
Citation: Tiffner, A.; Hopl, V.; Derler,

I. CRAC and SK Channels: Their

Molecular Mechanisms Associated

with Cancer Cell Development.

Cancers 2023, 15, 101. https://

doi.org/10.3390/cancers15010101

Academic Editor: Alban Girault

Received: 18 November 2022

Revised: 16 December 2022

Accepted: 19 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

CRAC and SK Channels: Their Molecular Mechanisms
Associated with Cancer Cell Development
Adéla Tiffner * , Valentina Hopl and Isabella Derler *

Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
* Correspondence: adela.tiffner@jku.at (A.T.); isabella.derler@jku.at (I.D.)

Simple Summary: Cell fate is ultimately determined by the precisely coordinated action of the
Ca2+-signaling machinery. During carcinogenesis, Ca2+ signaling is significantly remodeled due to
mutations and/or ectopic expression. Here, we summarize current knowledge on how alterations in
Ca2+ signaling contribute to the development of different cancer hallmarks. Emphasis is placed on the
structure/function relationship of the well-studied store-operated Ca2+ channel, i.e., Orai1, and the
Ca2+-activated K+ channel, i.e., SK3, alongside their individual and joint roles in cancer. This review
lays out the current state of knowledge of Ca2+-signaling effectors and proteins as potential targets for
the treatment of certain cancer types, with Orai1 and SK3 presented as emerging therapeutic targets.

Abstract: Cancer represents a major health burden worldwide. Several molecular targets have been
discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of
cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing
new markers as molecular targets in cancer therapy are highly desired. The significance of the
co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development,
proliferation, and migration make them promising molecular targets in cancer therapy. In particular,
the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer
cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain
unanswered, such as which key molecular components determine and regulate their interplay. To
provide a solid foundation for a better understanding of this ion channel co-regulation in cancer,
we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis.
Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in
concert, their role in the development of different types of cancer, and aspects that are not yet known
in this context.

Keywords: cancer; CRAC channel; SK3 channel; cancer signaling pathways; cancer hallmarks

1. Introduction

Every year, 18.1 million cases of cancer are diagnosed worldwide, of which 9.5 million
lead to death. These numbers are expected to rise 1.6-fold by 2040 [1]. The reasons for
enhanced cancer-related deaths originate from the complexity of this disease. Generally,
human cells grow and divide to form new cells, while the old cells die and are replaced
by new ones. Sometimes, however, abnormal or damaged cells continue to grow and
proliferate when they should not. The latter can lead to the formation of non-cancerous
(benign) or cancerous tumors. Benign tumors can be removed and usually do not grow back,
whereas cancerous tumors spread or invade nearby tissues and migrate to other sites in the
human body to form new tumors, which is known as metastasis. Despite the complexity
of the disease, cancer development can be described by a list of cancer hallmarks defined
by Hanahan and Weinberg [2]. The most general hallmarks are sustained proliferation,
apoptosis resistance, evading growth suppressors, angiogenesis induction, replicative
immortality, tissue invasion, and metastasis [2–7]. One essential factor that contributes to
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cancer progression is calcium (Ca2+). In this review, we first describe the general role of Ca2+

in tumor development. Since the co-regulation of the Ca2+ channel: Ca2+ release-activated
Ca2+ (CRAC) channel, and the Ca2+-regulated channel: Ca2+-activated K+ channel, or
SK3, have been extensively reported to play a role in certain cancer types in the last
century, we delineate here the current knowledge of the molecular mechanisms of both
channels individually and in co-regulation. We highlight critical factors that determine
their structure/function relationship, their roles in carcinogenesis identified to date, and
outstanding questions in this context.

1.1. Physiological Role of Ca2+

Ca2+ ions are versatile intracellular signals that regulate a plethora of cellular pro-
cesses including gene transcription, proliferation, and cell migration [8,9]. They act as
second messengers linking external or intraluminal signals (endoplasmic reticulum (ER),
mitochondria) and lead to intracellular responses through a variety of distinct cascades.
Under physiological conditions, the Ca2+ concentration on the extracellular side and in in-
tracellular organelles is in the range of mM, and it is 10,000-fold lower in the cytosol [10–13].
This Ca2+ gradient defines the versatility of this signal ion in the life cycle of a cell, to initi-
ate and drive processes such as immune cell activity, neurotransmitter release, or muscle
contraction [8,9,14]. Activation of the cell can lead to elevations in intracellular Ca2+ levels
that occur either through Ca2+ release from intracellular stores (ER, mitochondria) or Ca2+

influx across the plasma membrane (PM) from the extracellular space [15].
Cellular Ca2+ signaling is orchestrated by Ca2+-transporting and Ca2+-sensing pro-

teins. Ca2+ level enhancements can be initiated by the stimulation of a membrane receptor
(e.g., G-protein coupled receptor (GPCR)), membrane depolarization (voltage-dependent
channels [16]), or mechanical stress (mechanosensitive Ca2+ channels [17]). Ca2+ signaling
mediated by membrane receptor stimulation triggers the development of cellular factors
(e.g., inositol-tri-phosphate (IP3), diacylglycerol (DAG)) that activate Ca2+ ion channels
in intracellular compartments (e.g., IP3R in ER membrane) and/or the plasma membrane
(e.g., receptor- or store-operated channels) to allow Ca2+ flux into the cytosol. Cytosolic
Ca2+ elevations are sensed by a number of proteins such as Calmodulin (CaM) and down-
stream targets including CaM kinase (CaMK), calcineurin (CN), or protein kinase C (PKC)
(Figure 1A), which drive various downstream processes, including gene transcription, pro-
liferation, cell death, migration, and metabolism [14]. Ca2+ signaling events are terminated
by Ca2+ transporters that pump Ca2+ back into cellular organelles (e.g., SERCA) or to the
extracellular side (PMCA) [18].
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Figure 1. Ca2+-dependent cancer signaling pathways controlling proliferation, cell survival, and
death and migration. (A) The scheme depicts critical pathways for elevation of cytosolic Ca2+

levels (via PM ion channels (here, the focus is on the store-operated Ca2+ ion channel named the
CRAC channel, i.e., thepore-forming component Orai1) or upon ER-Ca2+ depletion) that control
proliferation at the level of the cell cycle machinery (cyclins, CDKs, CDK inhibitors, centrosome
cycle) in a Ca2+-dependent manner, either directly via Ca2+-binding proteins (CaM, CaMK, CN), or
indirectly via transcription factors (NFAT, or immediate early gene (JUN, Myc, and FOS)) and the
oncogenic pathways, Ras/ERK and PI3K/Akt. (B) Scheme highlights pathways that control cell
survival and death factors (e.g., BCL family proteins such as BCL2) in a Ca2+-dependent manner.
These include factors modulating ER Ca2+ uptake and Ca2+ crosstalk between ER and mitochondria
(SERCA, p53, Akt, IP3R, calpains, caspases). Moreover, the Ca2+-dependent modulation of cell fate via
oncogenic pathways is shown. (C) Top: Schematic representation of the transitions between epithelial
and mesenchymal states (MET-EMT (mesenchymal-epithelial transition <-> epithelial-mesenchymal
transition)) and the characteristic up- and down-regulations of specific gene expression markers
(E-/N-cadherin, vimentin, fibronectin), which are controlled by Ca2+. Bottom: Ca2+-dependent
pathways controlling highly coordinated migration together with contacts to the extracellular matrix
at the rear and the leading edge of the cell. At the leading edge, Ca2+ triggers lamellipodia formation
by actin polymerization, the assembly of focal adhesions, the formation of contact with the bottom,
and matrix metalloproteinases (involving small GTPase, such as Ras and Rac1, Ca2+-dependent
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factors, including CaMK and proline-rich tyrosine kinase 2 (PYK2); focal adhesion kinase (FAK)). At
the rear edge, the cell disconnects from the bottom, involving focal adhesion disassembly (Ca2+-sensitive
protease calpain, which cleaves FAK, vinculin, talin, and integrins) and actomyosin contraction
(MLCK). Software used for all figure drawings: Procreate, Chemdraw (RRID:SCR_016768).

1.2. Ca2+ Signal Transduction in Major Cancer Hallmarks

In cancer cells, genetic and epigenetic alterations can lead to the remodeling of Ca2+-
signaling components, disrupting the healthy Ca2+ balance [3,6,19,20]. This allows cells
to bypass mechanisms controlling inappropriate proliferation and prevent the survival
of ectopically proliferating cells outside their normal niches [21]. Ca2+ acts at different
stages of cancer signaling cascades either directly via Ca2+ signaling proteins (CaM, CaMK,
CN) or indirectly via transcription factors (e.g., NFAT) or oncogenic routes. The two
major oncogenic pathways [22] that have a central role in the development of the different
cancer hallmarks are the rat sarcoma virus—extracellular-signal-regulated kinase (Ras-
ERK)—and phosphoinositide 3-kinase (PI3K)-Akt (Akt, also known as protein kinase B,
PKB) pathways. They are activated upon ligand binding to integrin adhesion receptors
and signaling by cytokines, hormones, or exogenous growth factors [23]. Within the
Ras-ERK pathway, stimulation of the growth factor receptor tyrosine kinase (RTK; e.g.,
epidermal growth factor receptor (EGFR)) activates the small GTPase, Ras, followed by
the serine/threonine kinase (Raf), and finally the extracellular signal-regulated kinase,
ERK [21]. In the PI3K-Akt pathway, receptor stimulation triggers the activation of the lipid
kinase (PI3K), which in consequence activates the serine/threonine kinase Akt. Both ERK
and Akt phosphorylate various downstream effectors, including transcription factors and
kinases [24]. (Figure 1A,B). Ca2+ and these oncogenic pathways can affect each other in a
bidirectional manner to promote cancer progression. On the one hand, distinct Ca2+ signals
can tune oncogene-dependent signaling [18,25]. For example, the activation status of the
Ras oncogene is altered by an interplay of Ca2+ ions with Ras regulatory factors, such as
CaM [25,26]. On the other hand, oncogene-regulated routes can reshape Ca2+ signals, as
evidenced by the fact that the oncogene Ras interacts with and activates PLCε to produce
IP3, which triggers ER-Ca2+ store-depletion [23] (Figure 1). Overall, direct and indirect
modulation of cancer signaling pathways promotes cancer cell proliferation, survival, and
migration, as described in detail in the following subsections.

1.3. Ca2+-Dependent Dysregulation of Proliferation

The multitude of Ca2+-dependent effectors modulating proliferation is selectively and
efficiently controlled by specific spatiotemporal Ca2+ signaling. The abovementioned ways
of Ca2+-dependent regulation of cancer signaling pathways control proliferation at the
level of the cell cycle machinery. Particularly, Ca2+ signaling at the onset of the G1 phase
leads to the activation and expression of transcription factors of Nuclear Factor Activated
T cells (NFAT), cAMP-responsive element binding protein (CREB), and AP1 (FOS, JUN)
families [25]. These components coordinate the expression of cell cycle regulators, notably
certain types of cyclin proteins (Cyclin D/E) and cyclin-dependent kinases (CDK2/4/6).
Ca2+ also drives their complex formation (CDK4/6-Cyclin D, CDK2-Cyclin E) at the end of
G1 to finally ensure the transition to the S phase. The progression of the G1 phase is further
fine-tuned by CDK inhibitor proteins (p21, p27), whose action is controlled directly by Ca2+

via Ca2+-sensing proteins, CaM, CaMKII, and calcineurin (CN) and the tumor suppressor
p53 [25]. Ca2+ is also essential for subsequent cell cycle phase transitions (G1/S, G2/M)
and associated rearrangements of centrosomes are triggered by Ca2+ oscillations acting in
concert with CaM and CaMKII [18,27] (Figure 1A).



Cancers 2023, 15, 101 5 of 49

Further upstream, Ca2+ impacts the cell cycles via Ras-ERK or PI3K-Akt cascades. For
instance, Ca2+ induces ERK phosphorylation via the CaM-CaMKII pathway to regulate
proliferation [28]. This occurs via ERK-mediated phosphorylation of various transcription
factors essential for proliferation, most notably Myc. Myc triggers the expression of a
number of proteins (e.g., cyclins, CDKs) that interfere with the cell cycle [27]. In addition,
Ca2+ might also intervene in the complex action of Akt, which governs proliferation
during cell cycle progression, by promoting protein synthesis essential for cell growth,
suppressing cell cycle inhibitors through their sequestration or impaired gene transcription,
and controlling a set of enzymes involved in the G2/M transition [29] (Figure 1A).

A variety of other cancer signaling pathways (e.g., Wnt/ß-catenin, Wnt/Ca2+) target
Myc to modulate cell cycle progression [21,30], among which the Wnt/Ca2+ route can
control Ca2+ signaling. The Wnt-Ca2+ pathway is initialized by Frizzled receptors, which
initiate a classical G-protein-coupled signaling cascade that results in the production of IP3
and DAG and is thus directly linked to Ca2+ signaling pathways [30,31].

1.4. Ca2+-Dependent Dysregulation of Cell Survival and Cell Death

Cancer cells harness the Ca2+ signaling machinery to ensure their survival and protect
themselves from apoptosis. Ca2+ is involved in the activation of pro-survival signaling
pathways and anti-apoptotic proteins that inhibit or neutralize death signals [25]. In this
context, the ER and mitochondria are the major locations to determine cell fate. Although
elevations in cytosolic Ca2+ due to ER store depletion are essential for many vital pro-
cesses, they can also trigger apoptosis. For example, cytosolic death effectors such as
calpain are stimulated, rendering the cell susceptible to apoptosis through the activation
of caspases [32]. Moreover, Ca2+-flux between the ER and mitochondria can stimulate
death-inducing signals [18,25]. Several tumor suppressors, such as p53, are enriched at the
ER. There, p53 interacts with SERCA pumps, increases the ER’s Ca2+ load, and contributes
to Ca2+ crosstalk between the ER and mitochondria. This enables the efficient release of
pro-apoptotic factors [33–37]. p53 and Ca2+ ions act as interdependent cellular signals,
although the detailed cellular pathways are unknown [38] (Figure 1B). A recent study [39]
has shown that the protein kinase CK2 plays a critical role in maintaining elevated cytosolic
Ca2+ levels that promote prostate cancer progression. CK2 inhibition reduced cytosolic Ca2+

and increased Ca2+ levels in the ER and mitochondria to induce apoptosis [39], whereas
the underlying mechanisms remain to be clarified.

Whether apoptosis occurs is further defined by a complex interplay of pro- (e.g.,
Bim—BCL2—interacting mediator of cell death, BID-BH3-interacting domain death ago-
nist, Bad—BCL2-associated agonist of cell death) and anti-apoptotic (e.g., BCL2, BCLxL)
factors at the mitochondria [25,32]. Dysregulation of Ca2+ signaling routes, either directly
via Ca2+ sensing proteins or indirectly via oncogenic signaling pathways, can lead to
an imbalance between pro- and anti-apoptotic regulators in favor of anti-apoptotic pro-
teins [11,18,25,32,40–43] (Figure 1B). Most cancer cells display enhanced expression levels
of apoptosis-regulating proteins of the BCL2 family. They are responsible for reducing the
amount of Ca2+ in the ER or preventing Ca2+ uptake into mitochondria, which can lead
to apoptosis resistance. Apoptosis can be also reduced by the interplay of Akt with IP3R,
leading to decreased Ca2+ release from the ER [18,25] (Figure 1B).

1.5. Ca2+-Dependent Dysregulation of Migration and Invasion

Cancer metastasis involves epithelial–mesenchymal transition (EMT), cell migration,
invasion, angiogenesis, and intravasation, all of which are controlled by Ca2+ [18,25]. EMT
is a gradual, transient process (already important in embryonic development) in which
cell–cell connections degrade and detach from the basement membrane, causing cells to
lose polarity [44]. In several cancer cell types, it is associated with the downregulation of
common epithelial genes (cytokeratins, E-cadherin) and the upregulation of mesenchymal
markers (vimentin, fibronectin, N-cadherin, and metastasis-associated in colon cancer-1
(MACC-1)) [42,44–53] (Figure 1C, Top). This switch in markers during EMT is linked
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to aberrant Ca2+ signaling in many cancer types [19,32]. For instance, CaMKII activates
vimentin via phosphorylation [54]. Furthermore, abnormal Ca2+ levels develop due to the
GPCR signaling and cancer-specific upregulation of certain types of Ca2+ ion channels.
Consequently, elevated Ca2+ levels activate the transcriptional machinery, vital for the
upregulation of certain genes such as Snail, Twist, Zeb, and N-cadherin. These genes par-
ticipate in numerous transitions, including cell polarity, cytoskeletal remodeling, migration,
and invasion [40,42,51,54,55]. Moreover, genes activated after signal transduction through
the Wnt/Ca2+ pathway govern cell migration by targeting ß-catenin [30] (Figure 1C).

Directional movement of migratory cells is usually driven by highly localized Ca2+

signals reaching a rear-to-front Ca2+ gradient. Rear-end retraction of the migratory cell is
driven by Ca2+-modulated myosin light chain kinase (MLCK), followed by actomyosin
contraction and disassembly of focal adhesions. The latter is governed by the Ca2+-sensitive
protease calpain, which cleaves focal adhesion kinase (FAK), vinculin, talin, and integrins
to disconnect the membrane from the cytoskeleton. Conversely, directed actin polymer-
ization and growing focal adhesions located at the leading edge of migrating cells to form
membrane extension are stimulated by spatially confined Ca2+ signals. This is modulated
by small GTPase, such as Ras and Rac1, Ca2+-dependent factors, including CaMK and
proline-rich tyrosine kinase 2 (PYK2), and FAK [32] (Figure 1C). Altered Ca2+ levels in
tumor cells can further promote FAK disassembly and contribute to the reduction of cell
adhesions that promote cell migration. Moreover, the formation of membrane extensions
(invadopodia) is driven by the expression of Ca2+-dependent pro-invasive enzymes (e.g.,
matrix metalloproteins (MMPs)) that contribute to the degradation of the extracellular
matrix (ECM) [18,32,40] (Figure 1C).

1.6. Ca2+-Dependent Dysregulation of Other Cancer Hallmarks

Another phenomenon that occurs in most malignant tumors is non-physiological
oxygen levels, known as hypoxia. Cell adaptation to hypoxia is primarily regulated by
overexpression of the transcription factor HIF-1, which leads to angiogenesis, cell prolif-
eration/survival, and invasion/metastasis [56–58]. Hypoxia can increase transcription
and expression of Ca2+ channels and is therefore frequently connected to cytosolic Ca2+

enhancements, which can promote the transcription of target genes responsible for the
development of various cancer hallmarks [59]. Indeed, chemical treatments leading to
hypoxia of different cancer cell lines increased intracellular Ca2+ as well as the expression
of certain Ca2+ ion channels [60,61]. Moreover, silencing of the HIF-1 transcription factor in
breast cancer reduced the expression of critical Ca2+ ion channels [62]. Notch is a cellular
pathway associated with HIF-1 signaling. Knock-down or pharmacological inhibition of
Notch-1 decreased the expression of certain Ca2+ ion channels in breast, colon, and glioma
cancer cells [63,64]. Conversely, Ca2+ fluxes from the ER and outside of the cell can control
HIF-1 signaling [24,59] (Figure 2). However, the underlying mechanisms of these effects
are only starting to be understood. Overall, hypoxia is responsible for the development
of different cancer hallmarks, alters cancer cell metabolism, and contributes to therapy
resistance [56].
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Figure 2. Linkage of hypoxia and the Ca2+-signaling machinery in cancer. Hypoxia induces EMT
and activates PI3K/Akt, HIF, and NFkB signaling pathways. HIF-1 is involved in angiogenesis,
cell proliferation/survival, and invasion/metastasis. It can trigger upregulated expression of Ca2+

ion channels, leading to enhanced Ca2+ levels that promote transcription of oncogenes. Conversely,
Ca2+ can modulate HIF-1 signaling. Software used for all figure drawings: Procreate, Chemdraw
(RRID:SCR_016768).

2. Ca2+ Ion Channels and Their Role in Cancer

Intracellular Ca2+ is integral in the pathogenesis of key cancer features, as described
in the previous subsection. Considering that many current anticancer drugs are largely
ineffective in many cancers, emerging scientific discoveries indicate that the pool of Ca2+-
permeable and -dependent ion channels are a rich supply of new potential therapeutic
targets. Already in the late 1980s, a distinct pattern of functional expression of ion channels
in cancer cells was detected, providing a possible link between ion channels and carcino-
genesis [65–70]. Disrupted expression and/or dysfunction of ion channels can deregulate
cellular processes that develop into cancer hallmarks [2,4–7].

Among the diversity of ion channels, PM ion channels have a significant role in
the development of various cancer phenotypes and can be categorized as voltage-gated
(VGCC) and non-voltage Ca2+ ion channels [32,40]. Despite their main role in “excitable
cells”, VGCC are proposed to govern some common molecular mechanisms of carcinogenic
events due to their overexpression in many cancers [71,72]. Non-voltage-gated channels
can be subdivided into ligand-gated channels (LGC, e.g., purine ionotropic P2X receptor
families) [73], receptor- or second messenger-operated channels (ROC or SMOC, e.g.,
some transient receptor potential (TRP) channel members and the Orai family) [74,75],
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SOC (some TRP channel members and the Orai family) [74,76], acid-sensing channels
(ASIC) [77], and mechanically gated channels [78]. A number of studies reported their
altered expression and/or function in different tumor cells, driving the development of
cancer hallmarks [53,79–89]. Particularly, TRP channels perform versatile functions in
tumorigenesis, in addition to their multiple roles in the healthy body [90–92]. They sense
changes in the local environment and can be activated by a set of physical and chemical
stimuli, making some of them key elements of tumorigenesis. For example, TRPC6 and
TRPV6 govern NFAT translocation that is critical for proliferation. Mechanosensitive
TRPV2 and TRPM7 determine cancer cell migration and invasion [40].

Due to the essential role of the most studied store-operated Ca2+ ion channel, the CRAC
channel, in the co-regulation with Ca2+-dependent K+ ion channels in cancer, we focus
initially on its currently known structure/function relationship as well as its individual
role in cancer. It is composed of the stromal interaction molecule, STIM, containing its Ca2+

sensor embedded in the ER lumen [93–96], and the highly Ca2+-selective ion channel Orai in
the PM [97–102]. Emerging evidence reveals that STIM and Orai proteins are predominant
Ca2+ entry mechanisms in most cancer cells [80,103–110] and promote various cancer
hallmarks [80,103–106,108,109,111].

2.1. CRAC Channels

CRAC channels, composed of STIM and Orai proteins, are distinguished by their
activation mechanism via the release of Ca2+ from the ER. Precisely, ligand binding to
PM receptors leads to the activation of G-proteins, which initiate the production of phos-
pholipase C to generate IP3 from phosphatidylinositol-biphosphate (PIP2). Subsequently,
IP3 couples to the IP3 receptor in the ER membrane, which triggers ER-Ca2+ store deple-
tion [74,112–117]. The latter induces the conformational change and oligomerization of
STIM proteins [110,118] and consequently their coupling to Orai Ca2+ ion channels [119]
in the PM [120,121] (Figure 3A). In a healthy body, STIM and Orai proteins are mainly
involved in immune cell function [97], but they also contribute to the regulation of muscle
cells or brain function [80,103–106,108,109,111,122–127].

2.1.1. STIM Proteins

The STIM protein family, including the two homologs STIM1 and STIM2 (also called
STIM2.2) [118,124,128] (Figure 3B), is further enriched by the corresponding splice variants
STIM1L, STIM1A, and STIM1B and STIM2.1 and STIM2.3, respectively [129–132]. Of the
STIM protein family, STIM1 and STIM2 in particular are ubiquitously expressed in many
tissues [111,124,128–131,133–135]. In the following, we will focus on STIM1 and STIM2,
because only these two isoforms have been described as playing a role in cancer.

In general, the STIM structure consists of a single-pass TM domain with the N-terminus
embedded in the ER lumen and its long C-terminal tail exposed to the cytosol. The N-
terminus senses fluctuations in Ca2+ levels, and the C-terminus relays the activation signal
to Orai1 in the PM [119]. The STIM1 N- and C-terminus and the TM domain contribute to
structural rearrangements upon STIM’s activation [136–138] (Figure 3B).

Specifically, the luminal side of STIM1 comprises the Ca2+-sensing EF-hand domain in
a complex with the sterile alpha motif (SAM) region. In the resting state, the EF-SAM do-
main is folded into a compact structure that is stabilized by hydrophobic interactions [139].
Upon Ca2+ store depletion, Ca2+ ions dissociate, leading to destabilization of the EF-SAM
complex, which initiates signal transmission to the C-terminus [140–144].

Next, the activation signal of Ca2+ store depletion is conveyed from the N- to the
C-terminus via the STIM1 TM domain. Two TM domains within a STIM1 dimer are
considered to form a crossing angle that alters upon activation [142]. In support, a cysteine
crosslinking screen uncovered that in the resting state, only the C-terminal portions of the
STIM1 TM domains are in close proximity. In the active state, the N-terminal TM segments
are closer together, possibly changing the crossing angle of the cytosolic C-termini [140].
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state (left), followed by the depiction of the two proteins in the activated state allowing Ca2+ influx
indicated by the green arrow (right), with the most important interaction sites highlighted. (B) A
schematic illustration of the STIM1 and STIM2 isoforms consisting of the respective canonical EF-
hand domain (cEF) and the hidden EF-hand domain (hEF), followed by the sterile alpha motif (SAM)
in the ER lumen and subsequently the single TM. The C-terminus located in the cytosol contains three
coiled-coil domains (CC1–3), more specifically, the three predicted α-helices of CC1 (α1–3). These
coiled-coil regions comprise the Orai-activating small fragment (OASF), which spans all three coiled-
coil domains, the CRAC-activating domain (CAD), or the STIM1-Orai-activating region (SOAR),
which includes CC2 and CC3. The coiled-coil regions are followed by the inactivation domain (ID), the
microtubule end-binding domain (EB), and finally, the polybasic domain (PBD) at the very end of the
C-terminus. (C) An overview of all Orai proteins (Orai1, Orai2, Orai3) highlighting the TM domains
alongside major positions for CRAC channel gating (Orai1 aa 72-90—ETON region, R91—SCID
mutation position, E106—selectivity filter, H134, P245—critical gating checkpoints, L273—critical
STIM1 binding site and analogue sites are labeled in Orai2 and Orai3). Software used for all figure
drawings: Procreate, Chemdraw (RRID:SCR_016768).

Upon Ca2+ store depletion, the STIM1 C-terminal domain undergoes an extensive
conformational rearrangement to change from a folded quiescent to an extended state,
which leads to the exposure of STIM1 oligomerization and Orai1 coupling sites. The STIM1
C-terminus is composed of three typical protein–protein interaction domains known as
coiled-coil regions (CC1, CC2, CC3), the inhibitory [145] or CRAC modulatory domain [146],
the microtubule end-binding domain (EB), the Ser/Pro-rich region [94], and the lysine-rich
region [147,148] (Figure 3B).

In the closed state, STIM1 is locked by intramolecular interactions between the C-
terminals CC1 and CC3. The inhibitory clamp formed by a segment of CC1 (CC1α1)
and CC3 of monomers within a dimer is further modulated by intrahelical interactions
within two other parts of CC1 (CC1α2 with CC1α3) [149–151]. Upon activation, this
intramolecular inhibitory clamp is released, and the STIM1 C-terminus changes into an
extended conformation, which is stabilized by homomeric interactions between CC1 and
CC3 of different STIM1 proteins [100,142,152,153]. Thereby, the STIM1-Orai1 coupling site
is released.

A minimal portion of the STIM1 C-terminus called CAD (CRAC-activating domain) or
SOAR (STIM1-Orai1-activating region) is sufficient for coupling to and activation of Orai
channels. They include mainly CC2 and CC3 [99,102,154,155]. Currently, the structural res-
olutions of two slightly distinct SOAR-like fragments are available [149,152,156,157]. Both
structures indicate that two SOAR monomers are arranged in an anti-parallel manner to
form a dimer. Despite the essential inter- and intramolecular interaction sites being uncov-
ered, the overall conformation of the two dimeric structures is relatively distinct [156,157].
A recent single-molecule FRET approach revealed more similarities with the CC2-CC3
crystal structure than the CC1α3-CC2 NMR structure [150], but further structural stud-
ies of STIM1 fragments or full-length STIM1 are highly awaited. In the quiescent state,
the inhibitory clamp hides the CAD/SOAR region for coupling to Orai1. Critical Orai1
coupling sites are supposed to be located at the connection of CC2 and CC3, the so-called
apex (F394) [158], and the N-terminal (L373, A376) [159] (Figure 3B). In the tightly packed,
inactive conformation, the apex is oriented to the ER [150,158]. STIM1 activation is assumed
to lead to an unfolding of the C-terminus, thus allowing the apex to reach the PM, couple
to Orai1, and finally activate Ca2+ influx.

2.1.2. Orai

Orai proteins activated by STIM1 function as highly Ca2+-selective ion pores in the
PM. The Orai protein family comprises three human Orai paralogs, namely, Orai1–3
(Figure 3C) [121,160]. All three isoforms are ubiquitously expressed in many tissues [135,
161–163]. RNA transcripts of Orai1 and Orai2 are found primarily in the spleen, lymph
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nodes, appendix, bone marrow, and brain, whereas Orai3 is detected more in the prostate,
placenta, ovaries, testis, adrenal, urinary bladder, thyroid, endometrium, kidney, liver, and
many other tissues [135,161–163]. Of note, the expression of Orai3 is restricted, because it
is found only in mammals [164].

Orai proteins consist of four TM domains (TM1–TM4) connected by two extracellu-
lar and one intracellular loop and flanked by a cytosolic N- and C-terminus [165–167].
The N-, C-terminus and the intracellular loop region (loop2) [168,169] are crucial for
STIM1-mediated Orai1 activation, whereas the Orai1 C-terminus (L273) is the main STIM1
coupling site [101,138,170–172]. The STIM1/Orai1 association pocket (SOAP) has been
resolved by NMR with fragments of STIM1 (aa 312–387) and Orai1 (aa 272–292) [156]. The
identified key sites responsible for STIM1/Orai1 coupling are in line with experimental
findings [154,156,173]. Additionally, the loop2 region functions as a STIM1-Orai1 gating
interface after the functional coupling of STIM1 to the Orai1 C-terminus [99,136,174]. As
for the N-terminus, functional results indicate that it contributes to STIM1-dependent Orai1
activation; however, it is still a matter of debate whether it forms a direct STIM1 coupling
site [10,100,136–138,156,159,169,175,176].

Structural resolutions of the Drosophila melanogaster Orai (dOrai) and corresponding
gain-of-function (GoF) dOrai (dOrai H206A, dOrai P288L) mutants consistently exhibit
a hexameric assembly of Orai subunits. Based on the high homology of dOrai to human
Orai1 (hOrai1) within the TMs, it is assumed that hOrai1 also forms a hexamer. Of the four
TM domains, the first TMs (TM1s) form an inner ring lining the pore in the center of the
channel [119,177–179]. This is composed of a Ca2+ accumulation region at the extracellular
side followed by the selectivity filter (E106), the hydrophobic cavity (F99, V102), and at the
cytosolic side, the basic region. Interestingly, TM1 expands helically approximately 20 Å
into the cytosol, forming an extension of the Ca2+ ion pore [10,112–114,119,136,180]. This
cytosolic region constitutes the last third of the Orai N-terminus, which is also referred
to as the extended TM Orai N-terminal (ETON; aa 73–90) region (Figure 3C) [136]. The
pore-lining helix is surrounded by TM2s and TM3s forming a middle ring and by TM4s
as the outer ring of the channel complex [119]. In addition to the Ca2+ ion pore, another
essential feature of the Orai1 complex represents its periphery, composed of TM4 and the
C-terminus [138,170]. The closed-state structural resolutions exhibit a kink at P245 in TM4
and a bent connection to the helical C-terminus [119,170]. The open state structures suggest
conformational rearrangements in these areas, although the extent of these structural
changes is still a matter of debate. Nevertheless, this information led to the hypothesis that
STIM1 coupling to its main coupling site within Orai1, the C-terminus, and its subsequent
interplay with the loop2 allosterically connected to the nexus region [169,170,174], triggers
pore opening via a wave of interdependent TM domain motions [181,182]. The latter is
supported by the fact that a set of positions within all TM domains (e.g., H134, V181,
P245) function as gating checkpoints, as their mutation can lead to either gain- (GoF) or
loss-of-function (LoF), depending on the amino acid substitution. Moreover, several LoF
mutations act dominantly over GoF mutations in various combinations, proving that a
global conformational change of the channel complex is essential for pore opening [181,182].

The general structure of the three Orai isoforms is comparable, yet they have an
overall sequence identity of 50–60%, with TM1 being identical among the three Orai
proteins, whereas the other TM domains are approximately 81–87% similar (Figure 3C).
The cytosolic and extracellular regions exhibit greater differences, with the N-terminus (aa
1-90) showing 34% and the C-terminus (aa 265–301) 46% sequence identity [164]. For the
extracellular (loop1, loop3) and intracellular (loop2) loop regions, loop1 is 60–80% [147],
loop2 is 80–90% [169], and loop3 is only 20–30% conserved [164]. These differences account
for a number of isoform-specific functional differences, such as current size, inactivation,
or binding affinity to STIM1 [10,114,136,169,183–186] and might be promising targets for
potential pharmacological interference [170,171].

In summary, CRAC channel activation represents a multistep activation cascade
involving STIM1 unfolding, STIM1 oligomerization, STIM1-Orai1 coupling, and Orai1



Cancers 2023, 15, 101 12 of 49

activation. Resolving these different intermediate activation states could help researchers
to find new targets for selective therapeutic strategies also in cancer. In particular, the
isoform-specific differences of Orai channels might be promising in cancer-type-specific
drug discovery and therapy development [185]. Nevertheless, several aspects remain still
to be clarified, such as whether STIM1 also binds to the N-terminus of Orai1, the detailed
STIM1/Orai1 binding pockets aside from the already known one formed by their C-termini,
the stoichiometry of the STIM1/Orai1 complex for maximal activation, and additional
isoform-specific differences in the structure/function relationship.

2.1.3. CRAC Channels and Cholesterol-Rich Regions

Increasing evidence reveals that membrane proteins are localized in microdomains
containing especially cholesterol, sphingolipids such as sphingomyelin, and glycosphin-
golipids [187]. These cholesterol-rich regions provide platforms required for membrane
protein sorting and the assembly of signaling machinery, thus dictating protein–lipid and
protein–protein interactions. In cancer, too, the remodeling of Ca2+ ion channels may
involve their altered arrangement and interplay in the membrane due to structural rear-
rangements of the channel, assembly of the channel complex, or channel interaction with
regulatory proteins that affect their function [3]. In the context of lipid-driven regulation
of STIM1 and Orai1, there is increasing evidence that the function of the STIM1/Orai1
complex is modulated by/within cholesterol-rich regions [188,189], although STIM1 and
Orai1 are sufficient to form the CRAC channel [190]. This dependence on lipids is not
surprising, given the coincidence of STIM1-Orai1 coupling and their activation at ER–PM
junctions [191]. The function of STIM1 and Orai1 is affected by direct interaction with some
lipids, including phospholipids PIP2 and PI4P, cholesterol, and sphingomyelin [192–197].

Specifically, PIP2 modulates STIM1 function via direct binding to its C-terminal end, a
lysine-rich region [99,198–201]. This allows STIM1 to stably interact with PIP2 and PIP3
located in cholesterol-rich regions in the PM [189,199,202–205]. Hence, STIM1 first couples
with PM-localized PIP2 and PIP3 in cholesterol-rich regions before interacting directly with
Orai1 [206]. The N-terminus of Orai1 also contains a polybasic region that is sensitive to
PIP2 and is therefore essential for modulating Orai1 in membrane domains with different
PIP2 content [207]. However, it is currently difficult to analyze the modulatory role of
PIP2 on Orai1 due to its dependence on STIM1. Moreover, the precursor of PIP2, PI4P,
regulates CRAC channel function [203,208,209], but the detailed mechanisms remain to
be determined.

Cholesterol affects CRAC channel function via direct interaction with STIM1 and Orai1.
Both CRAC channel proteins contain a cholesterol-binding motif, namely, the cholesterol
recognition amino acid consensus motif (-L/V-(X)(1-5)-Y-(X)(1-5)-R/K-; X represents from
one to five any amino acids before the next conserved residue) [210–213]. In STIM1, it
is located in the C-terminus (aa 357–366) [195], and in Orai1, it is formed by aa 74–83
in the ETON region [113]. In both cases, the mutation of key residues therein, which
have been demonstrated to disrupt cholesterol binding, led to enhanced store-operated
STIM1-mediated Orai1 currents, in accordance with the effect observed upon cholesterol
depletion. Overall, this suggests that STIM1 and Orai1 coordinate analogous cholesterol-
dependent mechanisms of CRAC channel regulation. Regarding the impact of chemical
cholesterol depletion, there are still conflicting results. Interestingly, though cholesterol
depletion by methyl-β-cyclodextrin (MßCD) reduced endogenous SOCE [214], cholesterol
oxidase- or filipin-induced reduction in membrane cholesterol enhanced endogenous
SOCE [113]. Moreover, MßCD internalizes Orai1, which could be rescued by caveolin
(Cav-1) overexpression, a key component of cholesterol-rich regions [196]. Interestingly,
other studies have reported that MßCD application to cells overexpressing STIM1 and Orai1
had either no inhibitory [193] or enhancing effects on STIM1-mediated Orai1 currents [195].
Such distinct effects could potentially occur due to distinct expressions of the respective
proteins. Alternatively, these observed differences are probably attributable to the milder
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manipulation of cholesterol levels or distinct membrane composition due to the application
of cholesterol oxidase or filipin compared to MßCD.

Sphingomyelin, which is also abundant in cholesterol-rich regions, controls CRAC
channel function. Indeed, the application of sphingomyelinase (SMase) D diminished
CRAC channel currents without impacting Ca2+ store depletion. However, whether this
modulatory role occurs due to direct binding or allosterically is still unknown [215,216].

Additionally, STIM1 and Orai1 undergo S-acylation, the posttranslational tethering
of a medium-length fatty acid, to a cysteine—in these cases, C437 in STIM1 and C143
in Orai1. S-acylation of STIM1 controls its puncta formation and maximal activation of
CRAC channels [217]. In Orai1, S-acylation is mediated by the protein acyl transferase
(PAT) 20 and controls Orai1 trafficking, activation, and maintenance of its accumulation in
cholesterol-rich domains essential for downstream signaling [197].

Additionally, perturbations to plasma membrane lipids affect other proteins that
impact STIM1 and Orai1 expression and function. These include a variety of lipid- or
ER-PM transition-dependent accessory proteins at the ER–PM contact sites [218], as we
recently reviewed in detail [187]. Briefly, these include proteins situated in the ER that can
establish direct or indirect interactions with the PM, namely, the Extended-synaptotagmins
(E-Syts) with E-Syt 1-3 [219], GRAMD2A [220], and Anoctamin 8 (ANO8) [221]. They
are involved in controlling the formation of ER–PM contact sites as well as the lipid
composition, especially PIP2, of the membranes, thereby having various effects on the
modulation of STIM1/Orai1 coupling and function. Additionally, ER- or PM-associated
proteins located in the ER-PM junctions, in particular, septins [222–227], junctate [228,229],
RASSF4 [229], STIMATE [230], SARAF [205,231,232], and Cav-1 [196,233–236] modulate
the interplay of STIM1 and Orai1. Furthermore, the interplay of lipids with channels, as
reported for TRPC1, affects the function of CRAC channel components. Though Cav-1-
dependent translocation of TRPC1 into cholesterol-rich regions allows its store-operated
activation via STIM1 binding [237–240], in the absence of Cav-1, TRPC1 is moved out
of cholesterol-rich regions to function as an agonist-dependent and STIM1-independent
channel [241–243].

The fact that the CRAC channel complex is not a closed entity but can be modulated
by a variety of proteins and lipids in the vicinity of the ER–PM contact sites highlights the
multiple regulatory possibilities that may also play a role in the pathogenesis of cancer and
could be exploited for therapeutic applications.

2.2. CRAC Channels and Cancer

Although CRAC channels are one of the most important pathways for the cellular Ca2+

influx to maintain healthy body functions [244], there is increasing evidence that they are a
major source of Ca2+ influx into cancer cells, where they are linked to tumorigenesis. This is
due to either altered expression of CRAC channel proteins [81,83,103–105,108,109,111,122,
126,245,246], specifically, STIM1/STIM2, Orai1, and Orai3 in cancer cells compared with
healthy cells or mutations in STIM1 or Orai1 proteins. Such dysregulations can promote the
proliferation, migration, invasion, and metastatic spread of cancer cells and be responsible
for a poor prognosis and high mortality rate of patients suffering from certain cancer
types [85,86,247–251] (Figure 4A–C).
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cancer types. The schematics summarize the current knowledge of signaling pathways control-
ling cancer features (proliferation (A), apoptosis (B), EMT/migration (C), and hypoxia (D)) of the
mentioned cancer types depending on CRAC channel components, TRP channels, or SPCA2. ? . . .
signaling pathway is unknow. Colors indicate which cancer type correlates (arrow in correspond-
ing color) which signaling pathway. Software used for all figure drawings: Procreate, Chemdraw
(RRID:SCR_016768).

2.2.1. Cancer Associated with Distinct Expression Levels of CRAC Channel Proteins

Distinct expression levels of STIM and Orai compared to corresponding healthy tissues
have been detected in cells of the breast [82,252,253], cervical [248], colorectal [85,86,254],
esophageal [255], gastric [53], glioblastoma [88,256], hepatocellular carcinoma [251,257],
leukemia [87,89], liver [251,258], lung [84,259,260], multiple myeloma [261,262], ovar-
ian [263,264], pancreatic [265,266], and prostate [80,267–270] cancer and others [83]. Whether
CRAC channel proteins are up- or downregulated to promote cancer development and
progression depends on the cancer type [80,82,104,249,253,255,259,264–266,271]. However,
in several tumor cells, upregulation of one or more of the CRAC channel components,
mostly STIM1 and Orai1, promotes the development of cancer hallmarks [80,82,104,249,
252,253,255,259,264–266,271,272] (Table 1).
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Table 1. Correlation of cancer types with critical CRAC channel components.

Cancer type Critical Proteins Targeted Signaling Pathways Affected Cancer Hallmarks Cell Type Ref

Breast

↑STIM1, ↑Orai1 small GTPases ↑Ras and ↑Rac ->
↓focal adhesions -> migration, metastasis MDA-MB231 [82]

↑Orai1 +↑SPCA2
↑vimentin

↑Wnt/Ca2+ sig. pathway -> CaMKII ->
ß-catenin ->↓Wnt

EMT

MCF-7

[273]

↑Orai3

↑ER -> cell proliferation [126,127]

↑ERK1/2 ->↑Myc -> ↑cell cycle (G1) -> cell proliferation [253]

↑PI3K -> ↓p53 -> apoptosis [271]

hypoxia -> EMT MDA-MB-468 [62]

STIM2 + Orai1 (↑?)PAR-2 -> survival, invasion, cancer
prognosis MCF-7, MDA-MB-231 [250]

Cervical ↑STIM1, ↑Orai1

↑cell cycle (G1/S (CDK2, cyclin E)) -> proliferation SiHa, HeLa, U2OS [274]

↑EGF -> ↑calpain ->↑α-spectrin -> migration, metastasis

SiHa, CaSki, human patient
and mice tissues/cells [248]

↑FAK and ↑Pyk2 ->↓focal adhesions -> migration, metastasis

S and G2/M phases (↓p21, ↑Cdc25C) -> proliferation

VEGF (vascular endothelial
growth factor) -> angiogenesis

Colorectal

↑STIM1 ↑EGF -> ↑COX-2 -> ↑PGE2 -> migration, EMT DDL-1, HT-29, patient
samples [85]

↑Orai1, Orai3 hypoxia -> ↑HIF-1/2a -> ↑Orai3 -> migration CW-2 [275]

↓STIM2 + ↑TRPC1 +
↑Orai1 + ↑STIM1 n.d. proliferation, invasion,

survival, apoptosis HT29 [254]

Esophageal ↑Orai1 (STIM2?)

↑ERK & Akt -> cell cycle (↓cdc2,
↓cyclin B1, ↓p27) -> proliferation

KYSE-150, patient and
mouse samples [255]

↑vimentin, ↑Rac1,
↓E-cadherin -> cytoskeleton -> migration, invasion

Gastric ↑STIM1, ↑Orai1

cell cycle (↑cyclin D1, ↓p21) ->
proliferation,

metabolism, migration,
invasion, metastasis

GS, BGC-803, BGC-823,
MGC-803, MKN-28, MKN-45,

SGC-7901, nude mice,
patient samples

[53]
↑vimentin, ↑fibronectin,
↑MACC1, ↓E-cadherin -> migration, metastasis

Glioblastoma

↑STIM1 cell cycle (G0/G1 phase,
↑cyclin D1, ↑CDK4, ↓p21) -> proliferation U251, U87 and U373 [88]

↑Orai1
↑Pyk2 -> ↓focal adhesion ->
↑vimentin, ↓E-cadherin,
↑N-cadherin (EMT like) ->

migration, invasion U251/SNB19 [272]

H
em

at
ol

og
ic AML

↑Orai1, ↑Orai2 ↑FAK -> ↓focal adhesions -> proliferation, migration HL60 [245]

Orai3 ↑Ras -> ↑Orai3 -> cell survival U937, 8226 [262]

MM ↑STIM1, ↑Orai1 ↑cell cycle -> proliferation, apoptosis KM3, U266 [261]

CLL ↑STIM1,
↑Orai1, ↑TRPC1 n.d. proliferation,

cancer progression U937, 8226 [89]

Liver
↑STIM1 ↑FAK-Y397 -> ↓focal adhesions -> migration HCC-LM3 [257]

↑STIM1,
↑Orai1, ↑TRPC6 cell cycle (↑cyclin D1) -> proliferation Huh-7 [258]

Lung

↓Orai1 ↑EGF -> ↑PI3K/Akt -> cell cycle
(G1/S phase; ↑cyclin D) -> proliferation A549 [79]

↑Orai3/Orai1
↑EGF -> PI3K/Akt -> cell cycle

(G1/S phase; ↑cyclin D1/E,
↑CDK4 and ↑CDK2) ->

proliferation, cell
cycle progression NCI-H23, NCI-H460, patients [249]

Melanoma

↑STIM1, ↑Orai1 ↑CaMKII/Raf-1/ERK -> proliferation, migration,
metastasis

SK-Mel-2, C8161, SK-Mel-24,
UACC2577, WM3248, [276]

↑STIM2, ↑Orai1 n.d. migration, invasion SK-MEL-5,
SK-MEL-28, WM3734

[108]
↓STIM2, ↓Orai1 CREB/β-catenin -> MITF proliferation

Ovarian
↑STIM1, ↑Orai1 ↑Akt -> apoptosis A2780 [264]

↑TRPC1, ↑TRPC3,
↑TRPC4, ↑TRPC6 RTK? -> proliferation SKOV3, ATCC

HTB-77 [263]

Pancreatic

↑STIM1, ↑Orai1 n.d. apoptosis Panc1, (ASPC1, BxPC3,
MiaPaca2, Capan1) [265]

↑Orai3 ↑cell cycle (G2/M-phase) proliferation Panc1, (ASPC1, BxPC3,
MiaPaCa2, Capan1) [266]
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Table 1. Cont.

Cancer type Critical Proteins Targeted Signaling Pathways Affected Cancer Hallmarks Cell Type Ref

Prostate

↓Orai1 ↓AR apoptosis LNCaP, DU-145, and PC-3 [80]

↑Orai1/Orai3
cell cycle (G1/S phase; ↑cyclin D) proliferation

LNCaP [269]
↓SOCE -> apoptosis

Renal ↑STIM1, ↑Orai1 n.d. proliferation, migration ccRCC, ACHN and Caki1,
patient samples [277]

Symbol: ? . . . unknown role or pathway.

Notably, other molecular components also contribute to STIM- or Orai-dependent
cancer progression. Altered expression and function of the molecular components of
SOCE include not only CRAC channel components, such as Orai1 and Orai3, but also
other Ca2+ ion channels, for instance, the canonical transient receptor potential channels,
which have been found in breast cancer (TRPC1 and TRPC6) [104] and ovarian cancer
(TRPC1, TRPC3, TRPC4, TRPC6) [263]. Chronic lymphocyte leukemia (CLL) is associated
with dysregulated Ca2+ signaling in dependence with not only STIM1 and Orai1, but also
TRPC1 [89]. Moreover, in the human hepatoma cell line (Huh-7), Ca2+ entry occurs via a
molecular complex of TRPC6, STIM1, and Orai1 controlling cell proliferation [258]. In the
breast cancer cell line, MCF-7, a novel STIM1-independent mechanism for triggering Ca2+

entry through Orai1 activation via the accessory protein Secretory Pathway Ca2+-ATPase
2 (SPCA2) has been identified [278]. Physiologically, SPCA2 is known to function as a
Golgi Ca2+ pump, where it is involved in protein glycosylation, sorting, and processing.
However, in this cancer cell line, there is a direct interaction of the N- and C-termini of
SPCA2 with Orai1 at the cell surface, which controls EMT [83,278]. These cancer cell-specific
coregulations of ion channels offer the possibility of finding selective, cancer-type-specific
therapeutic targets. In the following, the current knowledge on the role of STIM and Orai
proteins in tumor development is summarized.

2.2.2. Proliferation

In several tumor types, enhanced proliferation correlates with ectopic STIM1/Orai1
expression [40,53,79,81,88,249,252,256,258,263,266,276,277]. In some cases, either STIM1,
Orai1, or both have been shown to impact certain phases in the cell cycle. Support-
ively, downregulation of STIM1 and/or Orai1 results in cell cycle arrest at either G0/G1
(glioblastoma [256]), G1/S (cervical [274], gastric [53], cancer) or G2/M transitions (cervi-
cal [248], esophageal cancer [255]) due to altered expression of corresponding cyclins, cyclin-
dependent kinases, and cell cycle division phosphatases (G1/S: cyclin D1/CDK4 [53,88];
cyclin E/CDK2 [274], cdc25 [248]; G2/M: cyclin B1/cdc2 [255]), and/or proliferation in-
hibitors ((p. 21 [248]), (p. 27 [255])). Interestingly, in non-small-cell lung cancer (NSCLC) cell
line A549, down-regulated Orai1 expression promoted proliferation. Indeed, overexpres-
sion of Orai1 led to decreased cyclin D expression and cell cycle arrest in G1 [79,279]. In ad-
dition, it abolished another oncogenic pathway modulating proliferation, namely, the EGF
proliferative effect along with inhibited Akt phosphorylation [79,279]. In melanoma cells,
STIM1- and Orai1-dependent regulation of proliferation occurs through the CaMKII/Raf-
1/ERK signaling pathway [276] (Figure 4A). Interestingly, a correlation between STIM1 and
Orai1 expression and specific cell cycle regulators has been found in most cancers, provid-
ing targeted therapeutic options. However, in several cancer types, it remains unexplored
how Ca2+ entry via the STIM1/Orai1 machinery affects the various cell cycle effectors,
either directly via Ca2+-binding proteins or indirectly via transcription factors, Ras/ERK,
or PI3K/Akt pathways.

In some cancer types, Orai3 and/or STIM2 expression exerts pro-proliferative effects
by influencing the cell cycle via various signaling cascades (Figure 4A). In ER+ breast cancer
cells, SOCE is mediated exclusively by Orai3 and STIM1/STIM2, whereas in ER- breast
cancer cells, the canonical CRAC channel consists of STIM1/Orai1, which is sufficient
to trigger SOCE [126]. Specifically, in the estrogen receptor-α (ERα) expressing (ER+)
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breast cancer cells (MCF-7), Ca2+ entry via Orai3 targets the proto-oncogenic transcription
factor c-myc via the MAPK (originally named ERK) pathway to trigger cell proliferation
arrest [126], contributing to ER+ breast tumorigenesis [127]. Indeed, Orai3 silencing resulted
in decreased c-myc activity and ERK levels and G1 phase cell cycle arrest [126]. In pancreatic
ductal adenocarcinoma, Orai3 knock-down resulted in decreased cell proliferation due
to a halted cell cycle in the G2/M-phase [266]; however, the underlying mechanism for
Orai3-dependent cell cycle regulation is unknown.

In other cancer types, enhanced Orai3 expression increased Orai1/Orai3 heteromeric
formation and thus reduced the number of functional Orai1 channels [269] (Figure 4A).
In prostate cancer biopsies, AA-mediated activation of Orai1/Orai3 channels enhanced
intracellular Ca2+ concentration, which controls cell proliferation via Ca2+/CN-dependent
activation of the transcription factor NFAT. Interestingly, in mouse models, Orai3 silencing
controls the G1/S phase cell cycle by decreasing cyclin D1 expression. Conversely, Orai3
overexpression promoted proliferation [269]. Another study [267] suggested heteromeric
Orai1/Orai3 channel formation, whereby Orai3 expression is downregulated in cancer,
thus altering the Orai1/Orai3 ratio. Higher Orai3 expression, elevated noncanonical
Orai1/Orai3 channel formation and controlled proliferation via cell cycle progression of
non-small-cell lung adenocarcinoma [249,259]. In support, Orai3 silencing resulted in
downregulated cyclin D1 and E expression and reduced Akt phosphorylation, which is
associated with reduced proliferation and G1-phase cell cycle arrest [249]. This particular
isoform-specific role of Orai3 in different cancers together with isoform-specific features and
functionality [185] provides the opportunity for more targeted therapeutic developments.

2.2.3. Cell Survival and Cell Death

Apoptosis resistance is another cancer hallmark connected to up- or downregulated
expression and function of CRAC channel components.

The androgen-independent stage of prostate cancer, which represents an aggressive
phenotype, is manifested by downregulated Orai1 expression, which leads to apoptosis
resistance. In accordance, SOCE is abrogated in these androgen-independent prostate
cancer cells [80]. Supportively, overexpression of Orai1 not only restored SOCE but also
induced a similar rate of apoptosis in an aggressive type of prostate cancer cells compared
to androgen-dependent cells [80]. It is therefore assumed that androgen plays a role in
regulating Orai1 expression. Noteworthy, sequence analysis of the Orai1 promoter revealed
several palindromic, dihexameric motifs, also known as androgen-responsive elements, that
identify androgen receptor binding sites [80]. These results indicate that downregulated
androgen receptors ultimately deregulate Orai1 in the aggressive, androgen-independent
stage of prostate cancer, resulting in decreased SOCE and increased apoptotic resistance.
It remains to be resolved whether, in androgen-independent prostate cancer, the Ca2+

crosstalk between ER and mitochondria and/or balance between pro- and anti-apoptotic
factors is altered and thus determines apoptosis resistance. Nevertheless, prostate cancer
cells benefit from the abrogated SOCE, whereas upregulated SOCE has a pro-survival and
pro-migration effect in several other cancer cell types [53,82,108,248,257,272,275,276]. Al-
though these two scenarios are opposing, they both represent a major advantage for cancer
cells and leave room for further investigations. Among other CRAC channel components,
the downregulation of STIM2 contributes to apoptotic resistance of HT29 colorectal cancer
cells, whereas TRPC1 and Orai1 expression was enhanced [254]. Moreover, Orai3 plays a
role in apoptotic resistance in breast cancer cells. There, it controls the expression of the p53
protein via the pro-survival PI3K pathway [253]. These findings again suggest the potential
for isoform-specific treatments (Figure 4B). Interestingly, the impact of CRAC channels on
apoptosis has been reported only for a few cancer types. The detailed mechanisms of the
effects on apoptotic pathways remain to be explored.
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2.2.4. Epithelial–Mesenchymal Transition (EMT), Migration, and Invasion

CRAC channel components are further of great importance in EMT, migration, and
invasion of tumor cells [82,127,255,263,278,280]. In most cancer types, including breast [82],
gastric [53], glioblastoma [88,256], melanoma [108,276], and renal [277] cancer, migration
and metastasis have been identified to be controlled by both STIM1 and Orai1. Interestingly,
in cervical [248], colorectal [85], and liver [257] cancer, only STIM1 has been detected
to be critical, and in esophageal [255] cancer, only Orai1 has so far been detected as
such. Additionally, Orai2 in the hematologic tumor type, acute myeloid leukemia cells
(AMLC) [245], and STIM2 in melanoma [108] manifest the invasive phenotype of the
respective cancer types [53,81,106,257,272,280].

The expression of important markers of EMT and requisite regulators of mesenchymal
cell migration, such as vimentin or fibronectin, is downregulated in esophageal [255] and
gastric [53] cancer upon STIM1 and/or Orai1 silencing. The transition to a more motile
and invasive tumor type was accompanied by a loss of E-cadherin function, which was
upregulated upon the knock-down of Orai1 in esophageal [255] and gastric cancer [53].

Among factors that promote cell migration, the expression level of small GTPases Ras
or Rac is critical in STIM1- and/or Orai1-dependent cancer types, as reported in breast [82]
and esophageal cancer cells [255]. Moreover, the function of the Pyk2 kinases and the
protease calpain, which control cytosolic scaffold proteins (e.g., α-spectrin) and thus focal
adhesion dynamics, is modulated by STIM1 in migratory cervical cancer cells [248]. Indeed,
silencing STIM1 attenuates invasive migration of cervical cancer cells, whereas overex-
pressed STIM1 enhances it [248]. In glioblastoma cells, Orai1 expression is upregulated and
linked to their enhanced invasion by controlling the phosphorylation of kinase Pyk2 [272].
CRAC channel proteins are further involved in the regulation of cancer cell migration by
controlling the expression of FAK through phosphorylation. Whereas in AMLC, Orai1
and Orai2 control the expression of FAK to promote focal adhesion formation [261], in
liver cancer, STIM1 is critical for FAK dephosphorylation to initiate detachment of focal
adhesions [256], indicating the important potential of isoform-specific therapeutic targets
(Figure 4C).

The reversal of EMT in a highly aggressive type of breast cancer depends on the
enhanced expression of SPCA2, which triggers constitutive Ca2+ influx via Orai1 [273]
(Figure 4C). This potentially occurs via Ca2+-dependent Wnt signaling. Specifically, in-
creased Ca2+ levels phosphorylate CaMKII and ß-catenin, thereby switching off Wnt and
subsequently inhibiting EMT [273]. Moreover, increased SPCA2 levels correlate with
decreased vimentin expression, an important mesenchymal marker [273].

In colorectal cancer, it is exceptional that the progression is governed by the pro-
inflammatory enzyme cyclooxygenase-2 (COX-2) playing a role in the prostaglandin (PGE2,
prostaglandin E2) synthesis. It is activated by the Ras/ERK pathway [23,281–285] and has
been also shown to require Ca2+ entry and the subsequent activation of transcription factors,
NFAT, and CREB [284]. Enhanced production of PGE2 as well as basal and EGF-induced
COX-2 expression trigger STIM1-dependent migration. Blocking COX-2 by chemical
modulation inhibited colorectal cancer cell migration. Ectopic expression of COX2 and
PGE2 sufficiently rescued the effect of STIM1 knock-down, indicating that colorectal cancer
cell migration mediated by STIM1 originates from its regulation of COX-2 expression and
subsequent PGE2 synthesis. Upregulated expression of STIM1 in colorectal cancer cells
induced EMT, whereas STIM1 knock-down showed the opposite effect [86] (Figure 4C).
Interestingly, STIM1 was determined to be a direct target of miR-185, a microRNA (miRNA),
in colorectal cancer tissues and cell lines.

At this point, the effectors (Pyk2, Ras) by which STIM1 and COX-2/PGE2 affect EMT
(vimentin, E-cadherin) as well as migration have not been explored in detail.

2.2.5. Hypoxia Linked to CRAC Channel Components in Cancer

Hypoxia-dependent enhancements in Ca2+ levels can underlie the upregulation of
Orai channels; however, the mechanism underlying their upregulation remains unknown.
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Regarding Orai1, it has been shown to upregulate in breast, colon, and glioma cancer cells
due to hypoxia together with TRPC6 [63]. This enhanced expression is associated with the
Notch pathway, and silencing or inhibition of Notch1 led to reduced Orai1 and TRPC6
expression. In breast cancer cells, enhanced Ca2+ levels due to hypoxia were diminished by
the application of SKF-96365, a CRAC channel blocker [62–64,286,287]. In various breast
cancer cells, hypoxia increased Orai3 expression, though the expression levels of other Orai
isoforms were unaffected. Remarkably, silencing Orai3 under these conditions failed to
reduce SOCE, suggesting that hypoxia is not the only pathway for the upregulation of
Orai3 [62] (Figure 4D). An alternative mechanism of positive regulation of Orai3 expression
might underlie the action of certain microRNAs (miR), miR18a and miR18b, as recently
demonstrated [125]. In another study, the upregulation of Orai3 together with TRPC1 in
breast cancer has been linked to HIF-1α, as its silencing reduced the expression of both
channels [62,286]. Moreover, hypoxia is capable of inducing EMT [56]. In colon cancer
progression, hypoxia augmented Orai1 and Orai3 expression as well as SOCE by increasing
the expression of the hypoxia-dependent transcription factor HIF-1/2 [275].

In summary, the role of CRAC channel components in carcinogenesis is multifaceted
and depends on the type of cancer, the affected cancer features, as well as the impaired
signaling pathway. On the one hand, this opens up targeted therapy opportunities. In
particular, STIM2 or Orai3 may function as a therapeutic target for selective cancer therapy.
Nevertheless, a more comprehensive understanding of the respective impaired signaling
pathways/proteins is still needed to create a more cohesive picture of the interaction
between CRAC channel components and cancer signaling pathways.

2.3. Cancer Associated with Mutations of CRAC Channel Proteins

Several mutations in STIM1 or Orai1 have been associated with cancers such as colorec-
tal tumor (Orai1 A137V) [283], stomach carcinoma (Orai1 M139V) [288], uterine carcinoma
(Orai1 S159L) [289], glioblastoma (Orai1 G183D, STIM1 S116N) [290], neck carcinoma
(Orai1 G247S) [291], lung adenocarcinoma (STIM1 A79T, E87Q, W350L, G446C/V) [144],
and skin melanoma (STIM1 T517I, S521L) [292] (Figure 5).

All these cancer-related Orai1 mutants have been reported to lead to constitutive
activity independent of STIM1 [290]. This likely triggers abnormal Ca2+ levels, which
might be responsible for the cancer development. Mechanistically, most of these mutations
(Orai1 A137, M139, G183, G247) are located at key checkpoints in the Orai TM domains
controlling pore opening. Their manipulation likely initiates a global conformational
change that finally induces pore opening [182]. Position S159 in Orai1 is located in the
loop2 region, which is essential in transferring the gating signal of STIM1 to the pore [293]
and controlling the inactivation of STIM1/Orai1 currents [146,294]. However, further
studies are still required to understand why this mutation triggers constitutive activity, as
it is not directly located in the TM domains.

Among the STIM1 mutants identified to occur in cancer, several (STIM1 H72R, D76V,
D78G, A79T, N80K, E87Q, L92P [144]) are located in the canonical EF hand and the hy-
drophobic cleft and have been found to trigger constitutive activation. Specifically, they
lead to constitutive STIM1 cluster formation and consequently to constitutive Ca2+ influx
through Orai1 channels. The mechanistic role of S116N, located in the non-canonical EF
hand, is still unknown. Several other cancer-related mutants are located in the STIM1 C-
terminus, which is essential in both maintaining the quiescent state and establishing CRAC
channel activation. For instance, W350L is located in the CC2 of STIM1, part of the minimal
region sufficient to activate Orai1, and G446C/V, T517I, and S521L are located in the flexible
portion of the STIM1 C-terminus. Further studies are still required to understand their
mechanistic impact.
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2.4. Therapeutic Approaches Associated with the Expression of CRAC Channel Components
in Cancer

The altered expression of Ca2+ ion channels and their interconnectedness with cancer-
promoting signaling pathways has opened new possibilities for future therapeutic strategies.

A variety of CRAC channel drugs are available, which has provided valuable insights
into CRAC channel mechanisms, but only a few have reached clinical trials due to low
selectivity or undesirable side effects. In the treatment of cancer, SKF-96365, a SOCE/Orai1
blocker, has been shown to impair cell proliferation of GBM cells in vitro [256] and metasta-
sis of breast cancer cells in vivo [295]. The CRAC channel inhibitor Diethylstilbestrol (DES),
a synthetic ethinyl estrogen, is a possible AR-independent prostate cancer treatment. Hypo-
thetically, DES binds to Orai via steroid-binding sites or even affects channel properties [55].
Synta66, which selectively inhibits Orai1 [296,297], prevents SOCE in three glioblastoma
cell lines (U-87 MG, LN-18, A172). Interestingly, it does not affect their division, viability,
and migration [298].

Carboxyamidotriazole (CAI) interferes indirectly with SOCE via the PI3K/Akt path-
way. Tested as a potential therapeutic, it affects the expression of BCL2 members [299,300]
in ovarian cancer [301,302]. Therefore, the inhibitory effect of CAI on SOCE in ovarian
cancer could be due to both mitochondrial Ca2+ overload and inhibition of Ca2+-dependent
survival pathways [55].

Drebrin, an actin-reorganizing protein boosting SOCE, is linked to prostate cancer cell
invasion, especially at earlier stages of cancer development. There is evidence that BTP2,
an Orai1 inhibitor, targets drebrin [303]. Notably, among pyrazoles, BTP2/Pyr2 and Pyr3
can block Orai1, TRPC3, and STIM1 and inhibit melanoma [276,304].
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Additionally, store-operated channels in acute myeloid leukemia cells containing
Orai3 have been reported to be targeted by tipifarnib, a farnesyltransferase inhibitor, that
prevents farnesylation of Ras [305]. This enhanced cytosolic Ca2+ levels through Orai3 and
caused cell death of AMLC lines [262].

RP4010, a synergistic drug, prevents SOCE activation by inhibiting Orai1. The drug is
undergoing clinical trials and might serve as a treatment for pancreatic ductal adenocarci-
noma [306] and esophageal cancer [307].

In addition to their function as drug targets, CRAC channel proteins can facilitate
the circumvention of a therapeutic effect, known as therapy resistance. This is particu-
larly challenging in the case of the chemotherapeutic agents 5-fluorouracil (5-FU) and
cisplatin, that induce autophagy and cell death in cancer cells. In hepatocarcinoma tissues,
overexpression of Orai1 impairs the effect of 5-FU [251], making Orai1 an indicator of
hepatocarcinoma sensitivity to 5-FU. Similarly, 5-FU treatment in pancreatic cancer sig-
nificantly increased STIM1 and Orai1 expression, impeding cell death [265]. In NSCLC
cells, a blockade of SOCE or STIM1 silencing enhanced cisplatin-induced apoptosis, and
STIM1 overexpression reduced apoptosis [84]. Supportively, cisplatin-treated cells revealed
downregulated STIM1 expression. In another study [308], the expression of Orai3, but
not Orai1, has been shown to lead to cisplatin resistance in bronchial biopsies. A shift in
the Orai1:Orai3 expression ratio increases SOCE, as well as the levels of cancer stem cell
markers, a mechanism potentially linked to the PI3K/Akt pathway [308].

In summary, although several studies have reported the effect of CRAC channel drugs
on various cancers, several questions remain to be addressed, such as why cancer cells
continue to proliferate and migrate even though the applied CRAC channel drug blocks
store-operated currents. Moreover, of the selective CRAC channel drugs currently available,
only a few have made it to clinical trials [309]. Thus, there is a need for targeted therapeutic
approaches and novel selective drugs. However, because CRAC channels are ubiquitous,
targeting them with highly selective agents may still lead to undesirable side effects. Thus, it
is important to focus on cancer type-specific deregulated pathways in therapy development,
such as the unique SPCA2-Orai1 or SK3-Orai1 co-regulation in breast cancer or the specific
role of Orai3 in various cancer types.

3. The Range of Ca2+-Activated Ion Channels

An important property of many ion channels is not only the transport of Ca2+, but
other channels also sense Ca2+, either by direct binding of Ca2+ or indirectly by Ca2+-
binding proteins, such as CaM [310–312]. On Ca2+ channels, Ca2+ often has an inactivating
effect, providing a negative feedback mechanism that protects against too much Ca2+

entering the cell [114]. Other ion channel types have evolved such that their opening and
closing are regulated by Ca2+, such as Ca2+-activated K+ channels and Ca2+-activated Cl-

channels [105,260,313–323]. Several members of both channel families are crucial in the
proliferation and migration of different cancer types [319–331]. In the following, we will
focus on the structure/function relationship of the Ca2+-activated K+ channels and their
role in cancer.

3.1. Ca2+-Activated K+ Channels

Ca2+-activated K+ channels include the large (BK), intermediate (IK or SK4), and small
conductance Ca2+-activated K+ channels (KCa2+: SK1, SK2, and SK3) [332,333], whereas the
focus here is on SK channels. Structurally, SK channels are comparable to voltage-gated K+

channels, containing six TM regions (S1–S6) with the pore region located between TM5 and
TM6 and both the N- and C-termini located at the cytosolic side [315] (Figure 6A). However,
they lack the voltage sensor in TM4, leading to their voltage independence [312,317]. SK1,
SK2, and SK3 channels possess a conductance of 2-20 pS, whereas for SK4 channels, it is in
the range of 20-85 pS [334]. The activation of these SK channels results in hyperpolarization
of the membrane potential [332,333]. SK1-3 occurs mainly in the nervous system, whereas
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SK4 channels are predominantly expressed in epithelial and blood cells and in some
peripheral neurons [315,335].

Cancers 2023, 15, 101 23 of 49 
 

 

 
Figure 6. A general overview of SK channels and their activation mechanism. (A) Simplified scheme 
of the 6 TM domains (S1-S6) of the SK channel, with the pore located between S5 and S6 and both 
the N- as well as the C-terminus in the cytosol. (B) Side and top view of SK4 with the constitutively 
bound CaM in dark gray (PDB ID: 6CNM—visualized by ChimeraX [336]). (C) Activation 
mechanism of the SK channel, starting with an inactive channel and the free CaM N-lobe with no 
bound Ca2+. The C-lobe of CaM is constitutively bound to the channel (left). The binding of Ca2+, 
mainly to the CaM N-lobe, triggers a conformational change leading to the interaction between the 
CaM N-lobe and the S45A helix (middle), further communicating a conformational change to the 
channel, pulling the S45B away from the pore and rendering the channel open (right) (adapted from 
Lee et al., 2018 [312]). Software used for all figure drawings: Procreate, Chemdraw 
(RRID:SCR_016768). 

Two cryo-EM structures of the closed and open state of SK4 are currently available 
[312]. They can be also assumed for the other SK isoforms due to the high sequence 
similarity between the four SK isoforms. These structural resolutions confirm the 
tetrameric conformation. The pore formed by a re-entrant loop between S5 and S6 is 
surrounded by S1 and S4 helices. The S4 and S5 helices are connected by the so-called S4-
S5 linker, which consists of two α-helices, S45A and S45B [312] (Figure 6B,C). 

SK ion channels are activated by changes in intracellular Ca2+ levels [310,311,315,332]. 
An increase in cytosolic Ca2+ concentration activates the SK channel, which triggers K+ 
efflux from the cell due to the K+ concentration gradient with 140 mM K+ inside and only 
5 mM K+ outside [325]. However, SK channels are not able to sense the intracellular Ca2+ 
concentration directly, but additionally possess the Ca2+-binding protein CaM 
constitutively bound to the calmodulin-binding domain (CaMBD) in the C-terminus of 
each α-subunit. Functional studies of SK channels have demonstrated that the CaM C-
lobe is constitutively bound to the SK channel, and the N-lobe is bound upon cytosolic 
Ca2+ elevations [310–312,337]. This mechanism has later been confirmed by the SK4 cryo-
EM structure, which predicts that four CaM bind to a channel tetramer [312] (Figure 6B). 
The dynamic and Ca2+-dependent interaction of the CaM N-lobe is formed with the S4-S5 
linker of the SK channel and triggers a conformational change within the channel complex 
to induce pore opening [311,312,315,338]. Specifically, CaM interacts with the S45A, which 

Figure 6. A general overview of SK channels and their activation mechanism. (A) Simplified scheme
of the 6 TM domains (S1–S6) of the SK channel, with the pore located between S5 and S6 and both
the N- as well as the C-terminus in the cytosol. (B) Side and top view of SK4 with the constitutively
bound CaM in dark gray (PDB ID: 6CNM—visualized by ChimeraX [336]). (C) Activation mechanism
of the SK channel, starting with an inactive channel and the free CaM N-lobe with no bound Ca2+.
The C-lobe of CaM is constitutively bound to the channel (left). The binding of Ca2+, mainly to the
CaM N-lobe, triggers a conformational change leading to the interaction between the CaM N-lobe and
the S45A helix (middle), further communicating a conformational change to the channel, pulling the
S45B away from the pore and rendering the channel open (right) (adapted from Lee et al., 2018 [312]).
Software used for all figure drawings: Procreate, Chemdraw (RRID:SCR_016768).

Two cryo-EM structures of the closed and open state of SK4 are currently avail-
able [312]. They can be also assumed for the other SK isoforms due to the high sequence
similarity between the four SK isoforms. These structural resolutions confirm the tetrameric
conformation. The pore formed by a re-entrant loop between S5 and S6 is surrounded by
S1 and S4 helices. The S4 and S5 helices are connected by the so-called S4–S5 linker, which
consists of two α-helices, S45A and S45B [312] (Figure 6B,C).

SK ion channels are activated by changes in intracellular Ca2+ levels [310,311,315,332].
An increase in cytosolic Ca2+ concentration activates the SK channel, which triggers K+

efflux from the cell due to the K+ concentration gradient with 140 mM K+ inside and
only 5 mM K+ outside [325]. However, SK channels are not able to sense the intracellu-
lar Ca2+ concentration directly, but additionally possess the Ca2+-binding protein CaM
constitutively bound to the calmodulin-binding domain (CaMBD) in the C-terminus of
each α-subunit. Functional studies of SK channels have demonstrated that the CaM C-lobe
is constitutively bound to the SK channel, and the N-lobe is bound upon cytosolic Ca2+

elevations [310–312,337]. This mechanism has later been confirmed by the SK4 cryo-EM
structure, which predicts that four CaM bind to a channel tetramer [312] (Figure 6B). The
dynamic and Ca2+-dependent interaction of the CaM N-lobe is formed with the S4–S5
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linker of the SK channel and triggers a conformational change within the channel complex
to induce pore opening [311,312,315,338]. Specifically, CaM interacts with the S45A, which
then moves to the cytosolic side. Additionally, S45B moves away from the pore region,
leading to further changes in S6, finally causing channel activation [310] (Figure 6C).

In summary, activation of the SK channel by constitutively bound CaM occurs upon
an increase in intracellular Ca2+ levels. CaM-Ca2+ binding results in altered binding of
CaM and triggers a conformational change of the SK channel that causes pore opening.

3.2. SK Channels and Cholesterol-Rich Regions

Because the interplay between SK3 and Orai1 that triggers breast cancer cell migration
occurs in cholesterol-rich regions, we present here recent findings on the individual regulation
of SK channels by lipids [292,316,325,329,339,340], specifically, PIP2 and cholesterol.

CaM-dependent activation of SK channels is modulated by PIP2, as PIP2-depletion
inhibits SK2 channels. The PIP2 binding site has been identified at the SK–CaM binding
interface. CaM phosphorylation causes a change in the interaction of amino acids at the
PIP2 binding site and reduces the affinity of SK2 for PIP2 [340].

Regarding cholesterol-dependent modulation of Ca2+-activated K+ channels, it is
known that cholesterol-mediated regulation of SK channels is dependent on Cav-1. In
contrast, the function of BK and IK channels is regulated by cholesterol independently of
Cav-1. Cholesterol inhibits BK channels, possibly due to an altered open probability, but
not a change in the unitary conductance [341]. Moreover, the alkyl-ether-lipid Ohmline,
which reduces SK3 channel activity, gives a hint of cholesterol-dependent SK3 channel
regulation [325,329]. Ohmline triggers membrane disordering with increasing cholesterol
levels. Molecular dynamics simulations have shown that Ohmline interacts with the
carbonyl and phosphate groups of sphingomyelin and stearoylphosphatidylcholine and,
to a lesser extent, with cholesterol. It has therefore been suggested that Ohmline removes
cholesterol–OH groups from their major binding sites and forces a new rearrangement
with other lipid groups. This leads to membrane restructuring and disorder, which could
be a possible explanation for Ohmline-induced inhibition of SK3 channels [339]. Despite
these findings, the detailed molecular mechanisms of cholesterol-mediated modulation of
KCa2+ channels are still unclear.

3.3. SK Channels and Cancer

SK channels, like CRAC channels, are involved in the development of diverse can-
cer hallmarks. Gene expression of SK channels was detected in breast cancer (SK2 and
SK3) [327], glioma (SK2) [324], medulloblastoma (SK3) [328], melanoma (SK2 and SK3) [342],
colon (SK3), and prostate cancer (SK3) [331,343–345]. Interestingly, the detected SK tran-
scripts do not necessarily confirm the expression of the functional protein, as reported
for the SK2 gene in breast cancer and glioma [324,327]. Transcripts of SK1 have been
only detected in tumor biopsies; however, there is no evidence of their functional role
there [324,346]. Although it remains unresolved whether ion channels contribute to cell
transformation or are a product thereof, targeting ectopic expression of SK channels in a
given tissue may offer both prognostic and therapeutic opportunities.

SK4 is expressed in different cancer types, including glioma [347], glioblastoma [348],
breast [349], prostate [350], lung [351], hematologic [352], melanoma [353], colorectal [354],
renal carcinoma [355], brain tumors [326], pancreas [356], and papillary thyroid [357],
thereby controlling cancer hallmarks [358–360]. For instance, in primary breast cancer
cells [360,361] and various breast cancer cell lines [358], high SK4 expression levels have
been found in line with the electrophysiological evidence obtained upon the application
of the SK4 activator, TRAM-34. In MDA-MB-231 cells, the suppression of SK4 channels
significantly blocks cell proliferation and migration and elevated apoptosis. In colorectal
cancer, SK4 contributes to cell migration and invasion, which is related to the dysfunction
of proteins of the RAS/ERK pathway (KRAS), hypoxia (HIF1α), and intracellular ROS
production [359] (Table 2).
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Table 2. Correlation of cancer types with critical SK channels.

Cancer Type Critical Proteins Targeted
Signaling Pathways

Affected
Cancer Hallmarks Cell Type Ref

breast

↑SK3 n.d. migration, metastasis MDA-MB-435s [327]

↑SK4

cell cycle (G1, S
phases), ↑cdc25C proliferation mice [360]

EGF ->
vimentin, snail1

proliferation,
migration, EMT

MCF-7, T47D,
MDA-MB-231 and

MDA-MB-468, patients
[358]

↑SK3, ↑P2X7R hypoxia ->↑ERK1/2
->↑Akt (?)

proliferation,
invasiveness, migration MDA-MB-435s [330]

colorectal ↑SK4 ↑Ras/ERK
(KRAS)/HIF1a/ROS

migration,
invasion, metastasis HCT116 [359]

glioblastoma ↑SK4 ↑cell cycle
(G2, M phases)

invasion, proliferation,
poor prognosis

T98G, U87MG,
GL261, patients [362]

hematologic CCL ↑SK4 n.d. proliferation patients [352]

melanoma ↑SK3 n.d. migration, metastasis 518A2, HBL, Bris [342]

ovarian ↑SK4, P2y2 n.d. proliferation, migration,
cancer progression Skov-3, patients [361,363]

pancreatic ↑SK4 ↑KRAS -> ↑RAS ->
↑ERK/PI3K

proliferation,
poor prognosis mice, patients [356]

prostate ↑SK3 (↑ZEB1) ↑Snail, ↑Slug, ↑Twist
EMT, neuroendocrine

differentiation,
drug resistance

LNCaP, patients [331,364]

Symbol: ? . . . unknown role or pathway.

The catalogue of somatic mutations in cancer (COSMIC) [365] reports over 642, 1398,
1557, and 371 entries for the SK1, SK2, SK3, and SK4 channels, respectively. However, these
entries typically represent the outcome of whole exome and RNA sequencing. To date,
no cancer-related mutants of a single SK channel family member, but only disease-related
SK3 mutations linked to Zimmermann–Laband Syndrome, were functionally character-
ized [366].

The development of cancer features triggered by SK channels generally occurs in
a Ca2+-dependent manner. Specifically, an increase in intracellular Ca2+ levels in SK
channel-expressing cells leads to their activation and thus to potassium (K+) efflux, which
in turn promotes Ca2+ entry via Ca2+ channels in a positive feedback loop. The increase
in intracellular Ca2+ levels achieved in this manner controls Ca2+-dependent cancer hall-
marks [105,292,325], as we outline in detail in chapter 4 (Table 2).

3.3.1. Proliferation

Insights into the influence of the SK channel on cell cycle progression have only been
gained for SK4. It is able to indirectly control cell cycle progression by driving cellular Ca2+

entry, as inhibition of SK4 led cells to accumulate in the G1 phase, whereas the number of
cells in the cell cycle S phase decreased [367,368]. In primary breast tumors, SK4 is essential
for growth factor-dependent Ca2+ entry, cell cycle progression, and the proliferation rate of
primary breast tumor cells [360] (Figure 7). Obviously, there are only a few studies on the
role of SK channels in regulating cell cycle events in cancer cells. Further studies are still
needed to understand the molecular mechanisms of SK channels in cancer cell proliferation,
in particular, to resolve which cell cycle effectors play a crucial role.
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3.3.2. EMT, Migration, and Metastasis

In particular, the SK3 channel contributes to cell migration and metastases (Figure 7).
Supportively, siRNA knock-down of SK3 prevented the migration of MDA-MB-435s cells,
in accord with their high metastatic potential [327]. Remarkably, other cancerous (MCF-7)
and non-cancerous (184A1) breast cell lines, which physiologically lack SK3 expression,
increased their migration potential upon induced SK3 expression. Analogously, SK3 is
critical for the migration of melanoma cells, as treatment with apamin significantly reduced
the migration of certain melanoma cell lines (518A2, Bris, HBL) [342]. Knock-down of
SK3 by shRNA abolished 518A2 cell migration, whereas conversely, overexpression of
SK3 in non-SK3-expressing cells increased the migration capacity. Additionally, melanoma
cell motility has been demonstrated to decrease as a consequence of PM depolarization
promoted by increased extracellular K+ concentration. Furthermore, 2D and 3D motility
assays suggest that the migration of melanoma cells depends on SK3 activity [342].

SK4 governs oncogenic pathways controlling migration and metastasis. SK4 mRNA
expression is enhanced in MDA-MB-231 cells upon the application of growth factors (e.g.,
EGF) that trigger EMT. Indeed, silencing of SK4 expression abolished the expression of
certain EMT markers (e.g., Vimentin) [358] (Figure 7).

Overall, there is evidence that SK channels are present in cancer cells and can control
the development of cancer features. However, knowledge about the influence of SK
channels on individual steps in signaling cascades regulating the cell cycle or migration is
limited. In this context, identification of the effects on key players modulating, for instance,
the focal adhesion dynamics (PYK-2, Rac1) is required. A detailed understanding in this
regard could improve therapeutic options for cancer cells.

3.4. Therapeutic Approaches Associated with the Expression of SK Channels in Cancer

Drugs targeting SK channels include peptides extracted from scorpions, sea anemone
or bee venom, synthetic analogues, and chemically synthesized modulators (e.g., Cyppa,
1-EBIO, NS8593, NS306, TRAM34). However, all of these modulators arose as limited in
medical use due to their high toxicity or low efficiency. Among the blockers, particularly
those targeting SK4 have been suggested as promising for the treatment of various can-
cers [325]. Specifically, this compound blocked cell cycle progression in murine breast
cancer cells [360], reduced the mass of human endometrial cancer cells (HEC-1-A) [369]
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and non-small-cell lung cancer cells (A549-3R) [351], or impaired infiltration of glioblas-
toma [370].

To overcome therapy resistance [371], SK3 and SK4 represent promising candidates.
Supportively, the SK3 channel gene is one of 1298 genes contributing to ovarian cancer
drug resistance [372]. Notably, in bortezomib-resistant BN myeloma cell lines, 16-fold
upregulated gene expression of the SK3 channel has been reported, reflecting its relevance
to drug resistance [373]. Cisplatin-resistance of human epidermoid cancer cells is regulated
by SK4, due to control of proliferation and regulation of cell volume. Activation of SK4
using 1-EBIO or SKA-31 boosted apoptosis in cisplatin-resistant cancer cells [354,374].
Overexpression of SK4 in breast cancer cells increased resistance to the chemotherapeutic
agent gemcitabine by upregulating an anti-apoptotic BCL2-protein [375].

The alkyl-ether lipids edelfosine and Ohmline have emerged as promising lipid-
antimetastatic agents. Both block SK3-dependent cancer cell migration and metastasis,
likely due to lipid membrane reorganization, which inhibits SK3 channels [325]. Edelfosine,
for instance, effectively blocks migration and invasion of urothelial carcinoma cells express-
ing SK3 [376]. Hypoxia-induced upregulation of SK3 together with the EMT transcription
factor Zeb1 in prostate cancer cells is promoted by the anti-androgen Enzalutamide, used
for the treatment of castration-resistant prostate cancer [331,377]. Enzalutamide is known
to dysregulate Ca2+ signaling, which is crucial for EMT progression, contributing to thera-
peutic escape [331]. Ohmline could prevent hypoxia-triggered EMT pathways [377] and
Enzalutamide-dependent Zeb1 expression [331]. Moreover, Ohmline has been reported
to interfere with the co-regulation of SK3 and Orai1 that is crucial in breast, colon, and
prostate cancer progression (see Section 5) [320,323].

Overall, alkyl ether lipids appear to be the most promising and selective drug candi-
dates for the treatment of SK3-dependent cancers.

4. Co-Regulation of Ca2+ and K+ Ion Channels Linked to Cancer Development

In addition to their individual role, K+ channels interact with Ca2+ ion channels
to control various cellular functions, including also the fine-tuning of the intracellular
Ca2+ concentration. Voltage-gated K+ (Kv) and KCa2+ channels have been classified as
Ca2+ amplifiers because of their interplay with Ca2+ channels [321,322,327,360]. These
K+ channels, when activated, induce membrane hyperpolarization either by increased
intracellular Ca2+ levels in the case of KCa2+ channels or by membrane depolarization in
the case of Kv channels, thereby enhancing the driving force for Ca2+ influx. Several studies
indicate that co-regulation of K+ (Kv, KCa2+) and Ca2+ channels (P2X7 receptor, CRAC,
TRP, voltage-gated Ca2+ (Cav) channels) plays a significant role in cancer cell progression,
growth, proliferation, and invasion/migration [320–322,327,360]. Specifically, the SK3
channel, together with the P2X7 receptor, contributes to the cysteine cathepsin-dependent
invasiveness of breast cancer cells [330] (Table 2). Moreover, BK channels have been shown
to form molecular complexes with CaV3.2, promoting the proliferation of prostate cancer
cells [378]. SK4 (IK) channels have been found to co-immunoprecipitate with TRPV6 in
LNCaP cells [319]. Human Ether a-gogo potassium Channel 1 (hEag1) associates with Orai1
and regulates breast cancer cell migration through Orai1-dependent Ca2+ entry [379,380].
The activity and membrane trafficking of these proteins is mediated by SPCA2 promoting
a basal Ca2+ influx through store-independent (SICE) Orai1 activation. This trio complex
triggers collagen I-induced proliferation and survival of breast cancer cells [381]. The
most extensively studied interplay of KCa2+ channels, in terms of structural and functional
requirements and their role in cancer, represents that of Orai1 and SK3 [105,292].

4.1. SK3-Orai1 Interplay

Besides the critical role of the physical interaction of SK3 and Orai1 in healthy body
functions, as evidenced by its beneficial role in avoiding excessive smooth muscle contrac-
tion in the gallbladder smooth muscle of guinea pigs [382], this positive feedback loop
contributes to the development of cancer hallmarks (Figure 8). Specifically, breast and



Cancers 2023, 15, 101 27 of 49

colon cancer progression has been demonstrated to be governed by the interplay of SK3
and Orai1. Though both cancer types exhibit SK3 and Orai1 expression [257,311], healthy
tissue does not express SK3 channels [320,327,342]. Co-localization of SK3 with Orai1 has
been detected via co-immunoprecipitation in breast and colon cancer cells [327,329].
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Figure 8. The Orai1/SK3 interplay and methods of its modulation in breast, colon, and prostate cancer.
(A) Generally, the co-localization of Orai1 and SK3 channels is sufficient for their interplay, which
leads to a positive feedback mechanism. Orai1 E106Q pore mutant does not affect its co-localization
with SK3 but is unable to boost SK3 K+ currents. CaMMUT, which typically abolishes SK3 K+ currents,
can be rescued by co-localized Orai1. In the presence of STIM1, the SK3–Orai1 interplay remains
unaffected in the resting state, and upon store-depletion, STIM1 binds to Orai1 and thus moves
SK3 and Orai1 apart from each other. Local enhancements of Ca2+ due to STIM1-mediated Orai1
activation do not boost SK3 K+ currents, whereas global Ca2+ enhancements strongly augment SK3
K+ currents. (B) In breast cancer cells, the interplay of Orai1 and SK3 boosts metastasis, which can
be modulated by the cAMP-PKA pathway (adapted from Clarysse et al. (2014) [322]). Additionally,
the stress-activated chaperone SigmaR1 promotes the interplay of Orai1 and SK3 in breast cancer
cells (adapted from Gueguinou et al. (2017) [321]). (C) In colon cancer cells, migration is promoted by
SOCE via a complex of TRPC1, Orai1, and SK3. This involves the activation of the Akt pathway and
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the phosphorylation of STIM1, leading to a positive feedback loop (adapted from Gueguinou et al.
(2016) [323]). (D) SK3, reported to be endogenously expressed in the prostate cancer cell line LNCaP,
is involved in the regulation of cell proliferation. The application of Enzalutamide enables the
upregulation of SK3 expression in LNCaP cells (adapted from Figiel et al. (2019) [364]). Further
involvement of accessory proteins, such as SigmaR1, cannot be ruled out and require further inves-
tigation. Throughout the figure, arrows indicate the direction of the ion flux. Software used for all
figure drawings: Procreate, Chemdraw (RRID:SCR_016768).

Despite the interplay between SK3 and Orai1 being extensively studied in breast and
colon cancer cells (see Section 4.1.2), the molecular determinants required for their co-
regulation are poorly characterized. In the following, we describe our recently uncovered
key determinants that are essential for their SK3-Orai1 co-regulation.

4.1.1. The Molecular Determinants of the SK3-Orai1 Interplay

We discovered that the interplay between Orai1 and SK3, similar to that in breast
and colon cancer cells, also occurs in HEK 293 cells [343]. We demonstrated that the co-
expression of Orai1 and SK3 led to significantly higher K+ currents than in the absence of
Orai1. This was accompanied by their close co-localization and co-immunoprecipitation,
but a direct interaction by FRET could not be detected so far. The inhibition of K+ currents by
an inhibitor specific for SK3 channels left tiny inwardly rectifying Ca2+ currents in SK3 and
Orai1 co-expressing cells, which could be blocked by La3+. In contrast, K+ currents in SK3-
only expressing cells were completely blocked by the SK3 inhibitor (NS8593). This suggests,
in agreement with previous findings in cancer cells [320–323], that the co-occurrence of
Orai1 and SK3 increases cytosolic Ca2+ levels specifically through Orai1, which together
with SK3 triggers the positive feedback mechanisms [105,325]. Intriguingly, we did not
detect enhanced Ca2+ entry in SK3-Orai1 expressing cells, and NFAT translocation was only
marginally enhanced. This indicates that already, very low local alterations in Ca2+ levels
are sufficient to trigger the SK3–Orai1 interplay. Moreover, we found that K+ currents in
SK3 and Orai1 co-expressing cells could be reduced to the level of SK3-expressing cells not
only when the general Ca2+ channel blocker La3+ was applied, but also the CRAC channel-
specific inhibitor GSK-7975A [343]. Co-expression of Orai1 E106Q with SK3 also resulted in
significantly reduced K+ currents compared to the presence of wild-type Orai1, despite their
co-localization being maintained (Figure 8A). Moreover, SK3 K+ currents in the presence
of Orai1 gradually enhanced with increasing extracellular Ca2+ concentrations and were
abolished in the presence of 0 mM Ca2+ or divalent-free Na+ extracellularly, proving that
Ca2+ from the extracellular space controls SK3 channel activity. Decreasing intracellular
Ca2+ levels using intracellular EGTA strongly reduced (300-500 µM) or abolished (1000 µM
EGTA) SK3 K+ currents, both in the absence and presence of STIM1 (Figure 8A). Overall,
our results show that SK3 K+ currents are specifically enhanced by Ca2+ influx through
Orai1 [343].

In addition to Orai1-mediated enhancement of SK3 K+ currents, CaM is known to
act as the Ca2+ sensor that typically controls SK channel activity. We have shown for
SK3, in agreement with previous studies [337,383], that CaM wild-type enhances SK3 K+

currents, whereas CaMMUT, containing all four mutated EF-hands, completely abolishes
these currents [343,383] (Figure 8A). Regarding SK3/Orai1 co-regulation, a triple expression
of Orai1, SK3, and CaM did not strongly enhance K+ currents compared with those obtained
in the absence of Orai1. However, SK3 K+ currents completely abolished by CaMMUT could
be partially restored by Orai1. Characterization of the FRET of CaM/CaMMUT and SK3
revealed that robust FRET efficiency was reduced in the presence of Orai1. It is plausible
that Orai1 sequesters part of CaM. However, since Orai1 can partially restore SK3 function
lost due to CaMMUT overexpression, it is possible that Orai1 and CaM proteins compete for
an intact SK3–CaM binding site to control SK3 channel activity [343], whereas the nature of
the direct or allosteric interplay between Orai1 and SK3 remains to be elucidated.

The molecular determinants within Orai1 that are required for the interplay with SK3
are the N-terminus, except for the first 20 aa, as well as the C-terminus (aa 281–301) and an
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intact pore geometry, as demonstrated by a set of LoF-Orai1 mutants. They were unable to
boost SK3 channel activity without affecting the co-localization with SK3. However, STIM1
coupling to Orai1 or an intact STIM1 coupling site within Orai1 (L273) is not required
for intact Orai1-SK3 interplay, as evidenced by the preserved boost of Orai1-mediated
SK3 channel activity in CRISPR/Cas9 STIM1/Orai1 DKO HEK 293 cells. In agreement
with this, Orai1 L273D was also able to trigger the amplification of SK3 K+ currents [343].
It is still an interesting fact that in contrast to STIM1-mediated Orai1 activation, almost
the entire N-terminus, particularly the residues between aa20–70, are also required for
an intact SK3/Orai1 co-regulation [343]. This region contains an AC8-binding domain
(residues 26–34 [384]), two putative protein kinase C (PKC) phosphorylation sites (S27 and
S30 [385,386]), a putative PIP2-binding sequence (residues 28–33 [207]), and a caveolin
(Cav)-binding region (residues 52–60 [233]). It remains to be tested whether any of these
factors play a critical role in the interplay of SK3 and Orai1.

Interestingly, co-expression of STIM1 with Orai1 and SK3 showed an inhibitory effect
on K+ current amplification under physiological conditions, as STIM1 activation removes
Orai1 from SK3, and locally increased Ca2+ levels cannot affect SK3 channel activity. In-
deed, global Ca2+ level increases also enabled the amplification of SK3 K+ currents in the
presence of STIM1 and Orai1 [343] (Figure 8A). This supports our findings that local, almost
undetectable Ca2+ elevations are sufficient to govern the interplay of SK3 and Orai1 in
the absence of STIM1 [343]. It remains to be determined whether these observations in
dependence on STIM1 play a role in native tissue and cancer.

Our findings validate the hypothesis that Orai1 and SK3 are in close proximity to
each other and narrow down critical determinants for this, although a direct interaction
could not be confirmed. Further studies are still required to uncover potential molecular
links manifesting the store-independent and STIM1-independent interplay of Orai1 and
SK3. Among the variety of accessory proteins, SigmaR1, which is known to interact with
STIM1 and SK3 (see Section 4.1.2), or SPCA2, reported to interplay with Orai1, could act as
critical candidates. Additionally, the lipid environment including SK3-Orai1 clusters may
initiate and modulate their interplay, but this first requires a detailed understanding of the
molecular role of lipids on the individual channels.

4.1.2. The Interplay of SK3 and Orai1 in Breast, Colon, and Prostate Cancer Cells

In cancer cells, the SK3-Orai1 complex is located within cholesterol-rich regions, where
it triggers a constitutive Ca2+ influx specific to Orai1. This promotes cell migration, a
prerequisite for metastases development. This finding is further reinforced by the fact
that disruption of cholesterol-rich regions, where Orai1 and SK3 have been shown to
form complexes, for example, by Ohmline, leads to loss-of-function and disrupts cancer
cell migration [316,320–323,329]. Whether chemical cholesterol depletion, for instance, by
MβCD, has similar effects remains to be investigated. Moreover, the molecular mechanisms
and affected markers in how SK3-Orai1 triggers migration are still unknown.

Interestingly, in breast cancer cells, the second member of the CRAC channel, STIM1,
does not play a significant role in these processes (Figure 8B), suggesting a distinct pathway
of Ca2+ signaling in breast tumors [105,320–323,325]. Currently, only SPCA2 is known to
activate Orai1 in a STIM1-independent manner; however, whether it is a critical factor
that stabilizes the interplay with SK3 is unknown [278,381,387]. In contrast, colon cancer
cell migration is manifested through the formation of a triple channel complex of the
TRPC1/Orai1/SK3 channels in cholesterol-rich regions, which is further facilitated by
STIM1 [323]. The assembly of this complex is mediated by EGF phosphorylation of STIM1
and induced activation of the Akt pathway. A positive feedback loop exists: (i) EGF
and Akt phosphorylation of STIM1 induce SOCE, which promotes cell migration via
the formation of Orai1 and TRPC1 complexes within SK3 channel-rich caveolae-lipid
rafts; (ii) Akt activation is triggered by SOCE, which is enhanced by SK3 channel-induced
membrane hyperpolarization, which increases the electrochemical driving force to permit
Ca2+ entry and SOCE; (iii) and the Akt pathway promotes the activity of Rac1/Calpain,
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which amplifies SOCE, and consequently Akt. Simply stated, SOCE triggers activation of
the SK3 channel and the Akt pathway, which mediates the activity of Rac1/Calpain, which
in turn leads to the amplification of SOCE (Figure 8C; Table 3). Disruption of cholesterol-rich
regions by Ohmline led to the disassembly of the channel complex, resulting in decreased
Akt phosphorylation. Notably, caveolae-lipid rafts function as platforms for EGFR-activated
signaling pathways. In colorectal cancer cells, upregulated EGFR expression has been
identified and linked to prognostic outcome [388,389]. Since we observed that STIM1
binding to Orai1 reduces the co-localization with SK3 in HEK293 cells [343], it might be
interesting to determine whether and how endogenous as well as overexpressed STIM1
affect the co-localization and interplay of SK3 and Orai1 in colon cancer cells.

Table 3. Correlation of cancer types with detected SK3–Orai1 interplay and accessory proteins,
targeted signaling pathways, types of affected cancer hallmarks, and corresponding cell type.

Cancer Type Critical Proteins Targeted
Signaling Pathways

Affected
Cancer Hallmarks Cell Type Ref

Breast
SK3 + ↑Orai1 cAMP-PKA (↓SK3 activity

due to phosphorylation) migration, metastasis MDA-MB-435s [322]

SK3 + ↑Orai1 + ↑SigmaR1 n.d. migration MDA-MB-435 [321]

colon

SK3 + ↑Orai1 + ↑SigmaR1 n.d. migration HCT-116, patients [321]

↑SK3 + ↑Orai1 +
↑TRPC1 + ↑STIM1

↑EGFR -> ↑PI3K -> ↑Akt ->
↑Rac-1 -> ↑Calpain migration

HCT-116 [323]
↑EGFR -> ↑PI3K ->
↑Akt -> STIM1 migration

prostate SK3 + Orai1 n.d. proliferation LNCaP [343]

A further report [321] indicates that the SK3–Orai1 interplay is promoted by the
stress-activated chaperone SigmaR1 in breast and colon cancer cells. Specifically, Sig-
maR1 physically interacts with the SK3 channel, as shown via confocal microscopy studies,
whereas the binding site remains to be narrowed down. Noteworthy, upregulated expres-
sion of SigmaR1 associates with prognostic outcome and tumor grade. Upon SigmaR1
knock-down or the application of sigma ligand, igmesine, SK3 currents, and constitutive
Ca2+ entry was abolished. Remarkably, whereas SigmaR1 knock-down moved both chan-
nels to non-raft fractions, the use of igmesine resulted in the dissociation of Orai1 from
lipid rafts without disrupting the SK3–SigmaR1 complex. Consequently, the migration of
breast and colon cancer cells was impaired [321] (Figure 8B,C). Whether SigmaR1 interacts
with Orai1 is currently unknown. Nonetheless, it has been reported that STIM1 can interact
with SigmaR1 in HEK 293 cells [390], thus delaying STIM1/Orai1 activation. Whether and
how this could affect the Orai1–SK3 co-regulation in cancer cells remains to be investigated.

We recently reported that the SK3 channel is endogenously expressed in cells of
the prostate cancer cell line LNCaP, where it regulates proliferation [343]. Interestingly, in
electrophysiological and immunoblotting experiments, we detected SK3 channel expression
only in passages 3–5 of this cell line, but not earlier or later ones. After the forced expression
of Orai1 in LNCaP cells, endogenous SK3 currents were significantly boosted in accordance
with our findings in HEK 293 cells [343]. Overexpression of the pore mutant Orai1 E106Q
failed to promote SK3 currents, indicating that functional Orai1 is required to increase SK3
channel activity. Moreover, CaM overexpression in LNCaP cells promoted SK3-mediated K+

currents, whereas CaMMUT abolished these currents. Remarkably, additional co-expression
of Orai1 bypassed the inhibitory effect of CaMMUT [343]. Our results are corroborated by a
recent report [331] that showed weak expression of SK3 in LNCaP cells, which could be
highly upregulated by Enzalutamide [331,364,377] (Figure 8D; Table 3). It is tempting to
speculate that Enzalutamide treatment enforces the co-regulation of SK3/Orai1 in LNCaP
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cells and allows a more intensive study of key determinants mediating the SK3–Orai1
interplay in this prostate cancer cell line.

5. Perspectives

Cell fate is determined by the finely tuned interplay of signaling cascades involving
various cellular components such as CRAC and SK channels. However, their dysregulation/-
function can be linked to novel biological functions associated with cancer progression.
Mechanistically, dysregulation of CRAC and SK channels can lead to altered activity of a
number of effectors of distinct signaling pathways, such as CaM/CaMKII/CN [26,28,273,276],
PI3K/Akt [26,249,308,323], or Ras/ERK [21,82,359]. Associations between altered ex-
pression of CRAC channel components and affected modulators of cell cycle or migra-
tion/metastasis have been found in several cancers [53,81,82,108,245,248,257,272,275–277].
However, in most cases, the signaling pathways connecting enhanced Ca2+ entry to the
cancer hallmark(s) are not yet elucidated in detail. For instance, proliferation can be di-
rectly regulated by Ca2+ via Ca2+-sensing proteins or influence transcriptional activity
to modulate the expression of cell cycle effectors. Alternatively, PI3K/Akt or RAS/ERK
pathways might be affected by either enhanced expression levels of Ca2+ ion channels
and/or the effect of Ca2+ on certain oncogenes in the PI3K/Akt or RAS/ERK pathways.
Therefore, it remains open whether Ca2+ modulates only a specific path or multiple ones
to impact cancer progression in a given cancer type. In most recent studies, the prolifer-
ative activity of related cancer cell lines is monitored upon siRNA-mediated inhibition
of ion channels in vitro. Nevertheless, evidence of tumor behaviors in vivo is lacking.
At this point, the question arises whether the effects of ion channels on proliferation are
not merely coincidental because they interact closely with each other, or, possibly with
different more relevant components of the Ca2+ signaling cascade. Concerning the role
of CRAC channel proteins in apoptosis, several have been identified to contribute to pro-
or anti-apoptotic mechanisms; however, the detailed effects on certain regulators of cell
survival/cell death signaling cascades are not yet fully understood. Key questions include
how altered STIM/Orai expression might influence the expression of pro/anti-apoptotic
factors, and how mitochondrial/ER Ca2+ levels and their interplay are dysregulated. More-
over, the molecular mechanisms of mutations identified to be critical in cancer are only
beginning to be deciphered, and their connections to Ca2+ dysregulated signaling pathways
remain open. In particular, for SK channels as well as their interplay with STIM1/Orai1,
the detailed links to various cancer signaling pathways are insufficiently described.

The multifaceted interplay of these ion channels with intracellular signaling path-
ways is extended by their interaction with each other and with a set of other signaling
components, as exemplified by Orai1-SK3 and Orai1-SPCA2 interplay. For such scenar-
ios, the formation of macromolecular complexes appears favorable. For example, SK3
and Orai1 colocalized in cholesterol-rich regions in breast cancer cells [320], the disrup-
tion of which abolished SK3-Orai1 interplay, cancer cell migration, and bone metasta-
sis [316,320,321,323,329,391,392]. Nonetheless, the molecular relationships underlying this
complex ion channel formation are not well understood. SPCA2-Orai1 or SK3-Orai1 com-
plexes are known to control breast cancer progression. However, whether a triple complex
of SPCA2–Orai1–SK3 strengthens their interplay and is crucial for breast cancer progres-
sion requires further investigation. Moreover, TRP channels have been reported as critical
components controlling cancer progression together with CRAC channel components;
however, the detailed mechanistic underpinning of their interplay requires additional
studies. Furthermore, it remains open how lipids regulate individual ion channels and
their interplay with each other and with accessory proteins. This suggests that pro-survival
and pro-apoptotic events are controlled by a complex regulatory network of modulating
proteins and cell type-specific signaling pathways.

Altered expression or mutation of CRAC and SK channels is responsible for poor
prognosis in cancer patients. Therefore, these channels could serve as suitable prognostic
markers as well as attractive targets for cancer therapy, also in an isoform-specific manner.
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However, of a large number of CRAC and SK channel drugs available, only Ohmline
currently has the potential for future clinical use in SK3/Orai1-driven cancer progression. In
addition, the expression of CRAC and SK channels increases resistance to chemotherapeutic
agents and promotes cell proliferation, necessitating the need to address alternative targets
via potential therapeutic strategies.

6. Conclusions

Overall, among the various members of the Ca2+ signal transduction apparatus, CRAC
and SK channels play critical roles in the development of certain cancers. Their modulatory
role in Ca2+ signaling affects proliferation, apoptosis, and/or migration. Knowledge
of these ion channels and their associated cancer features is extensive but insufficient
to develop appropriate therapeutic strategies. A more detailed understanding of the
mechanisms of ion channels and their connection to cancer signaling pathways will provide
new targets for future and more specific therapeutic strategies against cancer.
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1-EBIO 1-ethylbenzimidazolinone
5-FU 5-fluorouracil
Å Angstrom (unit of length equal to 1 × 10−10 m)
aa amino acid
Akt known as protein kinase B or PKB
AP1 activator protein 1
AR androgen receptor
ASIC acid-sensing channels
AMLC acute myeloid leukemia cells
ANO8 Anoctamin 8
ATPase adenosine triphosphatase
BCL2 B-cell lymphoma 2
BCLxL B-cell lymphoma-extra large
BID BH3 Interacting Domain Death Agonist
Bim BCL2-interacting mediator of cell death
BK large conductance, Ca2+-activated potassium channels
Ca2+ calcium ion
CAD Ca2+ release-activated Ca2+ activating domain
CAI carboxyamidotriazole
CaM calmodulin
CaMBD calmodulin-binding domain
CaMK calmodulin kinase
CaMMUT calmodulin mutant
cAMP cyclic adenosine monophosphate
Cav1 Caveolin-1
CC coiled-coil
CDK2/4/6 cyclin-dependent kinase
cEF canonical EF hand
CK2 casein kinase 2
CLL chronic lymphocyte leukemia
CN calcineurin
COSMIC catalogue of somatic mutations in cancer
COX-2 cyclooxygenase-2
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CRAC Ca2+ Release-Activated Ca2+

CREB cAMP-responsive element binding protein
CRISPR/Cas9 clustered regularly interspaced short palindromic repeats/Cas
cryo-EM cryogenic electron microscopy
DAG diacylglycerol
DES Diethylstilbestrol
DKO double knock-out
dOrai Drosophila melanogaster Orai
EB end-binding domain
ECM extracellular matrix
EGF epidermal growth factor
EGFR epidermal growth factor receptor
EGTA ethylene glycol tetraacetic acid
EMT epithelial–mesenchymal transition
ER endoplasmic Reticulum
ERα estrogen receptor-α
ERK extracellular signal-regulated kinase
E-Syts extended-synaptotagmins
ETON extended transmembrane Orai1 N-terminal
FAK focal adhesion kinase
FRET fluorescence resonance energy transfer
GBM glioblastoma multiforme cells
GoF gain of function
GPCR G-protein coupled receptor
GRAMD2A GRAM Domain Containing 2A
GSK GlaxoSmithKline compounds
GTPase guanosine triphosphatase
HBL human diffuse large B-cell lymphoma
hEag1 human ether a-gogo potassium channel 1
HEK human embryonic kidney
HeLa Henrietta Lacks
HIF-1 hypoxia-inducible factor
hOrai1 human Orai1
Huh-7 human hepatoma cell line
ID inactivation domain
IK intermediate Ca2+ activated K+ channels
IP3 inositol-triphosphate
IP3R inositol-triphosphate receptor
K+ potassium ion
KCa Ca2+ activated K+ channels
KV voltage-gated potassium channels
Kir inward-rectifier potassium channels
KRAS RAS/ERK pathway
La3+ lanthanum ion
LGC ligand-gated calcium channels
LNCaP lymph node carcinoma of the prostate
LoF loss of function
MACC-1 metastasis-associated in colon cancer-1
MAPK mitogen-activated protein kinases
MßCD methyl-beta-cyclodextrin
MCF-7 Michigan Cancer Foundation-7
MET mesenchymal-epithelial transition
miRNA microRNA
MLCK myosin light chain kinase
MMPs matrix metalloproteins
nEF non-canonical EF-hand domain
NFAT nuclear factor of activated T cells
NFkB nuclear factor k-light-chain-enhancer of activated B cells



Cancers 2023, 15, 101 34 of 49

NMR nuclear magnetic resonance
NSCLC chronic lymphocyte leukemia
OASF Orai—activating small fragment
Orai 1–3 Orai proteins (also as O1–3)
PAT protein acyl transferase
PBD polybasic domain
PGE2 prostaglandin E2
PI3K phosphoinositide 3-kinases
PI4P phosphatidylinositol 4-phosphate
PIP2 phosphatidylinositol 4,5-bisphosphate
PIP3 phosphatidylinositol-3,4,5-trisphosphat
PKA protein kinase A
PKC protein kinase C
PLCε phospholipase C
PM plasma membrane
PMCA plasma membrane Ca2+ ATPase
PYK2 proline-rich tyrosine kinase 2
Rac1 Ras-related C3 botulinum toxin substrate 1
Raf serine/threonine kinase
Ras rat sarcoma virus
RASSF4 Ras Association Domain Family Member 4
Ref references
RNA ribonucleic acid
ROC receptor-operated channels
ROS reactive oxygen species
RTK growth factor receptor tyrosine kinase
SAM sterile α-motif
SARAF store-operated calcium entry-associated regulatory factor
SCID severe combined immune deficiency
SERCA sarcoplasmic/endoplasmic reticulum calcium ATPase
SICE store-independent calcium entry
SigmaR1 Sigma non-opioid intracellular receptor 1
siRNA small interfering RNA
SK channels small-conductance Ca2+-activated K+ channels
SMase sphingomyelinase
SMOC second messenger-operated channels
SOAP STIM—Orai association pocket
SOAR STIM—Orai activating region
SOC store operated channel
SOCE store-operated calcium entry
SPCA2 secretory pathway Ca2+-ATPase
STIM stromal interaction molecule
STIMATE STIM Activating Enhancer
TM transmembrane helices
TRAM-34 triarylmethane-34
TRP transient receptor potential ion channel (C-canonical, M-melastatin, V-vallinoid)
VGCC voltage-gated calcium channels
Wnt Wingless Int-1
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