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Simple Summary: The goal of precision medicine is to deliver therapy matched to a relevant
actionable genetic alteration (AGA) identified in the tumor. Few data are available regarding precision
medicine in advanced urological cancers (AUC), the prognosis of which remains unfavorable. Sixty-
four patients with refractory AUC were enrolled in the PERMED-01 clinical trial and underwent
a tumor biopsy that was then profiled using sophisticated molecular analyses. The results were
discussed in real-time during a weekly molecular tumor board meeting, and patients with a relevant
AGA became candidates for an eventual matched therapy. A complete molecular profile was obtained
in 77% of cases and an AGA was identified in 59%. Nineteen percent of patients received a matched
therapy on progression, of which 42% showed a clinical benefit. The objective response, disease
control rates, and the 6-year overall survival were higher in the “matched therapy group” than in the
“non-matched therapy group”.

Abstract: Introduction. The prognosis of advanced urological cancers (AUC) remains unfavorable,
and few data are available regarding precision medicine. Methods: the PERMED-01 prospective
clinical trial assessed the impact of molecular profiling in adults with refractory advanced solid
cancer, in terms of number of patients with tumor actionable genetic alterations (AGA), feasibility,
description of molecular alterations, treatment, and clinical outcome. We present here those results
in the 64 patients enrolled with AUC. DNA extracted from a new tumor biopsy was profiled in
real-time (targeted NGS, whole-genome array-comparative genomic hybridization), and the results
were discussed during a weekly molecular tumor board meeting. Results: a complete molecular
profile was obtained in 49 patients (77%). Thirty-eight (59%) had at least one AGA. Twelve (19%)
received a matched therapy on progression, of which 42% had a PFS2/PFS1 ratio ≥ 1.3 versus 5%
in the “non-matched therapy group” (n = 25). The objective response and disease control rates
were higher in the “matched therapy group” (33% and 58%, respectively) than in the “non-matched
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therapy group” (13% and 22%), as was the 6-month OS (75% vs. 42%). Conclusion: the profiling of a
newly biopsied tumor sample identified AGA in 59% of patients with AUC, led to “matched therapy”
in 19%, and provided clinical benefit in 8%.

Keywords: advanced urological cancers; mutation; PERMED-01 trial; precision medicine; sequencing;
array-CGH; t-NGS

1. Introduction

Urological cancers represent ~2 million cases diagnosed worldwide [1]. Better under-
standing of oncogenesis led to the development of new therapies. They include tyrosine
kinase inhibitors, mTOR inhibitors, and anti-VEGF/VEGFR targeting therapy in clear cell
renal cell carcinoma, and more recently immune checkpoint inhibitors [2]. Androgen-
deprivation therapy remains the basis of treatment for advanced prostate cancer (PC)
and new-generation hormone therapy (abiraterone, enzalutamide, apalutamide) recently
improved the management [3]. Immune therapy and targeted therapy against nectin-4
and FGFR were recently approved in advanced urothelial cancers [4,5]. Despite these
progresses, the prognosis of advanced urological cancers (AUC) remains poor. In all cases,
the therapeutic choice remains based on pathological analysis.

High-throughput molecular profiling drew the omic landscape of urological tumors [6–8],
evidencing in each cancer type few relatively frequent drivers, and many rarer drivers
shared with other cancers and potentially actionable. These latter provide opportunities for
therapeutic targeting. The first clinical trials of precision medicine showed feasibility and
interesting results in trials, including diverse tumor types [9–11] or dedicated to a specific
tumor type, such as lung or breast cancer [12,13]. Data are rarer regarding AUC [5,14,15].

PERMED-01 was a prospective clinical trial of precision medicine dedicated to patients
with refractory advanced solid cancers. Its principal objective was to determine the number
of patients with actionable genetic alterations (AGA) in tumor samples [16]. A secondary
objective was to describe the results per cancer type. This is our present objective in patients
with AUC.

2. Materials and Methods
2.1. Study Design

The PERMED-01 prospective clinical trial was conducted in our institution (Paoli-
Calmettes Institute, Marseille, France). It was dedicated to patients with refractory ad-
vanced solid cancer and included a mandatory tumor biopsy for real-time molecular
profiling. The profiling included targeted next-generation sequencing (t-NGS) and array-
comparative genomic hybridization (aCGH). The trial was approved by our Institutional
Review Board, a national ethics committee (CPP Sud-Méditerranée), and the French Na-
tional Agency for Medicines and Health Products Safety. It is registered as ClinicalTrials.gov
identifier NCT02342158, and was conducted in accordance with the Good Clinical Practice
guidelines of the International Conference on Harmonization. The patients’ informed
consent was mandatory before inclusion.

2.2. Inclusion Criteria

Inclusion criteria were as follows: age ≥ 18 years, pathologically diagnosed solid
cancer, of locally advanced or metastatic stage, with progression after at least one line of
prior systemic therapy and one lesion accessible for biopsy. Other criteria included an
Eastern Cooperative Oncology Group (ECOG) Performance Status ≤ 2, affiliation to Social
Insurance, and signed informed patient’s consent. The main exclusion criteria were bone
or brain metastasis as sole metastatic site, and symptomatic or progressive nervous central
system metastases. Five hundred and fifty patients were enrolled in the trial over the
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inclusion period [16]. The present study is limited to the subpopulation of patients with
urological cancer (prostate, kidney, bladder/ureter, and testicular cancers).

2.3. Genome Analysis

After the patient’s enrollment, a tumor biopsy or resection was planned, and the
collected sample was frozen and submitted for molecular analysis. Only samples displaying
a tumor cellularity superior or equal to 30% of tumor cells were retained for tumor DNA
extraction and aCGH and t-NGS. Regarding t-NGS, we used home-made panels of genes
previously selected for their involvement in cancers: three chronologically extended panels
(Table S1) covering 395, 494, and 560 genes were tested, respectively, and included from 49
to 66 cancer predisposition genes from the BROCA Cancer Risk panel (https://testguide.
labmed.uw.edu/public/view/BROCA, accessed on 18 December 2013). A total of 200 ng
of tumor samples and matched normal blood samples (available for 26 patients) were
sequenced. The respective median depths were 743x and 396x. The alignment of sequence
data to the human genome (UCSC hg19) was done as described [17], as well as variants
calling and annotation [18]. In the 26 patients with a matched normal sample sequenced,
the Tumor mutational burden (TMB) and MSI-H (MicroSatellite Instability-High) status
were defined. The cut-off for TMB-high was 10 mutations/Mb. Microsatellite instability
detection was done using the software MSIsensor [19], which computes a “MSI score”
and a 10% cut-off to detect MSI-H tumors. MSIsensor is an efficient and effective tool for
deriving MSI status from standard tumor-normal paired sequence data. This C++ program
computes length distributions of microsatellites per site in paired tumor and normal
sequence data, subsequently using these to statistically compare observed distributions
in both samples. Array-CGH experiments were done using high-resolution microarrays
(SurePrint G3 Human CGH Microarray Kit, Agilent Technologies, Massy, France). All
probes were mapped according to the hg19/NCBI human genome mapping database. A
total of 500 ng of tumor DNA was used. We limited analysis to the 565 genes present
in at least one used NGS panel. The DNA copy-number alterations were defined as
follows: amplification (Log2ratio > 1) or deletion (Log2ratio < −1). A HRD (Homologous
Recombination Deficiency) score, based on losses of heterozygosity (LOH), was calculated
for each tumor sample from all tested aCGH genes [20]: a score ≥ 10 was considered as
HRD-high. The generated molecular data have been deposited in the following public
databases: European Genome-phenome Archive (EGA: accession EGAS00001004554) for
NGS and EMBL-EBI (E-MTAB-9998 accession number) for aCGH.

2.4. Multidisciplinary Molecular Tumor Board

For each patient, two scientists and one bioinformatician reviewed all molecular pro-
files and generated the molecular report. This latter was then presented and discussed
during our weekly institutional molecular tumor board (MTB) meeting in order to rec-
ommend and prioritize an eventual AGA-matched therapy. Actionability of molecular
alterations was defined in real-time by the existence of a therapy targeting the altered
protein, either directly or indirectly by impacting the activated pathway. For oncogenes,
we retained focal gene amplifications (≥6 copies), hotspot mutations activating or associ-
ated with therapeutic resistance, and mutations with undescribed pathogenic effect but
with characteristics suggesting a pathogenic effect (kinase domain or other critical protein
domain). For tumor suppressor genes, we considered homozygous deletion, heterozygous
deletion associated with a loss of expression (IHC: immunohistochemistry), heterozygous
deletion associated with a known inactivating mutation, and heterozygous deletion associ-
ated with a mutation with undescribed pathogenic effect but with characteristics suggesting
a pathogenic effect. The evidence level of the biomarker/treatment association was esti-
mated by using OncoKB (from 1 to 4) [21] and clinical or pre-clinical data from the literature,
suggesting an association with response or resistance and/or the existence of a clinical trial
in which the alteration was mandatory for enrollment. AGAs corresponded not only to
single-gene alterations, but also to genomic scores (high HRD, high TMB, and MSI-H). We

https://testguide.labmed.uw.edu/public/view/BROCA
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considered the recommended therapy as matched when the recommendation was based
upon the PERMED-01 molecular screening. Otherwise, it was defined as a non-matched
therapy. Treatment delivery was at the discretion of physician and patient. Once treated,
the patients were monitored for tumor response according to our institutional guidelines.

2.5. Objectives, Endpoints and Statistical Analysis

Our primary objective was to measure the number of patients for whom identification
of AGAs in tumor samples could lead to the delivery of a matched therapy. Patient and
disease characteristics were summarized by using counts and frequencies for categorical
variables and medians (ranges) for continuous variables. Differences among the groups
were assessed using the Fisher’s exact test or Mann–Whitney test, when appropriate. Sec-
ondary objectives were to report all somatic and germline molecular alterations identified,
and to describe and compare, among the patients who received a systemic therapy for
progression after PËRMED-01 enrollment (therapy 2), the group of patients with AGA
who received a matched therapy versus the group of patients who received a non-matched
therapy; such comparison concerned the clinicopathological characteristics including thera-
peutic efficacy. As the main efficacy endpoint, we used the ratio of progression-free survival
(PFS2) on therapy 2 to the PFS on the immediate previous treatment (PFS1, therapy 1) [10].
This ratio, thereafter designated PFS2/PFS1 ratio, ≥1.3 is considered in the literature as a
non-ambiguous sign of activity for the new treatment, relative to the previously received
treatment [10]. The PFS was measured from the time of treatment start until progression
for PFS1 and until progression or death for PFS2. Event-free patients were censored at the
date of last contact. Univariate analysis searched for clinical variables associated with a
ratio ≥ 1.3 (Fisher’s exact test). The tumor response was considered as assessable when
the patient had received at least 8 weeks of treatment and was radiologically assessed
according to Response Evaluation Criteria In Solid Tumors (RECIST version 1.1). Overall
survival (OS) was measured from the start of therapy 2 until death or date of last news.
Probabilities of PFS and OS were estimated using the Kaplan-Meier method and univariate
associations were evaluated with the log-rank test. Statistical analyses were done either
with the R software version 2.15 or Prism software (Graphpad software, San Diego, CA,
USA) and the significance level was set to 5%. All statistical tests were two-sided.

3. Results
3.1. Patients’ Characteristics

From December 2014 to October 2017, 64 patients with AUC were enrolled in PERMED-
01 (12% of the cohort). Prostate cancer was the most frequent cancer (N = 39, 61%; Table 1),
followed by bladder/ureter urothelial (N = 12, 19%), kidney (N = 9, 14%), and testis (N = 4,
6%) cancers. Tumor samples were obtained from 61 patients (95%) after biopsy (Figure 1)
of a metastatic site in 51 patients, mainly liver (N = 22, 36%) and lymph nodes (N = 13,
21%), or of the primary tumor (16%) in 10 patients with PC. The advanced disease was
metastatic in all but one patient. The median numbers of different metastatic sites and prior
lines of systemic therapy for advanced disease were 2 (range, 0–7) and 3.5 (range, 1–11),
respectively. One out of 64 patients experienced a grade ≥ 2 adverse event: grade 3 fever
after prostate biopsy that completely recovered after antibiotic treatment.
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Table 1. Patients’ characteristics at inclusion.

Characteristics All Patients
(N = 64)

Matched TRT2
(N = 12)

Non-Matched TRT2
(N = 25) p-Value *

Age, years
Median (range) 65.55 (28–83) 70.5 (55–83) 62.52 (28–81) 3.2 × 10−2

Sex 0.168
Male 58 (91%) 12 (100%) 19 (76%)
Female 6 (9%) 0 (0%) 6 (24%)

ECOG performance status 0.890
0 34 (57%) 7 (58%) 14 (61%)
1 23 (38%) 4 (33%) 8 (35%)
2 3 (5%) 1 (8%) 1 (4%)

Cancer type 0.071
Prostate 39 (61%) 10 (83%) 11 (44%)
Bladder-Ureter 12 (19%) 2 (17%) 4 (16%)
Kidney 9 (14%) 0 (0%) 7 (28%)
Testicular 4 (6%) 0 (0%) 3 (12%)

Site of the biopsy 0.493
Liver 22 (36%) 4 (33%) 7 (32%)
Lymph node 13 (21%) 3 (25%) 4 (18%)
Lung 7 (11%) 0 (0%) 5 (23%)
Peritoneum 2 (3%) 0 (0%) 1 (5%)
Prostate 10 (16%) 3 (25%) 3 (14%)
Other 7 (11%) 2 (17%) 2 (9%)

Pathological type 0.341
Carcinoma 59 (92%) 12 (100%) 21 (84%)
Germ cell tumor 3 (5%) 0 (0%) 2 (8%)
Other 2 (3%) 0 (0%) 2 (8%)

Extension stage 1
Locally advanced 1 (2%) 0 (0%) 1 (4%)
Metastatic 63 (98%) 12 (100%) 24 (96%)

Number of metastatic sites
Median (range) 2.44 (0–4) 2.17 (1–4) 2.48 (0–4) 0.433

Number of previous treatment lines for advanced disease
Median (range) 3.50 (0–11) 3.50 (1–9) 3.0 (0–8) 0.229

*, p-value for the matched vs. non-matched TRT2 comparison.
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3.2. Landscape of Somatic and Germline Molecular Alterations

Array-based CGH and t-NGS profiles were established from 49 patients (77%). The
median time between inclusion and discussion during the MTB was 53 days (range 4–162).
We found 633 somatic gene alterations, including 530 mutations and 103 copy number
alterations (CNAs: 52 deletions, 51 amplifications). The 35 most frequently altered genes
(Figure 2) notably included TP53 (43% of samples), AR (37%), NEB (20%), ATM (18%), FAT1,
RB1, CSMD3, and ZFHX3 (14%), KDM6A, FOXA1, and HSPG2 (12%). Of note, some altered
genes (FOXA1, SPOP, PTEN, and USH2A) were altered only in PC, in which (Figure S1) the
most frequent alteration was AR amplification, followed by TP53 mutation; five genes in-
volved in chromatin remodeling and transcriptional regulation (FOXA1, KDM6A, NCOR1,
ARID1A, ZFHX3) were among the top 20 genes altered. Ten out of 29 PC patients (34%)
showed an alteration in at least one of 15 genes tested in the PROfound trial [14], mainly
ATM (N = 5) and BRCA2 (N = 2). A high HRD score was observed in 20 patients (41%
of cases), including 13 PCs, 5 urothelial bladder cancers, 1 kidney cancer, and 1 testis
cancer. A positive correlation existed between the HRD score and the presence/absence of
mono-/bi-allelic pathogenic alterations of genes involved in homologous recombination
(Figure S2). Two PC patients displayed focal tandem duplication associated with CDK12
bi-allelic loss. As expected, they did not show a high HRD score [22]. High TMB was
observed in only 1/26 of informative patients (bladder cancer).
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Figure 2. Repertoire of somatic alterations. Oncoprint of the top 35 genes altered in at least four out
of 49 samples with exploitable molecular profile. Somatic alterations (mutations and can) color-coded
according to the legend. The genes are ordered from top to bottom by decreasing percentage of altered
tumors (right panel), and the tumors are ordered from left to right by cancer type then by the “memo
sort” method, which can visualize the mutual exclusivity across genes. Bar charts (top) indicate the
number of mutations for each sample. Bar charts (right) indicate the number of samples altered for
each gene. The cancer type is shown at the bottom and is color-coded according to the legend.
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For 26 patients, the sequencing of germline DNA was done. Analysis limited to the
predisposition genes of the BROCA Cancer Risk panel identified 48 germline variants (GVs)
in 24 genes: four were pathogenic or likely pathogenic (PGVs) (Table S2) and 45 were
variants of unknown significance (VUS). The PGVs, observed in four patients (15%, 95%CI
5–36), targeted genes related to DNA repair (ATM, BRCA2, CHEK2, and NBN).

3.3. Actionable Genetic Alterations and Matched Therapy

Seventy-nine AGAs were identified in real-time; 38 patients had at least one AGA
(59%) with a median number per patient of 2 (range, 1–5). AGAs included 58 single-
gene alterations (32 mutations, 26 CNAs) concerning 24 genes, and 21 global genomic
scores (20 high HRD, 1 high TMB) (Figure 3). High HRD was the most frequent AGA
(N = 20 patients), followed by alterations of PTEN (N = 10), RB1 (N = 8), ATM, PIK3CA,
KRAS (N = 4), and BRCA2 (N = 3). Single-gene AGAs altered the PIK3/AKT/MTOR
(N = 16 patients), cell cycle (N = 12), DNA repair (N = 10), tyrosine kinase receptors (N = 9),
and RAS/MAPK (N = 6) pathways.
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Among the 38 patients with AGA, 12 received a matched therapy as new therapy for
progression after delivery of the molecular report (therapy 2), representing 19% (95%CI
10–30) of the enrolled patients. These 12 patients had received a median of 3.5 (range,
1–9) prior lines of systemic therapy for advanced disease (Table 1). AGAs leading to
matched therapy were PTEN deletion (N = 3), BRCA2 alterations (N = 2), KRAS muta-
tion/amplification (N = 2), and FGFR3 mutation, ERBB2 amplification, PIK3R1 deletion,
CDK12 mutation, and high HRD score (N = 1) (Figure 4). The corresponding matched
therapies were given as single-agent (one patient received olaparib-pembrolizumab combi-
nation), the most frequent ones being MTOR inhibitors (N = 4) and PARP inhibitors (N = 4),
followed by kinase inhibitors (Figure 4). Eighty-three percent of 12 patients (83%) were
treated within phase I/II trials.

The reasons for not giving a matched therapy to the 26 other patients with AGA were
(Figure 1): lost to follow-up (N = 4), palliative care (N = 10), delivery of a non-matched
therapy (N = 12) for lack of available clinical trial (N = 6), patient not enrollable (N = 3),
therapy already received during the previous lines (N = 2), or physicians’ choice (N = 1).
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3.4. Outcome of Patients Treated after Delivery of the Molecular Report

Analysis concerned the 37 patients treated with a systemic therapy for progression
after delivery of the molecular report (therapy 2). Among the 64 enrolled patients (Figure 1),
21 had not been treated (palliative care for 19, death before the genomic results for 2), and 6
were lost to follow-up. The 37 treated patients included 9 with a non-exploitable molecular
profile, 4 without any AGA identified, and 24 with an identified AGA (12 receiving a
matched therapy, 12 a non-matched therapy). We compared the outcome of patients treated
with matched therapy (“matched therapy group”; N = 12) with that of patients treated with
non-matched therapy (“non-matched therapy group”; N = 25). The characteristics of both
groups are shown in Table 1. There was no significant difference, except for a younger age
in the “non-matched therapy group” (p = 3.20 × 10−2). Therapy 2 in the “non-matched
therapy group” (Table S3) was chemotherapy (N = 13), targeted therapy (N = 6), hormone
therapy (N = 4), and immune therapy (N = 2).

In term of efficacy, 5/12 patients (42%) in the “matched therapy group” had a PFS2/PFS1
ratio ≥ 1.3 versus only 1/25 (5%) in the “non-matched therapy group”. In univariate
analysis for PFS2/PFS1 ratio ≥ 1.3, the type of therapy (matched versus non-matched) was
the only significant variable (p = 1.36 × 10−2; Table S4). The 6-month PFS2 was longer
in the “matched-therapy group” (58%, 95%CI 36–94) than in the “non-matched therapy
group” (9%, 95%CI 2-34; p = 1.74 × 10−2; Figure 5a). In term of RECIST response, in the
“matched therapy group” (Figure 4), one BRCA2-mutated PC patient (8%) experimented
complete response (CR: 8%) with olaparib, three patients displayed partial response (PR:
25%), including one with urothelial cancer and FGFR3 mutation treated with infigratinib,
one with PC and BRCA2 deletion treated with pembrolizumab/olaparib combination,
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and one with PC and PIK3R1 deletion treated with everolimus. Three patients presented
stable disease (SD: 25%) and five were progressive (PD: 42%). The objective response
(OR) rate was 33% (95%CI 11–65) and the disease control (DC) rate (CR + PR + SD) was
58% (95%CI 28-85). In the “non-matched therapy group”, these rates were 13% (95%CI
3–35) and 22% (95%CI 7–44), respectively. The comparison between both groups showed
a trend towards better DC rate in the “matched therapy group” (p = 5.9 × 10−2). The
6-month OS was longer in the “matched-therapy group” (75%, 95%CI 54–100) than the
“non-matched therapy group” (42%, 95%CI 26–69; p = 4.54 × 10−2; Figure 5b). Because
all patients in the “matched therapy group” had a PC or a bladder/ureter cancer (N = 12),
we repeated the same analysis by focusing on patients with PC or bladder/ureter cancer
only in the “non-matched therapy group” (N = 15). Here too, the percentage of patients
with a PFS2/PFS1 ratio ≥ 1.3 was higher in the “matched therapy group” (42%) than in the
“non-matched therapy group” (7%; p = 0.065). The 6-month PFS2 was 58% (95%CI 36–94)
in the “matched-therapy group” versus 15% (95%CI 4–55) in the “non-matched therapy
group”; p = 6.18 × 10−2; Figure 5c), and the corresponding 6-month OS were 75% (95%CI
54–100) and 41% (95%CI 21–78), respectively (p = 0.141; Figure 5d).
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Figure 5. Clinical outcome in patients treated with “matched therapy” versus “non-matched therapy”.
(a) Kaplan–Meier curve of PFS2 in patients treated with “matched therapy” (red curve) and in patients
treated with “non-matched therapy” (blue curve). (b) Similar to a, but for OS. (c) Similar to a but
limited to patients with PC or bladder/ureter cancer. (d) Similar to c, but for OS.

4. Discussion

Fifty-nine percent of AUC patients enrolled in PERMED-01 presented at least one
AGA and 19% received an AGA-matched therapy, which provided a PFS2/PFS1 ratio ≥ 1.3
in 42% of cases (8% of enrolled patients). For comparison, a ratio ≥ 1.3 was observed in 5%
of patients treated with a non-matched therapy.

Compared to other precision medicine trials, we included two design modifications:
analysis of the largest gene panel tested by tNGS and extended to clinically relevant
genomic scores, and profiling of new biopsies done inside the trial. The use of a new biopsy
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rather than archival samples was justified by the known temporal evolution of the tumor
genome with emergence of subclonal alterations [18]. Feasibility was good with 77% of
patients displaying an exploitable profile validated within a median time compatible with
clinical use (53 days). Most of genomics failures were due to insufficient quantity and/or
quality of biopsy. The safety of biopsy was good with only one patient displaying a grade 3
fever after prostate biopsy, with complete recovery after antibiotic treatment.

We found somatic alterations consistent with the literature, such as AR, TP53, FOXA1,
SPOP, PTEN, or ATM alterations in PC [23], and TP53, KDM6A, RB1, ATM, FAT1, or
ARID1A alterations in bladder urothelial cancer [7]. As expected, the two PCs with bi-allelic
CDK12 alteration showed a focal tandem duplication profile in aCGH. CDK12 promotes
DNA repair through the regulation of homologous recombination genes, with a suggestion
that CDK12 bi-allelic inactivation was associated with PARP-inhibitor sensitivity [24].
One of the two patients was treated with olaparib and showed disease stabilization over
8 months. Twenty-four genes displayed germline variants, including four PGVs (15% of
tested patients) and concerning DNA repair genes. One patient had been referred for
oncogenetics consultation. The 15% rate is close to the 10% reported in a subcohort of 127
patients with AUC [25]. Whether this relatively high rate of PGVs identification should
lead to systematic oncogenetics consultation and germline sequencing in patients with
AUC deserves investigation.

We identified AGAs in real-time in 59% of enrolled patients, a proportion inferior to
that reported in the whole PERMED-01 population (71%), which included many different
cancer types [16]. For comparison, we identified in the literature 10 precision medicine
studies that included AUC patients and were informative regarding this point: seven
were dedicated to all cancer types, including urological cancers [11,26–31], and three were
dedicated to a specific urological cancer type, including both molecular screening and
delivery of the therapy matched to pre-defined AGAs [5,14,15]. Through these 10 studies,
the median percentage of patients with AUC identified with AGA was 28% (10–48%).
For example, in the first category, it was 40% in the ProfiLER trial based on t-NGS and
aCGH [30], and 42% in the Dutch study based on WGS [31]. In the second category, the
PROfound study focused on deleterious or suspected deleterious alterations in 15 genes
selected for their role in homologous recombination in PC patients [14]. A qualifying
alteration in one or more of these genes was detected in 28% of 2792 patients, a percentage
close to the present cohort when analysis was limited to the same genes (34%). However,
comparison with the literature is difficult because the gene panels and techniques used are
different; for example, the number of “candidate genes” tested by tNGS was smaller across
the 10 previous studies (median 50 genes (range, 9–410)) than in our series (≥494 in 92%
of our exploitable profiles). Even more critical, AGA definitions are different. The use of
scales for definition and level of actionability of molecular alterations, such as ESCAT or
OncoKB, which we used here [21], and their regular updating will help in the future such
comparisons.

On progression after enrollment, 19% of enrolled patients received a matched ther-
apy, representing 32% of patients with AGA, a proportion similar to that reported in the
whole PERMED-01 population (17%) [16]. These results are close to the 12% (4–29%) of
enrolled patients (and 42% of patients with AGA) found in nine informative published
studies [5,11,14,26–28,30,32,33]. This low rate of patients treated with matched therapy has
several explanations. The main one is the advanced and previously multi-treated status of
patients and poor general status, which led to palliative care or loss to follow-up. Among
treated patients, the main difficulty was the access to the matched therapy because of lack
of clinical trials, and the non-enrollment in available trials mainly because of performance
status. Recently, clinical trials were designed to facilitate access to targeted matched thera-
pies such as PROfound in PC or Biscay in bladder cancer [5,14,15], the two cancers treated
with matched therapy in our series. In these studies, drug administration was planned
from the start of the study for patients presenting a relevant AGA. In the future, inclusion
of patients earlier in the disease course will decrease the risk of clinical deterioration before
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the delivery of AGA-matched therapy. Such an approach is being tested in trials such as
SAFIR02-breast and -lung (NCT02117167, NCT02299999) or MULTISARC (NCT03784014).
In parallel, improving the number of and accessibility to clinical trials of matched therapies,
alone and in combination, should improve this point, thanks to less restrictive patients’ eli-
gibility criteria [34] and wider selection of participating centers in phase I/II trials. Indeed,
it seems that the highest efficacy of precision medicine is observed in patients treated in
large academic centers with broad phase I/II trials portfolio [11,26,29,32,33,35].

PERMED-01 was not primarily designed to assess the clinical efficacy of AGA-matched
therapy. However, our results suggest a clinical benefit in patients with AUC. Forty-two
percent of patients (42%) in the “matched therapy group” had a PFS2/PFS1 ratio ≥1.3
versus 5% in the “non-matched therapy group”. This percentage is close to that observed
in the whole PERMED-01 (37%) [16] and MOSCATO (33%) [33] series. The OR and DC
rates were higher in the “matched therapy group” (33% and 58% respectively) than the
“non-matched therapy group” (13% and 22%), as was the 6-month OS (75% vs. 42%). In the
literature, few “all cancer type studies” present separately the efficacy results for patients
with AUC. In the IMPACT trial, no objective response was observed in the four patients
treated with matched therapy [28]. In the PREDICT–UCSD trial, the disease control rate
was similar in the 22 matched-treated patients (23%) and the 158 non-matched treated
patients (25.5%) [32]. In ProfiLER, no objective response was observed in three patients
treated with matched therapy [30]. In MOSCATO, among the 29 AUC patients treated
with matched therapy, 42% showed a PFS2/PFS1 ratio ≥ 1.3 [33], a rate similar to ours.
Among the patients treated with “matched therapy” in our series, the most frequently
delivered matched therapies were everolimus and olaparib (4 patients each), followed by
sorafenib (2 patients). Our results showed higher efficacy in term of tumor response with
olaparib than with everolimus and sorafenib. Recently, the PROfound trial found that
olaparib was somewhat effective in cases of advanced PC with HRD (BRCA1, BRCA2 or
ATM) [14], as observed with our two patients with BRCA2 inactivation and partial and
complete response to olaparib. Lesser efficacy of everolimus and sorafenib, as compared
to olaparib, may suggest that these drugs are not as effective for the indicated lesions
and/or that the AGA is not yet explored well enough to exploit in precision medicine.
However, the numbers of patients are very small and of course, the analysis is considerably
biased and cannot serve to establish the value of the research strategy. These results call
for further confirmation studies and only randomized trials comparing “AGA-matched
therapy” versus conventional care will need to be implemented.

However, our percentage suggests benefit in only 8% of enrolled patients, a rate
classically reported in other precision medicine studies [9]. Of course, the small number of
patients and the design of these studies, including ours, preclude any definitive conclusion.
This relatively limited benefit of precision medicine trials reported to date results from
different reasons: (i) enrollment of end-staged metastatic patients heavily pre-treated with
poor performance status, showing rapid disease progression not compatible with the time
to get the results, thus leading to a significant drop-off between the MTB recommendations
and the initiation of matched therapy; (ii) various tumor and pathological types, introducing
a source of variability into the analysis that bias the results, notably because the predictive
impact of a molecular alteration depends on the cancer type; (iii) clonal heterogeneity of
metastatic cancers highly mutated with plastic genomes allowing adaptation and resistance
to treatments; (iv) limited functional relevance of AGA due to the absence of reliable tests;
(v) limitation of analyses to DNA CNA and mutations, although analyses of mRNA and
protein expression and the search for actionable fusion genes and signatures of pathway
alteration should be considered; and (vi) limited access to clinical trials of appropriate
matched therapies, with restrictive patients’ eligibility criteria [34] and limited selection of
participating centers in phase I/II trials of innovative drugs. The size of gene panel to be
tested using NGS remains controversial (tNGS versus WES and/or WGS) and clinical trials
are testing this issue (NCT03163732). Inclusion of patients earlier in the disease course (less
complex genomic profile and lesser risk of clinical deterioration), and with unique cancer
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type showed interesting results in PC [14] and bladder cancer [5], and more recently in
clear-cell renal cell carcinoma [36].

5. Conclusions

A prospective extensive molecular profiling of AUC based on a new tumor biopsy
allowed identification of AGAs in 59% of patients, delivery of a matched therapy on pro-
gression in 19% (mainly PC), and observation of a clinical benefit (PFS2/PFS1 ratio ≥ 1.3)
in 8%. This rather limited benefit has several explanations common to many precision
medicine trials, the design of which must be improved at all levels (patients’ selection,
new biopsy, integrated analyses, AGAs definition/relevance, access to matched thera-
pies). However, even if our results about efficacy are significant, we acknowledge that our
study displays limitations, including the small number of patients in the compared groups
with 12 patients in the “matched therapy group”, and 25 in the “non-matched therapy
group”, and the imbalance of characteristics between these groups with a strong trend for
more patients with PC in the first one (83%) than in the second one (44%). Yet, a pooled
analysis of patients with AUC treated in other similar precision medicine trials (ProfiLER,
MOSCATO . . . ) [26–33] might be a solution to improve these limitations. To date, such
an approach remains limited to the research field, and randomized trials are warranted
for an effective future assessment of the clinical feasibility and (eventual) benefit of this
multimodal therapy approach.
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