gene expression by DNA methylation
and miRNA regulation could also push SCs toward malignant transformation. Extrinsic
toxins and a bad diet could further modulate SCs and stimulate them to become CSCs. The
hypothetical sequence of events influencing endometriosis stem cells, and leading from
endometriosis to RAOC is presented in Figure 2.
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Figure 2. A hypothetical sequence of events leading from beginning of endometriosis towards its 
malignant transformation. In women presenting with a genetic predisposition or having epige-
netic transgenerational gene modification endometriosis could emerge inside the peritoneal cavity, 
tubes and ovaries. Disturbed hormonal function (estrogenic stimulation) and ineffective immuno-
logical response enhance the chances for progressive growth of endometriotic lesions. Endometri-
osis epithelial stem cells (ESCs) originating either from endometrial stem cells or from bone mar-
row-derived stem cells are present inside endometriotic lesions. The prolonged existence of endo-
metriotic foci leads to changes that could push ESCs to increased proliferative and functional ac-
tivity. The mechanisms that contribute to these changes involve the occurrence of driver mutations 
(ARID1A, PI3KCA, PTEN, KRAS), ReTRIAR syndrome, epigenetic regulation by miRNA and 
DNA methylation. All these changes support the proliferative activity and migration potential of 
ESCs. Moreover, the DNA of the endometriotic ESCs could be damaged by a hostile environment 
composed of oxidative chronic stress, hypoxia, products of heme metabolism and a pro-inflamma-
tory setting. These are known stimuli sustaining the function and survival of stem cells. Finally, in 
the group of elderly patients with non-treated endometriosis the progression into endometriosis-
associated ovarian cancer (EAOC) takes place. The origin of EAOC is probably dependent on 

Figure 2. A hypothetical sequence of events leading from beginning of endometriosis towards its
malignant transformation. In women presenting with a genetic predisposition or having epigenetic
transgenerational gene modification endometriosis could emerge inside the peritoneal cavity, tubes
and ovaries. Disturbed hormonal function (estrogenic stimulation) and ineffective immunological
response enhance the chances for progressive growth of endometriotic lesions. Endometriosis
epithelial stem cells (ESCs) originating either from endometrial stem cells or from bone marrow-
derived stem cells are present inside endometriotic lesions. The prolonged existence of endometriotic
foci leads to changes that could push ESCs to increased proliferative and functional activity. The
mechanisms that contribute to these changes involve the occurrence of driver mutations (ARID1A,
PI3KCA, PTEN, KRAS), ReTRIAR syndrome, epigenetic regulation by miRNA and DNA methylation.
All these changes support the proliferative activity and migration potential of ESCs. Moreover,
the DNA of the endometriotic ESCs could be damaged by a hostile environment composed of
oxidative chronic stress, hypoxia, products of heme metabolism and a pro-inflammatory setting.
These are known stimuli sustaining the function and survival of stem cells. Finally, in the group
of elderly patients with non-treated endometriosis the progression into endometriosis-associated
ovarian cancer (EAOC) takes place. The origin of EAOC is probably dependent on several trigger
mechanisms influencing ESCs cells. One of the most probable events is so-called “second hit”
mutation which destabilizes genetically ESCs with previous ARID1A or other mutations. Other
triggers could be disturbed chaperone and galectins functions. One of the most relevant stimuli
originates in our opinion from disturbed mesenchymal SCs function. These cells present inside the
stroma of endometriotic lesions support proliferative activity and probably stemness of epithelial
ESCs. Exposition to environmental toxins or improper diet components could be the final step in
changing the ESCs into cancer stem cells (CSCs), and endometriosis into atypical endometriosis or
EAOC.
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15. Conclusions and Future Direction

Nowadays, treatment of endometriosis is a difficult task due to a high recurrence rate,
technical obstacles of surgery and resistance to progestin therapy. Therefore, treatment of
endometriosis needs complicated and sometimes disabling procedures. Drugs targeting the
endometriosis epithelial stem cells or mesenchymal stem cells could improve the manage-
ment and prevent disease recurrence. Such treatment would be especially welcome in the
peritoneal, deep-infiltrating and recurrent ovarian endometriosis, where pain, adhesions
and organ malfunction are mostly expressed. The anti-stem cell therapy has been slowly
introduced into anti-cancer treatment and several pre- and clinical trials have been planned
to estimate its efficacy. Due to the similarities between both the stem cells phenotype and
function in endometriosis and cancer, there is a theoretical background to try anti-stem cell
management in endometriosis. Some drugs directed against markers of stem cells (like
CD117, CD133, EpCAM, ALDH1) have already been tested in ovarian cancer (imatinib
mesylate, ALDH1 inhibitors, modified CAR-T lymphocytes) and could probably be tested
in endometriosis where stem cells are characterized by the presence of the same markers.
Simultaneously, reducing the risk of progression of endometriosis into EAOC could be
obtained as a by-effect of stem cells-targeted therapy. The main problem that needs a
solution is how to avoid an unwanted inhibition of stem cell-based regenerative function
in eutopic endometrium. Moreover, the studies on a probable influence of environmental
toxicity and improper diet on the progression of endometriosis could pave the way for
epidemiological control of the disease. Improvement of the rules governing plant culture
and animal breeding with the pressure to use more ecologic techniques could hopefully
invert the present trend of an increase in female morbidity due to endometriosis.
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Abbreviations

ABCG2 ATP binding cassette subfamily G member 2
AKT protein kinase B
ARID1A AT-rich interactive domain-containing protein 1A
ATM ATM serine/threonine kinase
ATP adenosine triphosphate
Bax bcl-2-like protein 4 apoptosis regulator
Bcl-2 B-cell lymphoma 2 apoptosis regulator
Bcl-xL B-cell lymphoma-extra large apoptosis regulator
BRAF B-Raf proto-oncogene
BRCA breast cancer suppressor gene
CADM1 cell adhesion molecule 1 coding gene
CAR-T chimeric antigen receptor T cells
CCDC170 coiled-coil domain containing 170 coding gene
CDH1 cadherin-1 coding gene
CFTR cystic fibrosis transmembrane conductance regulator coding gene
c-KIT tyrosine-protein kinase KIT
COX-2 cyclooxygenase-2
CXCL the chemokine (C-X-C motif) ligand
CXCR CXC chemokine receptor
CYP2C19 cytochrome P450 family 2 subfamily C member 19 coding gene
EGF epithelial growth factor
EGFR epithelial growth factor receptor
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EMA mucin-1
EMT epithelial-mesenchymal transition
EpCAM epithelial cell adhesion molecule
ER-α estrogen receptor alpha
ER-β estrogen receptor beta
ERK extracellular signal-regulated kinase
ESR1 estrogen receptor 1 coding gene
FIGO the International Federation of Gynecology and Obstetrics
FoxP3 forkhead box P3 protein (scurfin)
FSHB follicle stimulating hormone subunit beta coding gene
GATA member of the GATA family of transcription factors
GREB1 growth regulating estrogen receptor binding 1 coding gene
GTP guanosine-5’-triphosphate
HIF-1α hypoxia-inducible factor-1 alpha
HOXA10 homeobox protein Hox-A10
IGF insulin-like growth factor
IFN-γ interferon gamma
JAK3 Janus kinase-3
JNK c-Jun N-terminal kinase
KRAS Kirsten rat sarcoma virus protein
MAPK mitogen-activated protein kinase
MLH-1 MutL homolog 1
MMP metalloproteinase
MSI-1 Musashi homolog-1
mTOR the mammalian target of rapamycin
NANOG homeobox protein NANOG
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NOD non-obese diabetic mice
NOTCH family of type-1 transmembrane proteins
NRAS neuroblastoma RAS viral oncogene homolog
NR5A1 nuclear receptor subfamily 5 group A member 1
NUMB protein numb homolog
OCT-4 octamer-binding transcription factor 4
PAH phenylalanine hydroxylase coding gene
PDGFR platelet-derived growth factor receptor
PI3K phosphoinositide 3-kinase
PTEN phosphatase and tensin homolog deleted on chromosome ten
PYCARD PYD And CARD domain containing coding gene
RARB retinoic acid receptor beta coding gene
rASRM revised American Society of Reproductive Medicine score
RB1 RB transcriptional co-repressor 1 gene
RET “rearranged during transfection” proto-oncogene
SALL4 sal-like protein-4
SCF Skp, Cullin, F-box containing complex
SCID severe combined immune deficient mice
SMO Smoothened protein coding gene
SOX-2 sex determining region Y-box 2
SSEA-4 stage specific embryo antigen-4
STAT3 signal transducer and activator of transcription 3
STRO-1 protein marker of mesenchymal stem cells
TCLA1 TCL1 family AKT co-activator A
TGF-β transforming growth factor beta
TNF-α tumor necrosis factor alpha
TP53 transcription factor protein p53
WNT4 Wnt family member 4 coding gene
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