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Simple Summary: Medical imaging techniques such as magnetic resonance imaging (MRI) are pow-
erful tools that can map and measure tumor behavior in great detail. In particular, MRI can provide
information about differences present within and between tumors that have a notionally similar
type. At present, such imaging techniques are underused in assessment of cancer treatments, often
because complicated spatial patterns present in each individual tumor mask individual responses
to therapy. In this study we use mathematical modeling to assess tumors derived from 5 different
mouse models of cancer. The modeling technique detected response to therapy in individual tumors
and for different types of drug and radiation therapy, which was not possible using standard analysis
of MRI data, where only group effects are detectable. Our results have potential to reduce the use of
animals in medical research. They also enable a new high throughput MRI-based analysis of tumor
models undergoing evaluation with new therapies.

Abstract: Imaging biomarkers are used in therapy development to identify and quantify therapeutic
response. In oncology, use of MRI, PET and other imaging methods can be complicated by spatially
complex and heterogeneous tumor micro-environments, non-Gaussian data and small sample sizes.
Linear Poisson Modelling (LPM) enables analysis of complex data that is quantitative and can operate
in small data domains. We performed experiments in 5 mouse models to evaluate the ability of LPM to
identify responding tumor habitats across a range of radiation and targeted drug therapies. We tested
if LPM could identify differential biological response rates. We calculated the theoretical sample size
constraints for applying LPM to new data. We then performed a co-clinical trial using small data
to test if LPM could detect multiple therapeutics with both improved power and reduced animal
numbers compared to conventional t-test approaches. Our data showed that LPM greatly increased
the amount of information extracted from diffusion-weighted imaging, compared to cohort t-tests.
LPM distinguished biological response rates between Calu6 tumors treated with 3 different therapies
and between Calu6 tumors and 4 other xenograft models treated with radiotherapy. A simulated
co-clinical trial using real data detected high precision per-tumor treatment effects in as few as 3 mice
per cohort, with p-values as low as 1 in 10,000. These findings provide a route to simultaneously
improve the information derived from preclinical imaging while reducing and refining the use of
animals in cancer research.
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1. Introduction

Medical imaging can provide serial whole volume assessment of tumors by producing
spatially resolved maps of sub-units termed ‘voxels’ [1]. Tumors exhibit spatial variation in
genetics leading to varying proteomic and metabolomic expression. This results in multiple
microenvironments, which have been termed ‘tumor habitats’ [2], with habitat-specific
voxel data distributions.

Imaging is frequently used in drug and radiotherapy evaluations [3]. Common modal-
ities (MRI, PET, CT) have numerous different techniques yielding many biomarkers [4].
Usually these data are acquired on a voxel-wise basis, covering part or all of a lesion [5].
Data are often summarised as a mean or median, or distribution parameter such as standard
deviation (SD) or percentile. ANOVA or t-tests then assess differences between control
and treated parameters at a cohort-level. When effects are subtle it is difficult to identify
changes in individual tumors.

Tumor heterogeneity creates problems for this image analysis approach. Simple pa-
rameter summaries of the ADC distribution, such as mean value or standard deviation,
discard information regarding non-Gaussian behavour, such that tumors with equal vol-
ume, mean and 95th percentile can have very different histograms (Figure 1A). Parameters
are affected by multiple co-existant habitats, each contributing in different ways. Treated
tumors contain components that have changed following therapy and those that have
changed due to natural history growth alone (Figure 1B). This effect is seen, but hidden in
real visual data (Figure 1C) where differences in imaging biomarkers can be mapped in
both control and radiotherapy (RT) treated tumors.

Figure 1. (A) Example of two data distributions (arbitrary units) that have the same mean, 95th
percentile and integral, but are clearly different from one another. (B) Histogram of ADC data from a
tumor treated with RT (dotted distribution) decomposed into treatment effect (left distribution) and
no-effect components (right distribution). (C) ADC maps of control and RT treated Calu6 tumors
have distinct habitats with different tumor microenvironments.

Various methods have been described that segment tumors into habitats [1]. Some
approaches acquire several types of data (e.g., DWI, DCE-MRI and native T1 or T2) and use
data driven methods such as PCA and clustering to define voxels with similar characteristics
to one another [6,7]. Alternative approaches impose a priori cut points on image data [8–10].
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These methods typically operate in a spatial domain and must contend with issues of non-
uniqueness of solutions and the ambiguity of habitat boundaries.

Previously, we presented Linear Poisson Modelling (LPM) to analyse histograms in
physical [11] and biological [12,13] sciences. In this latter study, LPM identified responding
volumes of tumors treated with RT in xenograft models of colorectal cancer. The tech-
nique provided substantial additional power over t-tests. Our approach uses distribution
variations to estimate a lower-bound of volume changes associated with treatment on
a per tumor basis, as opposed to cohort level only summaries provided by t-tests and
ANOVA [13]. LPM describes admixtures of histograms and can build models from ‘small
data’ datasets of around 20 examples. This is useful in preclinical trials to reduce cost and
to comply with the Reduction, Refinement and Replacement of animals in medical research
(3Rs) [14].

Here, we investigate the limits of LPM for pre-clinical data analysis. We show how
LPM applied to medical imaging can reduce the numbers of animals needed in studies
while achieving very high statistical significances when detecting tumor changes. Through
the use of new power calculations and simulations, we present evidence that experimental
study designs with very small numbers of mice can be feasible. We then confirm practical
application on real data by simulating a prospective co-clinical trial [15] using real data.

2. Materials and Methods

Using t-testing and LPM, we analysed preclincial murine xenograft models of human
cancer and also simulated data. In each experiment we derived the MRI biomarker appar-
ent diffusion co-efficient (ADC) [16]. Studies were performed in compliance with NCRI
Guidelines for the welfare and use of animals in cancer research [14] and with Licences
issued under the UK Animals (Scientific Procedures) Act 1986 (PPL 40/3212) following
local Ethical Committee review.

Tumors belong to cohorts that were either control or treated. LPM identified volumes
within ADC distributions that were unaffected or affected by treatment, by determining
if treatment distributions differ from control distributions. These data can be used to
define biological response, although this term does not imply subsequent clinical benefit.
The affected volume is only a lower-bound, as it is possible that further biological changes
are happening, but are not evident from the ADC distribution or the changes in ADC are
not discernably different from controls.

2.1. Preparation of Tumor Cohorts

The majority of experiments were performed in the non-small cell lung cancer model
Calu6. Details of the tumor propagation are provided in Appendix A.1. When tumors
reached 200–300 mm3 in size by calliper measurement, mice entered the study and were
randomized to different cohorts.

Initially, we analysed four groups: (a) Sham radiotherapy and saline control (N = 15);
(b) Treatment with tumor-localised radiotherapy (RT) in a single 10 Gy fraction (N = 9);
(c) Treatment with fractionated RT in five daily 2 Gy, with concurrent cisplatin on the
first day of RT (fractionated chemo-radiotherapy, abbreviated as FCRT; N = 6); and
(d) Treatment with 50 mg/kg/day of the oxygen consumption modifying agent atovaquone
3 with 2% DMSO and 0.1% carboxymethyl-cellulose in drinking water (N = 14). Scans were
performed on days 0, 3 and 7 (visit 1 [V1], visit 2 [V2] and visit 3 [V3]).

We also performed a subsequent prospective co-clinical trial in four further groups:
(e) Saline control: mice with similar growth characteristics to the previous control mice
(N = 3; termed ‘strongly representative controls’) and mice with faster growth or larger
entry size (>350 mm3) than the previous control mice (N = 4; termed ‘less representative
controls’); (f) Treatment with a combination of atovaquone (ATV) 50 mg/kg/day followed
by fractionated RT (N = 3); (g) Treatment with one dose of 60 mg/kg intraperitoneal
injection of the hypoxia activated prodrug AQ4N (banoxantrone) 4 in saline (N = 3);
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(h) Treatment with two doses of 30 mg/kg of banoxantrone (N = 3). Here, mice were
scanned at days 0 and 3 (visit 1 [V1], visit 2 [V2]).

In addition, we evaluated the effect of single 10 Gy fraction of RT compared to sham
control in four further xenograft tumor models. These were two further ATCC human
xenograft cell lines (the brain tumor U87 model and the colorectal cancer HCT116 models)
as well as two syngeneic cell lines (the colorectal cancer CT26 model and the breast cancer
4T1 model). Further details of these models can be found in Appendix A.1.

For mice undergoing RT, treatment was administered using a metal-ceramic
MXR-320/36 X-ray machine (320 kV, Comet AG, Switzerland). Irradiation was delivered at
a dose rate of 0.75 Gy/min. Mice were turned around halfway through the procedure to
ensure a uniform tumor dose.

2.2. MRI Acquisition and Analysis

MRI was performed on a 7T Magnex instrument interfaced to a Bruker Avance III
console and gradient system, using a volume transceiver coil. Following localisation
with a T2-weighted anatomical sequence, we performed diffusion-weighted imaging
(TR/TE = 2250/20 ms; α= 90◦; b values 150, 500 and 1000 s/mm2 along one diffusion
direction; matrix 64× 64. The FOV, in-plane resolution, number of slices and slice thickness
for each xenograft model are shown in Table 1 along with the resultant voxel volumes. We
calculated voxel-wise values of ADC across the tumor using least squares fitting on the
equation S = S0e−bD, where S0 represents the signal intensity in the absence of a diffusion
sensitising gradient, S the signal intensity for a particular b value, b the numerical value in
s/mm2 and D the apparent diffusion coefficient (mm2/s).

Table 1. Cell line specific MRI acquisition.

Xenograft
Model

In
Plane

Maxtrix

Slice
Number In Plane Size Slice

Thickness Volume

Calu6 64 × 64 15 0.5 mm × 0.5 mm 1.0 mm 0.25 mm3

U87 64 × 64 15 0.5 mm × 0.5 mm 1.0 mm 0.25 mm3

HCT116 64 × 64 7 0.4 mm × 0.4 mm 1.2 mm 0.192 mm3

CT26 64 × 64 10 0.5 mm × 0.5 mm 1.2 mm 0.3 mm3

4T1 64 × 64 10 0.5 mm × 0.5 mm 1.2 mm 0.3 mm3

2.3. LPM Modelling and Effect Detection

An LPM model is built in two parts: control group behaviour, C = c, and additional
behaviour seen in treatment groups, C = t. Combined, these give the number of voxels
associated with treated or untreated behaviour for each ADC value, A, and visit, V, each
tumor then has a histogram that can be described as:

H(A, V) ≈ M(A, V|C = c) + M(A, V|C = t)

M(A, V|C = c) = ∑
c

P(A, V|C = c)Qc

M(A, V|C = t) = ∑
t

P(A, V|C = t)Qt

M(A, V|C = c) and M(A, V|C = t) are built using control and treatment data respec-
tively. Treated tumors may exhibit some behaviour or contain tissue that is unaffected by
treatment. The second stage of training therefore fits both the control and treatment parts
to describe tumors in the treatment cohort. In this way, treatment-specific components only
describe additional behaviours not seen in M(A, V|C = c). The total number of voxels
exhibiting treatment is QT = ∑t Qt.
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Parameters are estimated via a Likelihood-based algorithm (Expectation Maximisation)
and a Leave-One-Out (LOO) generalisation (Figure 2). It determines how many model
components are required, the shape of probability mass functions and the weighting
quantities that provide good descriptions of the data. A χ2 per d.f. goodness-of-fit is used.
A sufficient model is selected from a large number of possible solutions from multiple
random restarts to avoid poor local minima. Linear models are commonly degenerate with
multiple models capable of describing the same data. We seek those solutions that are
the most generalisable to LOO examples. A model is deemed sufficient if it: has a low fit
value; does not produce LOO outliers; and has a Poisson residual distribution (checked via
Bland-Altman analysis). If quality control measures are satisfied, the uncertainty, QT ± σ,
is computed using error propagation.

Figure 2. Control histograms are deconstructed giving components describing untreated behaviour.
Histograms are added to create additional components to describe treated behaviour. All components
are combined with Bayes Theorem to give per bin, per time point (A, T) probabilities of classification
(C = c control or C = t treatment). The error theory is used to produce hypothesis tests for the
significance of treatment effects.

ADC changes due to treatment are assessed in three ways: (1) LPM estimates of QT
provide a lower-bound on change on a per-tumor basis. These can be divided by the
error to give a Z score (standard deviations of change away from zero); (2) means, 95th
percentiles and volumes are computed from whole tumor ADC distributions, H(A, V);
(3) means, 95th percentiles and volumes are computed using the LPM decomposed sub-
distributions, M(A, V|C = c) and M(A, V|C = t). Differences between treatments and
control parameters are then assessed via t-tests.

2.4. Monte Carlo Simulation

Any comprehensive testing of the algorithm’s performance is limited by the finite
quantity of available data and the quality of ground truth. To test more thoroughly, we
simulate further data with known ground truth using Monte Carlo methods. LPM models
can be used to simulate further histograms. Real control tumors and strongly responding
RT treated tumors (Z > 3) from the V1–V3 model are used as a basis. To create a simulated
distribution, pairs of tumors are randomly selected. Their LPM mixing weights (Q) are
interpolated or extrapolated randomly so that they deviate by no more than half of their
original value. These coefficients mix corresponding PMFs, with individual histogram
bins then synthesised using a Poisson random number generator. Control cohorts are
made using only control tumors. Treatment cohorts are made using n RT pairs and N − n



Cancers 2022, 14, 2159 6 of 22

control pairs, simulating responders and non-responders. 10 cohorts are generated per set
of test parameters.

ADC distributions for cohorts of different sizes, N, and number of responding tumors,
n ∈ N, were created. Investigation of responding subsets, n ∈ N, covered a range of 5 in 12,
up to 12 in 12. Cohort size tests covered the range N = 2 to N = 12. We were free to
select multiple p-value thresholds, with lower thresholds corresponding to more stringent
evidence with lower false positive rates (FPR). We apply thresholds of 0.05, 0.01 and 0.001
giving FPR 1 in 20, 1 in 100 and 1 in 1000.

2.5. Power Calculations

We can determine the minimum data required to reach desired levels of statistical
significance with two power calculations. Firstly, via the LPM error theory described
in [11], the power (in terms of Z score) as a function of independent voxels present, Qtotal ,
is approximately

Z =

√
Qtotal

(
T∗ −

(1− T∗ − C∗)2

4C∗

)
(1)

Qtotal = QT + QC

T∗ =< P(C = t|A, V)P(C = t|A, V) >

C∗ =< P(C = c|A, V)P(C = c|A, V) >

The dominant variable that predicts the power of a t-test is the sample size (number
of tumors). LPM, however, operates on a per-tumor basis and its power is independent
of the size of cohorts. The dominant LPM variable determining the power to quantify
tumor change is the number of independently sampled voxels in a tumor. Here, as the
total quantity of voxels goes up, the attainable Z-scores also rise with the square-root
of the quantity. The T∗ and C∗ are linked to the ambiguity between control and treated
distributions. If control distributions look very similar to treated distributions then the
Z-scores are penalised. However, in the case of completely unambiguous data, where
the distributions have no overlap, the Z-scores grow perfectly as the square of the voxel
count, following from Poisson behaviour. In order to use this calculation, an estimate of the
ambiguity terms can be taken from similar past experiments.

Secondly, if only a subset of tumors respond, how large a cohort is required for at least
one detection is given by Binomial theory. The probability of observing at least 1 response
in a cohort of N is

Pdetection =
N

∑
r=1

Fr(1− F)N−r N!
(N − r)!

(2)

where Pdetection is the probability that at least 1 response will be measured and F is the
fraction of the cohort expected to respond.

3. Results
3.1. LPM Determines Multi-Time Point Model Complexity

Model selection curves can be seen in Figure 3. For V1–V2 and V1–V3 models, the con-
trol parts have the same level of complexity and required 6 components to create a sufficient
description of the data. Regarding the treatment part, the use of Visit 3 data in both V1–V3
and V1–V2–V3 models increases the required model order, suggesting that there is more
information (variability) within the third scan than there is in the second. The most complex
model was the V1–V2–V3 version, requiring 9 components for the control part and 13 for
the complete model.
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Figure 3. Leave-One-Out model selection summary showing goodness-of-fit (square-root of χ2 per
degree of freedom) as a function of number of model components. Solid lines show model fits for
control data only. Dotted lines show fits as treatment data is introduced to the model. Grey dots show
individual fits for control LOO samples. ‘v’s indicate time points included in the model.

Figure 3. Leave-One-Out model selection summary showing goodness-of-fit (square-root of χ2 per
degree of freedom) as a function of number of model components. Solid lines show model fits for
control data only. Dotted lines show fits as treatment data is introduced to the model. Grey dots show
individual fits for control LOO samples. ‘v’s indicate time points included in the model.

3.2. Confining Parameter Analysis to Treated Tissue Improves t-Tests

We assessed if LPM could improve estimation of response to therapy using the sum-
mary parameters typically used in conventional analysis of ADC images. LPM decomposed
Calu6 distributions into parts indistinguishable from controls (considered ‘unaffected’) and
parts different from controls (considered ‘affected’), as seen in Figure 4. Mean ADC, 95th
percentile and tumor volume was computed for whole tumors, and for unaffected and
affected parts separately (Figure 5). A conventional analysis was then performed on these
extracted parameters.

For volume, full distributions showed that ATV treated tumors had growth rates in-
distinguishable from controls, RT had some growth inhibition and FCRT growth inhibition
was modest. Growth was observed in all cohorts of treated tumors in their unaffected com-
ponents. Considering affected tissue, RT tumors showed greatest size reduction. The main
benefit of separating into habitats was seen when comparing ADC data. Modest increases
in mean ADC were observed with RT and FCRT but not ATV versus control in full distribu-
tion data. However, when affected data only were compared the increase was greater in
RT and FCRT and in addition was observed in ATV treated tumors as well. Furthermore,
the habitats affected in ATV treated tumors were significantly higher on average than those
affected in RT and FCRT. ADC values in unaffected habitats were indistinguishable from
control behaviour.
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Figure 4. LPM decomposes ADC distributions into treatment-affected parts and parts that have no
measurable differences from control distributions (unaffected). Rows from top to bottom show the
full ADC distributions before decomposition, followed by alternative decomposition models for scan
combinations V1–V2, V1–V3, and V1–V2–V3.

Figure 5B shows that p values achieved via t-tests, comparing control and treated
tumors, are more significant when parameters are confined to treated habitats, rather than
the whole tumor. This effect is more marked when comparing V1–V3 compared to V1–V2.
No substantial difference was noted for tumor volumes. These data demonstrate that
parameters used in conventional testing have increased statistical power when analysis is
confined to treated habitats, as defined by LPM.



Cancers 2022, 14, 2159 9 of 22

Figure 5. (A) Parameters computed using full ADC distributions or sub-distributions as decomposed
via LPM. Each curve shows the average behaviour of a different parameter (volume, mean and
95th percentile), as computed from each respective cohort: control, RT, FCRT and ATV. (B) p-values
achieved via t-tests comparing control to treatments using basic parameters between different time
points. From left to right, the columns show parameters for the full distribution (a standard analysis
of ADC), from affected regions, and for unaffected regions.

3.3. LPM Detects Biological Response Rates across a Range of Therapies

We evaluated if LPM could distinguish biological response rates across different
therapies all examined in the Calu6 model. Figure 6 shows ‘affected’ volumes consistent
with biological response for control tumors and those receiving RT, FCRT and ATV. Data
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are presented for V1–V2, V1–V3 and V1–V2–V3 scan combinations. All control data had
‘treated’ volumes consistent with noise limits.

Figure 6. Per-tumor LPM assessment of treatment effects showing lower bound on affected tissue
(QT ± σ) in white and unaffected (QC ± σ) in grey. Each bar represents a different tumor. The top plot
confirms the null hypothesis of no treatment effects within the control cohort, followed by treatment
cohorts showing responses. From left to right, cohorts are assessed using different pairs and triplet of
visits corresponding to the V1–V2, V1–V3 and V1–V2–V3 models.

Biological responses were observed in all therapeutic groups and LPM revealed differ-
ences between them in a way not possible to detect with conventional cohort-based analysis.
Response differed by volumetric extent, temporal onset/duration and by overall response
rate. RT and FCRT cohorts behaved in similar ways by day 7 (V3) with 100% of tumors
showing some effect. However, only 3 in 9 RT tumors showed effects at day 3 (V2) com-
pared to 5 in 6 FCRT tumors. FRCT had earlier effects than RT, with corresponding increases
in Z scores, often above 10. Most tumors had between 30–80% of tumor tissue affected,
an observation that cannot be demonstrated using conventional summary parameters.

The V1–V3 and V1–V2–V3 models for RT and FCRT had similar responses, with one
RT tumor changing from a non-responder to a responder. The addition of three time points
(additional data) thus slightly increased the power to discriminate affected from unaffected
tumors. The ability to incorporate additional time points in this way is a strength of the
LPM approach that can not easily be achieved using the inherently pair-wise t-test.

For ATV, significant effects were seen in around 70% of tumors but the majority had
treatment effects in 20% of the tissue or less. Only two tumors reached high significance,
exceeding Z scores of 10. The inclusion of V3 data appears to have negligible affect on
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response detection, suggesting that ATV acts quickly (when it does act) and most of the
information regarding change is already present by V2. For comparison, p values are listed
alongside effect size and Z scores in Supplementary Tables S1–S4.

3.4. LPM Detects Biological Response Rates across a Range of Tumor Models

We evaluated if LPM could distinguish biological response rates across a single therapy
in five different xenograft tumor models. We chose a single fraction (10 Gy) of RT because
this is a well-understood treatment that is known to consistently induce a rapid treatment
effect in many preclinical models [17]. We examined two syngenic tumor models (CT26 and
4T1) and two further ATCC human cell xenograft models (U87 and HCT116) in addition to
the Calu6 cohorts, to span 5 varied tumor models.

Figure 7 shows ‘affected’ volumes consistent with biological response for control
tumors and those receiving RT for V1–V2 only. Z scores and p-values for each tumor are
listed in the suplimentary material. Control data had ‘treated’ volumes consistent with
noise limits for 71/72 tumors across the five cohorts of control tumors. Just 1/72 individual
tumor had Z score >3.0 which was CT26 with Z score of 4.34.

Figure 7. Per-tumor LPM assessment of treatment effects showing lower bound on affected tissue
(QT ± σ) in white and unaffected (QC ± σ) in grey. Each bar represents a different tumor. The top plot
confirms the null hypothesis of no treatment effects within the control cohort, followed by treatment
cohorts showing responses. From left to right, control tumors and RT treated tumors. From top to
bottom there are different tumor models.
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Cohort t-test evaluation showed that RT increased mean ADC significantly in three
models (U87 p = 0.0121; HCT116 p = 0.0002; CT26 p = 0.0006) but only showed a trend with
Calu6 (p = 0.0545) and 4T1 (p = 0.1003). LPM showed evidence in response and the per
tumor level that was not detected by cohort-based analysis in the Calu6 and 4T1 models,
as well as in the other 3 models. LPM revealed gradation of biological responses with
Z scores >3.0 seen at day 3 in 50% (11/22) of CT26 tumors, 30% (3/10) of 4T1 tumors,
75% (9/12) of U87 tumors and 93% (14/15) of HCT116 tumors, compared with the
33% (3/9) of Z scores >3.0 in Calu6 tumors. Overall, typically 20–80% of the tumor
tissue was affected when Z scores of 3.0 were recorded. This is information that has
previously not been possible to derive from conventional MRI methods such as diffusion
weighted imaging. For comparison, p values are listed alongside effect size and Z scores
in Supplementary Tables S5–S8.

3.5. LPM Achieves Consistently High True Positive Rates

Monte Carlo data reveal true-positive rates (TPR) of change detection. Two factors
were investigated that may impact the ability to detect biological response: heterogeneity in
treatment response, where only a subset (n ∈ N) of a cohort show signs of therapy-induced
change; and the effects of changing the total cohort size (N).

Figure 8A shows TPR as a function of n for common significance levels. We con-
sidered scenarios with cohort sizes N = 12 and varied the subset of tumors that had
biological response, n, starting with less than half responding. We calculated TPR for
t-test changes in volume, mean, 95th percentile and LPM responding volumes on tumor
and cohort level. At the 0.05 level, change in volume showed the worst TPR, with up to
20% detection when n/N was 9/12 or less. LPM on individual tumors outperformed
change in 95th percentile and was comparable to mean changes across the entire cohort.
LPM across cohort acheived very high TPR, detecting 10 out of 10 simulated cohorts.
As the threshold increased TPR declined substantially for t-tests, whereas the LPM for
individual tumors had minimal reduction in TPR and across cohort retained a very high
TPR. Figure 8B shows the area under the TPR curve (AUC) as a function of p value thresh-
olds. LPM TPRs were relatively independent of the proportion of biological responders
in a cohort.

Figure 8C show TPR as a function of N, with all tumors being biological responders.
At the 0.05 level, change in volume showed the worst TPR again, but with little to
distinguish cohort level t-tests from LPM until the cohort size was N = 4. Figure 8D
shows the AUC as a function of p value thresholds. TPR declined substantially for
t-tests for stricter thresholds, whereas the LPM did not. LPM results were relatively
independent of cohort size.

LPM detection of change based on individual tumors consistently and significantly
outperforms cohort level t-test changes in volume, mean and 95th percentile across a range
of statistical thresholds. In particular the differences at 0.01 and 0.001 are important as these
levels of significance substantially reduce the risk of false positive responders. The per-
tumor approach gives LPM the ability to detect tumor change independently of treatment
cohort size and biological response rate, in contrast to t-tests using simple distribution
parameters on cohorts.

3.6. Validation of Power Calculations

The power calculation of Equation (1) was applied to a range of tumor sizes (Figure 9A)
by estimating C∗ and T∗ from the cohorts used in this study.



Cancers 2022, 14, 2159 13 of 22

Figure 8. Simple parameter t-tests and LPM detections compared on simulated data as a function
of responding subset size (n ∈ N), total cohort size (N) and statistical significance threshold for
detection. Plots show true positive detection rates for null-hypothesis rejection. (A) TPR as function
of responding subset size, n, down to less than half responding from a total of N = 12. (B) Area
under curve summary of TPRs as function of significance threshold found in (A). (C) TPR as function
of total cohort size N. (D) Area under curve summary for (C).

The statistical power attainable for different voxel counts using LPM on individual
tumors is shown in Figure 9A. The curves show the Z-score predictions as a function of
total voxel count. The points plotted on the curves show the location of the real study data,
confirming that the predictions are consistent with the power achieved in practice. Some
treatments generate large biological response effects and accompanying large Z scores,
requiring as few as 500 voxels (assuming voxel each is independent) to reach Z scores
above 6. This is less than half the data used in previous studies [13]. As a consequence,
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it may be possible to reduce the time between scans and the size of tumors at the initial
scan or increase voxel size, which may enable LPM to be applied to data with larger voxels
such as seen in positron emission tomograpy. This possible reduction in study length
does, however, assume that the ambiguity terms, T∗ and C∗, remain approximately the
same for smaller tumors. Figure 8 part A shows that higher ambiguity (lower values of
T∗ and C∗) associated with the different tumor models significantly reduces the power of
LPM analysis. Reducing ambiguity may be achieved by selecting visits which emphasise
differences between control and treatment distributions.

Figure 9. (A) The x-axis is the number of independently measured voxels within a tumor. The y-axis
is the statistical power that is predicted to be achieved in standard deviations away from the null-
hypothesis of there being no treatment effects. Each curve makes use of ambiguity terms computed
from the three different treatment groups. The black points show where the real data lies, with error
bars based upon the spread of Z scores seen within the respective cohorts. (B) The probability of
observing at least one positive detection within a cohort when only a subset of tumors respond.
The x-axis is the number of tumors within a cohort. The y-axis is the probability of at least one
detection. Each curve represents a different level of fractional response at a cohort-level, i.e., the
fraction of tumors that are likely to give a true response.

The individual tumor power predictions cannot alone specify the power of an ex-
periment. If only a subset of tumors exhibit a biological response then we still require a
cohort large enough to ensure that some responses will be seen. The cohort sizes needed
to identify at least one responder based upon power calculation Equation (2) is shown
in Figure 9B. From this we see that conventional cohort sizes (n = 10) are still required to
detect at least 1 responding tumor with 90% confidence if only 20% of tumors are likely
to show biological response. However, such responses would be highly diluted by non-
responders in a conventional t-test, so the LPM analysis would still be beneficial. If more
than half of tumors are expected to respond then treatment cohorts as small as five may
be used with over 95% confidence that at least one tumor will show significant signs of
biological response.

3.7. LPM Makes Small N Co-Clinical Trials Feasible

LPM has sufficient power to detect effects in samples of less than four tumors, as seen
in simulated data and predicted by power calculations. Current deployment of preclinical
imaging tends to require groups of 8–12 per cohort, making evaluation of multiple treatment
arms time consuming, expensive and require substantial numbers of mice. We therefore
investigated the utility of LPM as an analysis technique in co-clinical trials.
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Prospective data was acquired in further cohorts of Calu6 tumors for control mice
(N = 7) and three treatment groups, to form a mock co-clinical trial. We evaluated the
prospective control data and compared it to the original control cohort (N = 15). The fit
of three prospective control tumors was comparable to the original cohort controls; these
were considered ‘strongly representative’ of the original control cohort data. A further
four control tumors had fits of 1.9 to 2.4 that were outside the original cohort; these were
considered ‘less representative’ (Figure 10A). Responding volumes were computed for all
7 prospective controls and were shown to be compatible with original controls (Figure 10B).

Figure 10. Validation and conformity checking of additional control tumors. (A) LPM goodness-of-
fit (χ2 per d.f.) of additional control distributions compared against original controls (grey discs).
The ‘strongly representative’ controls are the triangular points and the ‘less representative’ controls are
the crosses. (B) Validation that when re-trained using additional controls, the LPM models show that
both groups are consistent with there being no treatment effects. LPM analysis of additional treatment
cohorts. (C) Volumetric assessment of tumor changes in response to the additional treatments with
different control models (ATV with RT, AQ4N(a) with single dose of 60 mg/kg, AQ4N(b) 3 doses
of 20 mg/kg daily). (D) Statistical significance, in terms of Z-scores, of treatment effects compared
across both control groups models.

We evaluated cohorts of three new therapeutic groups with three tumors per cohort,
guided by the above experiments of TPR and power calculations. LPM detected 3/3 biolog-
ical responders in the atovaquone and radiotherapy treated group (ATV-RT), 2/3 biological
responders in the AQ4N 60 mg/kg single dose group and 3/3 biological responders in
the banoxantrone 20 mg/kg daily group, when the strongly representative controls were
used (Figure 10C). We then ran an equivalent experiment using the less representative
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controls. The biological response rates were unchanged for the ATV-RT group and the
banaoxantrone group treated with 60 mg/kg. However the biological response rate for
the banoxantrone group was 1/3 rather than 3/3 (also Figure 10C). This shows that LPM
could detect biological response in cohorts of N = 3, for new therapies (AQ4N), different
dosing regimens (single dose of 60 mg/kg vs. 3 doses of 20 mg/kg daily) and a new
combination of therapeis (ATV with concurrent RT). Furthermore, equivalent data were
possible with sub-optimal controls (poor matches) but that LPM was liable to misclassifying
when the overlap between control and treated tumor distributions was greater. Z scores
were computed (Figure 10D) and comparison of these scores between strongly and less
representative controls showed that the representative control group consistently detected
greater responding volumes than the less representative group.

4. Discussion

Preclinical imaging is a powerful tool for investigating changes in tumor biology
induced by RT and drugs [18]. Ethical and practical constraints limit the numbers of
animals available in research so experiments typically are limited to cohorts of 8–12 per
group [19,20]. Tumor heterogeneity and rapid physiological changes can limit the ability of
cohort t-tests to detect effects using such limited data.

4.1. LPM Is an Alternative Paradigm for Pre-Clinical Cancer Research

Medical research has a long history of applied statistical methods and relies upon
a well-established base of techniques. Many of these techniques were devised in an age
of ‘small data’ and before modern computing. Amongst these is the t-test, which allows
cohorts of simple Gaussian distributed values to be compared to one another. Importantly,
a t-test facilitates the estimation of the statistical significance of any differences between
cohorts. The ability to produce p-values is an essential property of traditional methods
and one reason why they are widely accepted as valid scientific tools. In contrast, modern
machine learning and AI has been developed in an age of ‘big data’ and has been applied
to problems that are far more complex than simple value comparisons. These modern
methods can adapt and learn to describe non-Gaussian behaviour. However, less attention
has been paid to the estimation of uncertainty and therefore it is difficult to compute
p-values from current machine learning systems. This is a significant disadvantage in
a quantitative scientific setting, especially if limited by ‘small data’, as is often found in
medical research.

Linear Poisson Modelling is based upon traditional statistical theories: regression,
error propagation and hypothesis testing [11]. As such, it provides essential outputs for
science, including p-values. But it is also a learning system that can adapt to non-Gaussian
behaviour. In contrast to Deep Learning, LPM also works with very small datasets. These
properties make LPM an ideal tool for the type of pre-clinical research presented here.
LPM is an adaptive learning system and also an efficient alternative to t-testing. Simple
parameters, such as means and percentiles, are readily computable and have intuitive
meanings. However, t-test results using them are orders of magnitude less significant than
LPM results for the same images. LPM’s scientific credentials and learning capabilities
provide a new paradigm for pre-clinical imaging research. At the time of writing, we are
unaware of any other machine learning or AI system capable of achieving the results we
have presented here.

4.2. Origins of Additional Power of LPM

A t-test result may be significant for two reasons: (1) there is a consistent change in
most or all tumors away from control behaviour; or (2) there are very large changes in a few
tumors, large enough to compensate for a lack of change in others. The summary outputs
of a t-test do not allow a researcher to tell the difference between these two scenarios.
In contrast, an LPM analysis does enable this distinction, as non-responding tumors do not
affect the power to identify individuals that are responding.
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Statistical significance is a function of signal-to-noise. Given that we are using the
same source data in both t-test and LPM analyses, the large increases in statistical power
when using LPM may invite scepticism. The signal t-tests measure is the mean difference
between two populations with respect to the variance within those populations under a
strong Gaussian assumption. LPM models non-Gaussian behaviour allowing it to utilise
greater amounts of information. The modelling of ‘affected’ and ‘unaffected’ behaviours
attributes signal variation more effectively. This effectively increases the signal-to-noise
when using LPM, as variations that LPM models as being valid signal is confused with
noise when using a t-test.

Gaussian data are fully described using simple parameters: mean, measure of spread
and normalisation. However, histograms from ADC maps are not Gaussians. Condensing
such data into means and spreads necessarily discards useful information. LPM retains
information by creating bin-by-bin generative histogram models. Non-Gaussian variations
that increase spread are interpreted by t-tests as noise and reduce statistical power. This is
true even when variations are allowable parts of signal behaviour, such as biological differ-
ences in natural history growth of tumors. LPM learns non-Gaussian variations in control
behaviour and can subsequently remove them from treatment cohorts. The remaining
Poisson perturbations around LPM fits are also predictable. As allowable signal variations
have already been modelled, these Poisson sources of noise are far less than the spread
estimated when using a t-test.

4.3. New Experimental Designs

A number of factors can have an impact on future experimental designs: the ability
to separate affected and unaffected parts of distributions; the ability to combine and fit
different numbers of time points; and the cohort size independence of the power when
using LPM. In this new regime, even subtle therapeutic effects are likely to be detected
so long as at least some affected tumors are present. We may therefore speculate on
possible uses.

Building multi-time point models of data that show very small effects may provide
methods to investigate new behaviours previously masked by ambiguity. Parameters such
as means may show clearer trends, or even trends running counter to conventional analyses
due to the removal of unaffected tissue. Studies may be designed to apply a range of
statistical analyses to affected only tissue.

LPM’s additional power and the ability to identify individual biologically responding
tumors provides opportunities for new study designs. Conventional cohort sizes can be
used to create control models, but this data suggests that small treatment groups in the
order of N = 3 can be considered. This may provide the basis for running co-clinical trials.
In cases where only a subset of a cohort show measurable changes, LPM can still be used
in larger cohorts to place tumors in order of response rate.

4.4. 3Rs and Cost Benefits

A key benefit of LPM is the potential to reduce and refine the use of animals (‘3Rs’ [14]).
Since parameters such as ADC, Ktrans and T1 show considerable overlap between control
and treated tumors, cohort sizes tend to be around one order of magnitude or above [17].
LPM provides a solution for sensitive tests with small N and enables calculation of parame-
ters such as biological response rate, hitherto not possible with many functional imaging
biomarkers that exist on a continuous scale. This facilitates reduction and refinement in
multiple ways. The option to simply use fewer animals is clear. There is also the option
of using the same number of animals as in conventional trials, but testing a wider range
of treatments using them. For example a traditional study might use 36 animals in three
groups of control (N = 12), treatment 1 (N = 12) and treatment 2 (N = 12), whereas LPM
would enable a control model group (N = 12) to then be compared with approximately
6–8 different treatment groups (each N = 3–4) and provide evidence of significant treatment
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efficacy in many more therapies despite still using the same overall number of animals
(here, N = 36).

5. Conclusions

We have applied LPM analysis of volumetric and ADC MRI data of Calu6 tumors to
evaluate multiple therapeutics, and have compared the effects of RT in multiple tumor
models. We have shown that LPM: (1) can differentiate between control growth and the
effects of treatment, adjusting model complexity to best describe training data; (2) provides
a method to confine estimation of parameters (volume, mean, 95th percentile) only to
tumor habitats that exhibit treatment effects; (3) can increase the amount of information
extracted from images (in comparison to t-tests) to increase statistical power; (4) can use
concatenations of multiple time points, rather than being limited to the 2 time point used
by t-tests, with resultant improvement in the sensitivity to detect change; and (5) facilitates
small N experiments, where treatment cohorts as small as N = 3 can be analyzed with high
confidence. Limitations of this technique are that at present the technique does not label
individual voxels with high enough levels of confidence to assign treatment effect or no
treatment effect to an individual voxel and thus produce a spatial map of change following
treatment. If further refinement of the technique does enable spatial mapping then valida-
tion with histopathology will be required. Finally, as with all biomarkers, assessment of
measurement repeatability will need to be performed as part of the translation process.

The net effect of these benefits is that LPM provides a platform to enable prospective co-
clinical trials [15] that evaluate response to a range of investigative therapies. To be effective,
larger ‘master’ control cohorts (using current typical mouse numbers) are examined along
with multiple small treatment groups. This approach not only makes such studies practical
and efficient but also has clear implications for the well-being and ethical treatment of
animals by implementing two of the ‘3Rs’ principles of reduction and refinement.
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ADC Apparent Diffusion Co-efficient
AI Artificial intellegence
ATV Atovaquone
ANOVA Analysis of variance
AQ4N Banoxantrone
CT computed tomography
FCRT Fractionate Chemo-radiotherapy
FPR False Positive Rate
FNR False Negative Rate
LPM Linear Poisson Model
LOO Leave one out
MRI Magnetic resonance imaging
PET Positron emission tomography
RT Radiotherapy
SD Standard deviation

Appendix A

Appendix A.1. Tumor Propagation for Each Cell Line

All cell lines were obtained from ATCC. Prior to implantation all cell lines were
screened regularly for mycoplasma infection and cell line authenticity was assessed by PCR.
While host mouse varied (since Calu6, U87 and HCT116 require an immunocompromised
host whereas CT26 and 4T1 are grown typically in an immunocompetent host), all were
approximately 10 weeks old and female. All tumors were implanted in the midline supra-
spinal position. All tumors were treated when they measured 200–300 mm3 by callipers.

The majority of experiments were performed using Calu6 cells from the American
Type Culture Collection. These were cultured in RPMI 1640 medium supplemented with
10% heat inactivated fetal calf serum at 37C in a humidified 5% CO2 incubator and were
passaged every 2–3 days using TEG solution (0.25% trypsin, 0.1% EDTA and 0.05% Hanks’
balanced salt solution in PBS). All Calu6 xenografts were initiated by injecting 0.1 mL of
cells (2 × 107 cells/mL) intra-dermally on the lower back of female nu/nu CBA mice aged
10 weeks old. U87 high grade glioma cells, and HCT116 colorectal cells were all prepared
and cultured using the same protocol as the Calu6 cells. For each of these three xenograft
models, immunosuppressed nu/nu CBA mice were inoculated with 5 × 106 cells/mL in
100 µL of phosphate-buffered saline.

CT26 murine colon carcinoma cells and 4T1 triple-negative breast cancer cells were
maintained in Dulbecco’s modified eagle medium (DMEM), supplemented with 10% foetal
calf serum (FCS) and 1% L-glutamine (Invitrogen), and cultured to limited passage for
1–2 weeks prior to implantation. Immunocompetent BALB/c mice (Harlan, Bicester, UK),
were inoculated subcutaneously in the supra-spinal position with either 1 × 106 cells/mL
of CT26 or 5 × 105 cells/mL of 4T1 cells in 100 µL of phosphate-buffered saline.

Appendix A.2. Expectation Maximisation Algorithm

The statistical modelling of Poisson samples in this type of scenario is usually at-
tributed to Fermi in the form of the extended maximum likelihood approach, which in
terms of PMFs and histogram weighting quantities is given by,

lnL = ∑
x

ln

[
∑
k

P(X = x|K = k)Qk

]
Hξ−1(x) −∑

k
Qk (A1)

where ξ−1(x) maps a feature vector (e.g., ADC range) x to the corresponding index of the
histogram vector. To simplify the notation, P(X = x|K = k) will henceforth be abbreviated
to P(x|k). Also, the function x = ξ(i) and its inverse i = ξ−1(x) shall be dropped, allowing
the vector x to be used directly as an index, and vice-versa, with the understanding that
any binary vector can be interpreted directly as a natural number.
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Given a set of trained component PMFs the E-step of the EM algorithm can be used to
optimise (A1) with respect to free parameters, Q. This is achieved by iteratively updating
the elements of Q by weighting them with the current estimate of the posteriori probability
Pt(k|x), (i.e., from P̃), starting from some initial estimate at iteration t = 0,

Q(t) = P̃(t−1)H (A2)

where Q(t) is the weighting quantity vector estimate at time t; and P̃(t−1) is the last estimate
of the posterior probabilities. For a single weight, Qk, this update is implemented using
Bayes Theorem,

Qk(t) = ∑
x

Pt(k|x)Hx = ∑
x

P(x|k)Qk(t−1)

∑l P(x|l)Ql(t−1)
Hx (A3)

where Qk(t−1) is used as the Bayesian ‘prior’, as under a Frequentist interpretation the prob-
ability P(k) is proportional to the frequency of occurence of k, i.e., the quantity. Upon con-
vergence, the quantities Q̂ = Q(t=∞) provide the maximum likelihood solutions to the
model weights, assuming the PMFs of the model components were correct for the incoming
histogram data.

Histogram data sampled from a dataset r can be viewed as being generated by,

Hx(r) =
n

∑
k=1

Rr(x|k) (A4)

where Hx(r) is the x bin of the rth independent training example; and Rr(x|k) is the data
generator contributing to the frequency of x bin in example r from texture k. The EM-based
ICA method presented here is designed to estimate approximations to the set of functions
Rr(x|k) using a common set of PMFs and data specific weights such that,

Rr(x|k) ≈ P(x|k)Qk(r) (A5)

Initial estimates of PMFs are generated at iteration 0 giving P(t=0). These initial
estimates can be based upon any random values, as the iterative algorithm will refine them
over time. Weighting quantities are then estimated for each of the N examples giving
modelled approximations,

H(r) ≈ M(r)(t) = P(t)Q(r)(t) (A6)

where all histogram models share a common definition of P; and each histogram has its
own estimate of weighting quantities, Q(r). Consistent with the EM algorithm, the es-
timated posteriori probabilities P̃, are used to provide a new estimate of the contribu-
tion to each histogram, r, from each component, k, i.e., an estimate of the underlying
sub-texture generators,

R̂r(t)(x|k) = Pr(t−1)(k|x)Hx(r) (A7)

These independent estimates are combined and normalised to create a new common
estimate of P(t), implementing the ‘M’ step,

Pxk(t) = Pt(x|k) =
∑r R̂r(t)(x|k)

∑r Qk(r)(t)
(A8)

This new common estimate of P is used to reestimate quantities and posteriori proba-
bilities for exemplar histograms. The process continues until convergence giving P̂ = Pt=∞,
maximising (A1), consistent with the convergence theorem of EM. To avoid the risk of con-
verging into a local minimum the algorithm can be restarted multiple times from different
random PMF initialisations.

If the number of required components, n, is unknown the ICA can be repeated un-
til a goodness-of-fit criterion is met. Assuming normally-distributed residuals, the fit
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between a model with the correct number of components and observed data will have
a chi-squared per degree of freedom of 1. However, the models sought have Poisson
residuals, with discrepancies between Poisson and Gaussian distributions being especially
evident at low sample statistics. A square-root (Anscombe’s) transform can be performed
to both model and data to transform the residuals into something better approximating
a Gaussian with uniform width of σ2 = 1

4 , thereby widening the scope of the test to such
cases. A chi-squared per degrees of freedom function, χ2

D, can then be defined as,

χ2
D =

1
N ∑

r

4
m− n ∑

x

(√
Mx(r) −

√
Hx(r)

)2
(A9)

where m is the number of bins in the examplar histograms; n is the number of components
in the model; and Mx(r) is the modelled frequency in the rth example histogram’s bin
accounted for by the selected components.
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