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Simple Summary: Immunotherapies have revolutionized the field of oncology and have been ap-
proved to treat cancer. Despite progress in immunotherapy, many challenges remain, including
the identification (i) of predictive markers for treatment response or (ii) of beneficial T cell subsets
involved in tumor elimination. “Humanized” mice are a promising translational model for studying
the human immune system in the context of immuno-oncology research. Here, multicolor flow cytom-
etry was applied to characterize immune cell subsets in the spleen of humanized mice transplanted
with patient-derived breast cancer tissues. This multicolor immune cell setup will help to identify
promising therapeutic approaches or predictive immune cell subsets in the future using humanized
tumor mice.

Abstract: “Humanized” mice have been widely used for the characterization of human cancer
progression and as a powerful preclinical model. Standardization of multicolor phenotyping could
help to identify immune cell patterns involved in checkpoint-related complications. Therefore, we
applied established protocols for immune cell profiling to our humanized Patient-Derived Xenograft
(hPDX) model. hPDX are characterized by the co-existence of a human immune system and a patient-
derived tumor transplant. These mice possess a human-like immune system after CD34* stem cell
transplantation while the reconstitution level of the immune system was not related to the quantity of
transplanted CD34" cells. Contamination < 1.2% by CD3* cells in the hematopoietic stem cell (HSC)
transplant did not trigger abnormal T cell maturation. Different B and T cell differentiation stages
were identified, as well as regulatory T cells (Tregs) and exhausted T cells that expressed TIGIT, PD-1,
or KLRGL1. Overall, the application of standardized protocols for the characterization of immune cells
using flow cytometry will contribute to a better understanding of immune-oncologic processes.

Keywords: humanized tumor mice (HTM); humanized patient-derived xenograft (hPDX); breast
cancer; hematopoietic stem cells (HSC); multicolor flow cytometry; immunotherapy

1. Introduction

Immunotherapies have extended the arsenal for tumor treatments, significantly con-
tributing to tumor regression in cancer patients suffering from various malignancies, includ-
ing melanoma, renal cell carcinoma, lung and urothelial cancer, as well as leukemia [1-3].
They have already been approved to treat many types of cancer and frequently trigger
an efficient immunological tumor defense [4,5]. However, there are patients who do not
benefit from the currently available immunotherapies. The immunological, environmental
and cellular context before and during immunotherapies is incompletely explored and an
individual prediction for treatment response is rather uncertain. Some patients develop
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immune-related adverse events or even experience rapid tumor progression, a so-called
hyper-progressive disease [6-8]. In order to advance and improve these immunotherapeu-
tic approaches, revised and more human-relevant preclinical models are crucial. Classical
in vitro and in vivo studies in biomedical research have limitations because conditions in
cell culture experiments and classical mouse models insufficiently mimic the conditions in
the human body [9,10].

So-called humanized mice represent a promising model for studying the human immune
system, optimizing the efficacy of applied therapies and ruling-out treatment-related toxicity.
Numerous recent studies revealed the advantages of using humanized mice in the context
of immune-oncologic research. The benefit of using these mice for cancer immunotherapy
studies consists of three elements: (1) immunodeficient host mice bear (2) a human immune
system and (3) human tumor cells at the same time. Therefore, humanized mice allow medical
research and drug discovery in a more physiologically human-relevant setting. In particular,
these models enable the analysis of the mutual interaction between the human immune
system and human tumor growth, which reveals patient-relevant effects and, thus, enhances
the clinical translation for treating patients with cancer.

The term “humanization” refers to the maturation and presence of a human im-
mune system upon transplantation of hematopoietic stem cells (HSC) or peripheral blood
mononuclear cells (PBMCs) into immunodeficient mice. Accordingly, these mice reflect
human-like conditions with regard to the immunological context. A number of methods
for humanization have been described in the literature [11]. More specifically, for the
establishment of a functional human immune system, either PBMCs or CD34* HSC can be
used, which are transplanted into immunodeficient mice. The advantage of using CD34*
HSC, mainly isolated from umbilical cord blood after live births, is the differentiation of
HSC into all major immune cell types resulting in a human-like immune system in a mouse
without causing graft versus host diseases (GvHD). After removing mouse progenitor
cells to create space in the bone marrow niche by sublethal irradiation, transplantation is
performed by injecting HSC either into newborn mice, intravenously or intrahepatically, or
into adult mice, typically by intravenous tail vein injection [11].

Depending on the research objective, it is critical to choose the right immunodeficient
animal model [12,13]. NOD-scid ILZRgammanull (NSG) mice have a Non-Obese Diabetic
(NOD) background resulting in the absence of circulating hemolytic complement [14] and
diminished functions of natural killer (NK) cells [15], macrophages [16], and dendritic
cells [17]. Due to the spontaneous Prkdcs€d mutation leading to defects in V(D)J recombi-
nation [18], NSG mice are characterized by the absence of functionally mature T and B cells.
Moreover, the deficiency in the interleukin 2 receptor gamma chain (I12rg) impedes the
signaling of different interleukins (IL), namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 [19],
contributing to a blockade of NK cell, T and B cell maturation.

To advance novel therapeutics in cancer research, humanized mice are being used as
a translational model constituting a validated, powerful tool for preclinical investigation
shown by several studies [20-30]. Especially in this context, experiments with humanized
mice could contribute to recapitulating the interactions between immune components and
tumors of human origin, expanding the knowledge in immuno-oncology translational
research for better immuno-therapeutic drug development [29,30]. Even long-term efficacy
of immunotherapies or biomarkers can be evaluated as persistence of human immune
cells is shown in mice even after 11 months post CD34* HSC transplantation [29]. How-
ever, standardized protocols for the humanization of mice and the subsequent analysis
are indispensable [31]. An initiative called “Minimal information for standardization of
humanized mouse models” (MISHUM) was built recently, to enable standardization and
reproducibility of this model system [32].

Here, we applied a well-defined protocol for immune cell profiling [33] to the Human-
ized Patient-Derived Xenograft (hPDX) model. Inmunophenotyping using flow cytometry
has become the method of choice for the identification and advanced classification of
immune cells. A flow cytometric approach facilitates the quantitative evaluation of an im-
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munological activity on a single cell level. Therefore, we examined several flow cytometry
panels that were already used to identify checkpoint-related complications in patients [34]
to reliably quantify different immune cell populations in spleens of tumor-bearing hu-
manized mice. Various B and T cell maturation and differentiation stages were identified.
The heterogeneity of the B cell compartment known from the human body was also found
in hPDX mice. A large portion of the T cells were assigned to the more experienced memory
subsets. Furthermore, we detected regulatory T cells (Treg) and exhausted T cell subsets
that expressed diverse markers, including TIGIT, PD-1 and KLRG1. Moreover, as CD4 and
CD8 T cells were characterized by a human-like T cell receptor (TCR) repertoire, hPDX mice
represent a powerful model for studies to optimize adoptive cell transfer. The immune
cell composition in hPDX mice, analyzed by multicolor flow cytometry, was similar to
the known profile in the human body. According to the principle from bench to bedside,
we here demonstrate that the use of hPDX mice for the evaluation of immunotherapies
is beneficial in paving the way towards successful clinical trials, in limiting and reducing
severe unwanted side effects during the period of preclinical evaluation, and finally, in
efficiently translating promising approaches to clinical applications.

2. Materials and Methods
2.1. The Breast Cancer Tumor Tissue

All patient-derived tissues samples were collected based on written consent and based
on the permission of the Ethics Committee of the University of Regensburg. Breast cancer
patients underwent surgery at the Department of Gynecology (University of Regensburg)
and subsequently, tumor material was removed under sterile conditions. The tumor was
incubated in pre-warmed medium (DMEM/F12, 1% HEPES, 1% Pen/Strep, 1% Ampho-
tericin B) and minced into fragments of 2 mm x 2 mm. The tumor fragments were either
transplanted subsequently into NSG mice or cryopreserved in liquid nitrogen.

2.2. Isolation of Human CD34" Stem Cells from Umbilical Cord Blood

CD34" hematopoietic stem cells (HSC) were isolated from the umbilical cord blood
based on the procedure described the first time in 2011 [35]. Briefly, umbilical cord blood
was collected postpartum in appropriate blood bags (Macopharma, Langen, Germany).
Mononuclear cells (MNCs) were separated from cord blood by Pancoll density gradient
centrifugation (PAN Biotech GmbH, Aidenbach, Germany) and washed twice in EDTA-PBS
solution. CD34" cell isolation was performed using immunomagnetic beads (Miltenyi
Biotech, Bergisch Gladbach, Germany) according to the manufacturer’s instructions. If the
cells were not used immediately after separation, the CD34" cell fractions were cryopre-
served in medium containing 45% FCS and 10% DMSO until further use.

2.3. Generation of Humanized Patient-Derived Tumor Mice (hPDX)

NOD.Cg-Prkdcsci® 112rg"™ Wil /Sz] (NSG) mice were obtained from Jackson Laboratories
and housed and bred in a specialized pathogen-free facility at the University of Regensburg.
Humanized tumor mice were generated as previously described [36]. In brief, newborn
animals were irradiated with 1 Gy during the first 48 h of life span. After a resting
phase of 3 h, mice were transplanted intrahepatically with 0.06-0.16 x 10® human CD34*
cells isolated from umbilical cord blood. Reconstitution of the human immune system
was analyzed 8-9 weeks after HSC transplantation (HSCT) by flow cytometry by blood
collection over the lateral saphenous vein. Subsequently, mice were anaesthetized with
midazolam (5 mg/kg), fentanyl (0.05 mg/kg) and medetomidine (0.5 mg/kg) i.p. and
tumor fragments of four different patients were transplanted into the inguinal right fat pad
together with 50 pL of matrigel (R&D Systems, Inc., Minneapolis, MN, USA). Anesthesia
was antagonized using flumazenil (0.5 mg/kg), atipamezol (2.5 mg/kg) and naloxon

(1.2 mg/kg).
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2.4. Ethic Statements

The animal work was approved by the local veterinary authorities of the district gov-
ernment based on the European guidelines and national regulations of the German Animal
Protection Act (permission no. 54-2532-1-16/14, 55.2 DMS-2532-2-422, and RUF 55.2.2-2532.2-
803). Cord blood and patient-derived tumor samples were taken with approval from the
Ethics Committee of the University of Regensburg (permission no. 14-101-0063, 17-527-101 and
18-1039-101). All patients included in the study provided written informed consent.

2.5. Flow Cytometry

The characterization of human immune cells was performed by flow cytometry using a
FACSCanto-II (BD Biosciences, San Jose, CA, USA), which was run by Diva software (Ver. 7.0, BD
Biosciences, San Jose, CA, USA) or a Navios cytometer (Beckman Coulter, Brea, CA, USA) with the
Cytometry List Mode Data Acquisition and Analysis Software (Beckman Coulter, Brea, CA, USA).

The following anti-human antibodies (clones are given in brackets) were used for the
analyses of the reconstitution in peripheral blood and in the CD34 isolates: «CD34-Pe (581,
Biolegend), «CD3-FITC (UCHT1, BD Biosciences), xCD19-PE (HIB19, BD Biosciences),
aCD33-PerCP-Cy5.5 (WM53, Biolegend), «CD45-APC (HI30, BD Biosciences).

To obtain single cell suspension of spleens for immune profiling, spleens were dissoci-
ated by passing the cells through a 40 pm cell strainer (BD Bioscience), eluated in PBS and
centrifuged at 300 x g. Samples were prepared using the DuraClone protocols according to
the manufacturer’s protocol (Beckman Coulter, Brea, CA, USA). For detailed information
see Table 1 and Kronenberg and colleagues [37]. The following anti-human antibodies
(clones are given in brackets) were used and purchased from Beckman Coulter (Brea, CA,
USA) if not otherwise stated: aCD16-FITC (3G8), «CD49b-FITC (P1E6-C5, Biolegend),
oTCRys-FITC (IMMU510), algD-FITC (1A6-2), xCD45RA-FITC (2H4), xCD56-Pe (N901),
oTIGIT-Pe (A15153G, Biolegend), aTCRxp-Pe (IP26A), «CD21-Pe (BL13), a«CD160-Pe
(BY55), «CD19-ECD (J3-119), «CD27-ECD (1A4CD27), «CD8-ECD (B9.11), xCD14-PeCy7
(RMO52), aCD279-PeCy7 (PD1.3), xTCR V$1-PeCy7 (R9.12), xCD27-PeCy7 (1A4CD27),
oTIGIT-PeCy7 (A15153G, Biolegend), xCCR7-PeCy7 (G043H7, Biolegend), «CD4-APC
(13B8.2), «TIM3-APC (F38-2E2, Biolegend), xCD24-APC (ALB9), xCD127-APC (R34.34),
aFoxP3-AF647 (259D), xCD8-APC-A700 (B9.11), «CD4-APC-A700 (13B8.2), xCD3-APC-
A750 (UCHT1), «CD38-APC-A750 (LS198-4-3), xCD45-KrOrange (J33), xKLRG1-PerCP-
Cy5.5 (SA231A2, Biolegend), «CD244-PeCy5.5 (C1.7), xCD25-PeCy5.5 (B1.49.9), «CD4-PB
(13B8.2), xTCR V$2-PB (IMMU 389), algM-PB (SA-DA4), «Helios-PB (22F6). To exclude
murine immune cells from our analysis, we added an anti-mouse «CD45 antibody in
PerCP-Vio770 (30F11, Miltenyi), in PB (30-F11, Thermofisher Scientific), in APC-AF700
(30-F11, Thermofisher Scientific) or in Pe (30-F11, Miltenyi). The results were analyzed
using the FlowJo software v10.8 (BD Biosciences, San Jose, CA, USA).

Table 1. Anti-human and anti-mouse antibodies for flow cytometry.

488 nm (Blue Laser) 638 nm (Red Laser) 405 nm (Violet Laser)
PerCP-Vio770
APC A700/ APC-
1
FITC PE ECD PerCPCy5.5 PeCy7 AF647 APC-A700 A750 PB KrOrange
PECy5.5
basi . CD452 5 ;
asic phenotyping CD16 CD56 CD19 (mouse) CD14 CD4 CD8 CD3 — CD45 (human)
2
Tcell subsets CD45RA  — cD27 (fnl?)ﬁ o CCR7  CD45 cp8’ CD3 CD57 CD45 (human)
CD452 TCR 5 ; TCR
TCR TCRys TCR«p  — (mouse) Va1 CD4 CD8 CD3 veo CD45 (human)
2
Beells IgD  CD21  CDI19 (Sn]?f; o CD27  CD245 — CD38 IgM CD45 (human)
exhausted CD4 CD87 +
CD49b TIGIT CD27 KLRG1 3 CD279 TIM3 5 CD458 CD3 CD4 CD45 (human)

T cells

(mouse)
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Table 1. Cont.
488 nm (Blue Laser) 638 nm (Red Laser) 405 nm (Violet Laser)
PerCP-Vio770
APC A700/ APC-
1
FITC PE ECD PerCPCy5.5 PeCy7 AF647 APC-A700 A750 PB KrOrange
PECy5.5
exhausted CD8 CD4 +
Teells CD#b  CDI60  CD27 CD244 4 CD279  CD1275 CD8” CD3 CD45 CD45 (human)
(mouse)

TREGs CD45RA (ggize) CDs CD25° TIGIT ~ FoxP3® CD47 CD3  Helios CDA45 (human)

I R PE-Texas Red. Antibodies conjugated with: 2 PerCP-Vio770, 3 PeCy5.5,  PerCPCy5.5, 5 APC, ® AF647,7 A700,
8 APC-A700.

2.6. Statistical Analyses

All results are shown as mean. Correlation (linear regression) was performed using
GraphPad Prism (Ver. 6, GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. CD34" Isolation from Umbilical Cord Blood and Cell Recovery after Cryopreservation

CD34 is the best-established marker for identification and isolation of HSC due to its
unique expression on this cell type. Hence, it is chosen to enrich stem cells prior to trans-
plantation and to determine the purity upon CD34 isolation. The amount of isolated CD34*
stem cells directly correlated with the volume of blood and separated MNCs (Figure S1A).
On average, 19690 CD34* cells were collected per ml blood (range 4950-44,720 cells mL ).
CD34* stem cells were contaminated with only 0.33% CD3* cells (range 0-1.2%) (Fig-
ure S1B). CD34* cells were frozen with cryoprotectant solutions and stored in liquid
nitrogen until further processing. The recovery rate was directly correlated to the cell
concentration frozen (Figure S1C), 41.5% (range 20.5-73.0%) immediately after thawing
(Figure S1D).

3.2. HSCT and Engraftment Success of the Human Immune System in Mice

Newborn pups were irradiated with 1 Gy whole-body irradiation during the first
48 h of their life span. After a resting phase, mice were transplanted intrahepatically with
approximately 0.1 x 10° human CD34" cells (range 0.06-0.16 x 10°). Reconstitution of
the human immune system was analyzed 8-9 weeks after HSCT by flow cytometry after
blood collection from the lateral saphenous vein. Successful engraftment of humanization
was considered when mice had more than 10% human CD45" leukocytes in peripheral
blood and was achieved in 89% of the 107 animals used. The quantity of the CD34" cells
transplanted did not correlate with the engraftment rate of human CD45* leukocytes or
CD3* T cells (Figure 1A,B), which was also observed in other studies [38]. In transplanted
mice, 47.4% (range 11.3-80.8%) of blood cells were CD45". At this particular time, most
of the cells belonged to the B cell compartment, as 86.8% (range 67.0-94.1%) were CD19*
among CD45* leukocytes (Figure 1C). Of the cells, 3.2% (range 0.3-43.3%) were CD33",
a marker for the myeloid lineage. With a value of 5.5% (range 0.0-27.5%), T cells represented
only a small proportion of CD45" cells; however, this stage is seen as a turning point and
the T cell concentration is expected to increase in peripheral blood after 8-9 weeks. At this
particular time, higher CD3 portions are seen as critical, as mice tend to develop a GvHD.
CD3 contamination in the CD34 fraction before transplantation did not contribute to the
CD3 abundance (Figure 1D). Moreover, other factors in addition to the quality and quantity
of the CD34 transplant play a pivotal role, as the recovered immune cells varied a lot
between mice receiving the same transplant.
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Figure 1. Engraftment success of the human immune system in mice 8-9 weeks after transplantation.
(A) Frequency of reconstituted leukocytes (CD45%) and (B) T cells (CD3*) in peripheral blood of mice
did not correlate with the transplanted number of CD34* cells, analyzed by flow cytometry (mean).
The linear regression is shown (Pearson’s correlation coefficient (A) r = —0.08379 and (B) r = —0.08546).
(C) Distribution of reconstituted B cells (CD19"), myeloid cells (CD33*), and T cells (CD3"), among
CD45* leukocytes isolated from peripheral blood are depicted (mean). (D) Reconstitution of T cells
in peripheral blood was determined by flow cytometry in comparison to T cell contaminant in the
cord blood before transplantation. Each symbol represents one individual mouse. Individual colors
display one particular transplant injected in several mice, respectively (1 = 95).

3.3. Immunophenotyping of Splenocytes in hPDX by Multiparametric Flow Cytometry
3.3.1. Composition of Leukocytes Reveals Capability to Fight Cancer in hPDX

In a first step, the main leukocyte subpopulations were analyzed to verify whether
the human immune cell composition could be reproduced in the hPDX (Figure 2). For
phenotyping human leukocyte subpopulations in the spleens, an anti-mouse CD45 to
the pre-formulated DuraClone IM antibody cocktail from Beckman Coulter (Figure 2A)
was added. T cells (37.3%) and B cells (58.2%) were the most pronounced of the present
CD45* immune cells, whereas monocytes (1.5%), NK cells (2.3%) and NKT cells (0.2%) were
detectable only to a lower amount (Figure 2B). However, although the tendency of immune
cell portions was similar in all mice, the composition varied between individual mice.
In the human system, CD4 T cells are the major subset of T cells in peripheral blood, but
in the spleen the amount of CD4 and CD8 T cells varied between the animals (Figure 2C).
Importantly, the crucial, most important immune cells targeting tumor cells, in terms of
NK and T cells, were present in hPDX.
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Figure 2. Inmune profiling and gating strategy for phenotyping general leukocyte subpopulations
in spleens of hPDXs. PDX tumors from breast cancer patients were transplanted orthotopically in
humanized NSG mice. Spleens were harvested and processed to a single cell suspension. (A) Manual
gating strategy for flow cytometry analysis of human splenocytes was as follows: singular (FSC-A
FSC-Wlow) leukocytes (CD45", human) were analyzed free from murine CD45* cells regarding
monocytes (SSC-A®Y CD14+), NK cells (CD56*), NKT cells (CD56* CD3*), T cells (CD3*), CD4
T cells (CD3* CD4%), CD8 T cells (CD3* CD8") and B cells (CD19%). (B,C) Immune cell composition
in spleens is shown. Each circle symbol represents one individual mouse (mean, n = 5).

3.3.2. Differentiation and Maturation of B Cells in hPDX Are Comparable to the Known
Human-like Heterogeneity

As most leukocytes were assigned to B cells, the DuraClone antibody cocktail for the
characterization of B cell subsets was applied to analyze splenocytes (Figure 3). The human
B cell compartment displays a heterogeneous group, responsible for the humoral antibody
response, carrying out antibody-independent functions such as antigen-presentation, modula-
tion of T cells or the production of cytokines [39—41]. This heterogeneity was also found in the
spleen of hPDX, when the core markers IgD, IgM, CD21, CD27, CD24 and CD38 (Figure 3A)
were analyzed. t-SNE plot analysis revealed co-expression patterns for IgD, IgM, CD21, CD38
and partially CD24 expression displaying strong heterogeneity (Figure 3B). More than 50%
of CD19" B cells were naive cells, mature but antigen-inexperienced B cells (IgD* CD27~,
Figure 3C). Moreover, additional precursor or differentiated B cell subtypes were found as
memory B cells (switched, IgM ™ IgD™ CD27* CD38~ and non-switched IgM* CD27* CD38"),
plasmablasts (IgM ™~ IgD~ CD27* CD38"), or transitional B cells (IgM* CD27~ CD24" CD38").
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Figure 3. Immune profiling and gating strategy for phenotyping B cell subpopulations in spleens
of hPDXs. PDX tumors from breast cancer patients were transplanted orthotopically in humanized
NSG mice. Splenocytes were analyzed by flow cytometry. (A) Gating strategy for flow cytometry
analysis of human splenocytes was as follows: singular (FSC-A FSC-W!°", CD45%, human) B cells
(CD19"), were analyzed free from murine CD45" cells regarding the B cell subset markers CD21,
CD24, CD38, CD27, IgD, and IgM. (B) Clustering of human B cells was calculated by t-SNE analysis,
color-coded by the expression of different conventionally B cell markers as indicated. t-SNE map of
one exemplary mouse is shown. (C) Analyses of B cell subpopulations of all hPDX are summarized:
Naive (NV) B cells (IgD* CD27~), marginal zone (MZ) B cells (IgD* CD27%), CD21 low CD38 low
B cells, plasmablasts (Plas, gD~ IgM~ CD27* CD38"), class switched memory B cells (IgD~ IgM ™~
CD27+ CD387), non- switched memory B cells (IgD~/* IgM* CD27* CD38"), transitional B cells
(transit, IgD~/* [gM* CD27~ CD38~/* CD24* CD38*). Each symbol represents one individual
mouse (mean, n = 5).

3.3.3. Phenotyping and Characterization of CD4 and CD8 T cells in hPDX

T cells are the key mediators of antitumor immunity. Therefore, we characterized
CD4 and CD8 T cells regarding their subset composition (Figure 52), their exhaustion
state (Figure 4), their TCR repertoire (Figure 5) and their regulatory potential (Figure 6) in
hPDX mice. In contrast to the diverse numbers of CD4 and CD8 T cells (Figure 2C), the
subset distribution was similar to the conditions known in the human body (Figure S2).
The homing receptor CCR7 and CD45RA were used to distinguish between naive (NV),
central (CM) and effector memory (EM), and effector memory T cells expressing CD45RA
(EMRA) (Figure S2A). Although high numbers of NV cells were found in spleens in the CD4
as well as in the CD8 compartment, a lot of cells were assigned to the more experienced
CM and EM subsets (Figure S2B,C). Analysis of CD57 expression allowed the identification
of terminally differentiated T cells with limited proliferative capacity (Figure S2B,C).
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Figure 4. State of exhaustion in CD4 and CD8 T cells in spleens of hPDXs. PDX tumors from breast
cancer patients were transplanted orthotopically in humanized NSG mice. Splenocytes were analyzed
by flow cytometry. (A,D) Manual gating strategy for flow cytometry analysis in (A) CD4 and (D)
CD8 T cells and is compared with t-SNE maps of (B) CD4 and (E) CD8 T cells, color-coded by the
expression of different markers as indicated, to evaluate exhaustion phenotype by staining of CD49b,
CD27, PD-1, TIGIT, KLRGI, TIM3 for CD4 T cells and CD49b, CD27, PD-1, CD160, CD244, CD127
for CD8 T cells. t-SNE maps of one exemplary mouse are shown. (C,F) Expression of exhaustion
markers in (C) CD4 and (F) CD8 T cells in spleens of all analyzed hPDX are summarized. Each
symbol represents one individual mouse (mean, n = 4).
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Figure 5. TCR repertoire in T cells in spleens of hPDX. PDX tumors from breast cancer patients were
transplanted orthotopically in humanized NSG mice. Splenocytes were analyzed by flow cytometry.
(A) CD4 T cells (CD3* CD4"), (C) CD8 T cells (CD3* CD8") and (E) double-negative T cells (CD3*
CD4~ CD87) were analyzed with t-SNE maps regarding the TCR chains TCRaf3 (TCRab), TCRyd
(TCRgd), TCRvb1 (TCRvd1) and TCRv2 (TCRvd2). (B,D,F) TCR repertoire analyzed by TCRxf3 and
TCRy? (B) in CD4, (D) in CD8, and (F) in double-negative T cells and V5 (Vd) variants in TCRy&*
(D) CD8 and (F) double-negative T cells are shown. Each symbol represents one individual mouse

(mean, n =5).
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Figure 6. Phenotyping of CD4 regulatory T cells in spleens of HTMs. PDX tumors from breast cancer
patients were transplanted orthotopically in humanized NSG mice. Splenocytes were analyzed by
flow cytometry. (A) Manual gating strategy for flow cytometry analysis of human splenocytes is
compared with (B) t-SNE maps of CD4 T cells, color-coded by the expression of different conven-
tionally Treg markers as indicated. t-SNE map of one exemplary mouse is shown. (C) Quantity and
(D) phenotyping of Tregs in spleens of all analyzed hPDX are indicated. Each symbol represents one
individual mouse (mean, n = 3).

According to these results, CD4 as well as CD8 T cells were characterized by a high
expression of markers associated with an exhausted phenotype (Figure 4). T cells entering
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an exhausted or dysfunctional state can limit the efficacy of immunotherapies. Therefore,
we analyzed several exhaustion markers including TIGIT, KLRG1, and PD-1, which were
upregulated in CD4 T cells (Figure 4A—C). However, CD27 expression was consistently
high, and CD49b and TIM3 expression were not elevated. CD4 T cells expressing TIGIT
also showed a strong PD-1 expression, but not vice-versa (Figure 4B).

In the CD8 T cell compartment, in particular, an increased expression of PD-1, CD244 and
partial of CD127 was observed, whereas the markers CD49b and CD160 were not upregulated
(Figure 4D-F). PD-1 expression was concomitantly observed with CD244 expression but less
with the other exhaustion markers (Figure 4E). Interestingly, in the CD4 T cells but not in the CD8
T cells, PD-1* cells were separated into an intermediate and a high positive population. Whether
progressive loss of effector functions such as IL-2, tumor necrosis factor (TNF), or interferon-y
(IFN-y) production, which is usually coming along with T cell exhaustion, can be assigned to this
T cell subpopulation, needs to be further elucidated.

The TCR is a heterodimer composed by either an alpha («) and beta () or a gamma
(v) and delta (8) chain. In humans, most T cells belong to the «f3 lineage, whereas only
in 1-10% of T cells does the TCR consist of the y and $ chain. In hPDX, especially, within
the CD4 but also in CD8 T cells, most of the cells (>80%) were assigned to the o[} lineage
(Figure 5A-D). In the CD8 compartment, a small portion of cells expressed the y6TCR,
while most of them were V51" but V52~ (Figure 5C,D). Vs are variable segments of the
v8 T cell receptor. Within the double negative T cell subset (CD3" CD4~ CD8"), the major
part belonged to the y5 T cells expressing mainly V51" (Figure 5E,F).

The presence of regulatory T cells in the tumor microenvironment is often associated
with poor prognosis in patients. Therefore, spleen cells from hPDX were analyzed for the
presence of regulatory T cells (Treg) characterized by the expression of the forkhead box
protein 3 (FoxP3) (Figure 6). FoxP3* cells made up to 13.0% in the CD4 T cell compartment
(Figure 6C), expressing the characteristic Treg markers TIGIT and HELIOS, whereas not all
Tregs were CD25" (Figure 6B-D).

4. Discussion

Since the development of IL-2 receptor gamma chain knockout mice and combination
with NODscid mice, HSC transplantation has allowed the generation of a functional human
immune system in mice, which results in the so-called humanized mice [12,13]. Since then,
these mice have marked a new stage in biomedical research, e.g., in the field of infectious
diseases, immunology, oncology, and others. Humanized mice facilitate an advanced
evaluation of immune cell activity in a preclinical, but physiologically human-like setting.

NSG mice transplanted with CD34* HSC develop the major immune cell populations
within 12 weeks post-engraftment [11], even though some immune cells do not occur at
the same frequency as they do in humans or do not completely mature towards absolute
functionality [42]. Reconstituted immune cells varied between different mice receiving
the same transplant (Figure 1). This phenomenon was already observed in humanized
mice [38].

The development of the B cell compartment is still a subject of controversy. Human B
cells are detectable in high frequencies in humanized mice but partly exhibit an immature
phenotype [43]. However, humanized mouse models have shown human B cell activation and
immunoglobulin production during infection [44,45] and in a variety of vaccine research stud-
ies [46,47]. Kuruvilla and colleagues demonstrated the production of dengue virus-specific
antibodies with the ability to neutralize virus particles [44]. In humanized mice without human
thymic tissue transplantation, human T cell differentiation and maturation occur on a murine
major histocompatibility complex (MHC) background, and are therefore mostly H2-restricted.
Due to the concomitant absence of CD4 helper cells and human-specific cytokine stimulation,
class switch in B cells is reduced in HSC transplanted mice. Therefore, most of the human
B cells show a CD24"/hi CD38M immature phenotype [43]. However, co-transplantation of
human tumor cells can trigger immune cell maturation and differentiation [48] and transi-
tional B cells and plasmablasts can appear in hPDX (Figure 3). During the first nine weeks,
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humanized mice mainly generate human B cells (Figure 1), whereas human T cell numbers
only start to increase at this stage. Probably due to an increase in mature T cells, which appear
with the increasing age of the animals (Figure 2), B cells have the capacity to develop and to
differentiate into mature subsets over time [49-51]. In addition, TLR ligand stimulation [52],
the transgene expression of human cytokines [53-56], or HLA-DRA molecules delivered by
lentiviruses [57] can further improve immunoglobulin production and class switch in these
mice. The importance of B cells for an immunological tumor defense was highlighted recently
with respect to breast cancer [58,59], which demonstrates the need to evaluate the impact of
this cell type on tumor growth and restriction in more detail. Another striking concept is the
utilization of humanized tumor-bearing mice to find and generate tumor-specific monoclonal
antibodies [48,60], which is rather challenging due to the aforementioned complications of B
cell maturation.

As already mentioned, mouse thymic epithelial cells express only murine MHC
molecules, which possibly contributes to an impaired T cell differentiation [61]. T cell
development was analyzed in several models and new mouse strains were generated
expressing human MHC I and /or MHC II, which enables an improved maturation process
of human T cells in the murine system [62-65]. In contrast to o3 T cells, vd T cells develop
MHC independently [66]. In the model presented here, progenitor cells differentiated into
ap and vd T cells (Figure 5). v6 T cells were shown to have a potent antitumor activity,
which caused special interest to translate yd T cell activity into innovative immunother-
apies [67], which can potentially be accomplished by the utilization of hPDX. Although
studies demonstrated restricted T cell effector functions in different humanized mouse
models [68,69], human T cells show the potential to secrete cytokines and have cytotoxic
activity caused by the release of perforin or granzyme A and B [12,64,70].

In mice transplanted with liver and thymus fragments as well as mice based on HSC
transplantation, the most presented subset in the blood was naive cells, followed by memory
and effector T cells, in the CD4 as well as in the CD8 compartment [71]. Likewise, we
identified in hPDX all essential T cell subsets (Figure S2, [72]) and showed T cell maturation
and activation from a naive (CD45RA™ CD27") towards a central memory (CD45RA™
CD27%) and an effector memory (CD45RA™ CD277) phenotype in CD4 and CD8 T cells.

Due to the above-described maturation of a human immune system in humanized
mice and hPDX mice, these models are particularly suitable for the preclinical in vivo
evaluation of a variety of treatment strategies against cancer, above all immunotherapies.
Antibodies targeting checkpoint molecules such as cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) or programmed cell death protein-1 (PD-1) have been approved and are
in clinical practice for the therapy of a variety of cancers [5]. However, due to significant
insufficiencies in immunotherapies, there is a fundamental rationale for the evaluation of
parameters involved in the response and resistance to exploring the impact of additional
checkpoints, such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and
mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), and
others [73]. As T cells in humanized mice express several checkpoint molecules, such as PD-
1 or TIGIT, also shown in hPDX (Figure 4), studies with checkpoint inhibitors in humanized
mice contribute to a better understanding of immunotherapeutic mechanisms taking place
in humans [22,26,28,74-76]. For example, the following issues could be addressed by the
use of HTM/hPDX in more detail: T cells can enter an exhausted or dysfunctional state,
which is characterized by sustained expression of inhibitory receptors limiting the efficacy
of immunotherapies [77]. Terminally exhausted T cells are known to account for the failure
of immune therapies in cancer patients [78]. Moreover, PD-1 is often coordinately expressed
with other co-inhibitory surface molecules, including for example LAG-3, CD244, CD160,
among others [79], which were also identified here, in hPDX by multiparameter flow
cytometry (Figure 4).

Another relevant field of immune cell regulation that affects tumor growth and cancer
therapies concerns T cells with inhibitory activity. Tregs are specialized T cells that normally
suppress the immune response, thereby maintaining homeostasis and self-tolerance in the
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human body. However, high numbers of Tregs found in several tumor entities are often
associated with poor prognosis in cancer patients [80-83]. Therefore, currently, Treg target-
ing is combined with immunotherapy as, for example, checkpoint blockade is discussed,
possibly to improve immunotherapeutic approaches [84]. Anti-PD-1 antibodies have been
already demonstrated to decrease Treg cell populations in patients [85]. Humanized mice
could contribute to this approach [86], as it was not only in the hPDX model that Tregs
were present (Figure 6) but also in other studies with HSC-transplanted NSG mice [87-89].

Similar to the approach described here, flow cytometric protocols for immune cell
profiling were already used to identify checkpoint-related complications in melanoma
patients receiving combined PD-1/CTLA-4 blockade [34,90]. In another study, a flow
cytometric assay was applied to analyze tumor and peripheral blood samples addressing
the cellular “immunome” in patients with melanoma, breast cancer and glioblastoma [91].
Here, we show that those protocols can likewise be used in studies with hPDX or hu-
manized tumor mice. These mouse models are particularly appropriate for translational
research on immunotherapies under human-like conditions. A precise characterization
of immune cell phenotypes, activation status and interactions between immune cells in
tumors are critical to predicting patient outcomes. Moreover, a better understanding of
the mechanisms underlying T cell exhaustion using humanized mice may lead to novel
therapeutic interventions for patients and could reduce the limitation of the efficacy of im-
munotherapies. Lower response rates to checkpoint blockade were observed, for example
in less immunogenic cancer [22,92], but using humanized mice will facilitate the evaluation
of potentially complex mechanisms. However, a mouse model will not be able to mimic
the situation in human patients completely but will further improve our understanding
in the field of immuno-oncology. The experiments in this study add evidence to the po-
tential and the margins of improvement in the employment of humanized mice and flow
cytometry. hPDX models will help to expand knowledge in the field of immuno-oncology
translational research [29,30], enable the identification of biomarkers for cancer progression
or relapse, and will facilitate the development of combination strategies (e.g., irradiation
and checkpoint blockade) in the future. The multicolor immune cell setup used in this
study enables the identification of predictive immune cell subsets and provides a basis for
the design of immune cell specific treatments in cancer patients.

5. Conclusions

The number of publications using humanized (tumor) mouse models is steadily in-
creasing. The usefulness of those preclinical humanized mouse models for the investigation
of human cancer growth and progression, and for the evaluation of treatment modalities is
obvious. Standardized multicolor panels for flow cytometry will improve comparability
of treatment studies. Multiparameter flow cytometry applied to humanized tumor mice
enables (i) the identification of predictive immune cell subsets and (ii) the definition of
novel immunotherapies with superior treatment efficiency. Overall, this study provides
a protocol for the generation of humanized tumor mice and their immune cell profiling
using up to 10-color panels for flow cytometry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14092214/s1, Figure S1: Isolation and yield of hematopoietic
stem cells from umbilical cord blood. (A) Yield of stem cells (CD34") from umbilical cord blood is
depicted. Isolation was based on the MACS separation technique using immunomagnetic beads.
CD34 expression was determined after separation by flow cytometry (n = 40). (B) Purity of CD34
transplant after separation was analyzed by flow cytometry and subsequent staining of CD3 (mean,
n =16). (C,D) Recovery of defrozen stem cells before transplantation is shown (C) in comparison to
frozen cell concentration and (D) as mean (1 = 24). Each symbol represents one individual CD34
stem cell transplant. Figure S2: Immune profiling and gating strategy for phenotyping of CD4 and
CD8 T cell subsets in spleens of HTMs. PDX tumors from breast cancer patients were transplanted
orthotopically in humanized NSG mice. Splenocytes were analyzed by flow cytometry. (A) Manual
gating strategy for flow cytometry analysis of human splenocytes is shown, analyzing CD4, CD8
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T cells and corresponding subsets, naive (NV; CCR7*, CD45RA™), central memory (CM; CCR7*,
CD45RA ™), effector memory (EM; CCR7~, CD45RA ™), effector memory, expressing CD45RA (EMRA;
CCR7~, CD45RAY). (B,C) Immune cell composition and CD57 expression of CD4 and CD8 T cells in
spleens is displayed. Each symbol represents one individual mouse (mean, n = 3).
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