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Simple Summary: The metabolic alterations characteristic of cancer cells play a significant role
in tumors’ natural history and response to therapy. Recent technological advances have allowed
the production of unprecedented amounts of data on many types of cancers. We exploited the
most comprehensive collection of such data, The Cancer Genome Atlas (TCGA), to systematically
investigate the associations between metabolic alterations and other tumor features. We used sets of
genes known to be associated with specific metabolic pathways to classify patients into “metabolic
subtypes”. Then, we systematically looked for associations between the metabolic subtypes and other
tumor features, including histological classification, patient survival, and genome alterations. Our
results, while correlative in nature, can provide a guide to the formulation of specific mechanistic
hypotheses to be tested experimentally so as to improve our understanding of the biology of cancer
and our ability to tailor therapeutic interventions to the specific features of each patient.

Abstract: The alterations of metabolic pathways in cancer have been investigated for many years,
beginning long before the discovery of the role of oncogenes and tumor suppressors, and the last few
years have witnessed renewed interest in this topic. Large-scale molecular and clinical data on tens
of thousands of samples allow us to tackle the problem from a general point of view. Here, we show
that transcriptomic profiles of tumors can be exploited to define metabolic cancer subtypes, which
can be systematically investigated for associations with other molecular and clinical data. We find
thousands of significant associations between metabolic subtypes and molecular features such as
somatic mutations, structural variants, epigenetic modifications, protein abundance and activation,
and with clinical/phenotypic data, including survival probability, tumor grade, and histological
types, which we make available to the community in a dedicated web resource. Our work provides a
methodological framework and a rich database of statistical associations, which will contribute to
the understanding of the role of metabolic alterations in cancer and to the development of precision
therapeutic strategies.

Keywords: cancer metabolism; genomics; computational biology

1. Introduction

The last few years have witnessed a renewed interest in the metabolism of cancer,
with the reprogramming of energy metabolism by cancer cells having been recently added,
together with immune evasion, to the fundamental oncogenic processes collected under
the heading of “Hallmarks of Cancer” [1].

Today, next-generation sequencing and other high-throughput techniques provide us
with the unprecedented opportunity to take the study of the role of metabolic alterations in
cancer progression to a new level, complementing the in-depth study of specific instances
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of metabolic changes with unbiased assessments of cancer metabolism and its relationship
with the other hallmarks. In particular The Cancer Genome Atlas (TCGA) provides us
with a systematic repository of genomic, epigenomic, transcriptomic, and clinical data
on tens of thousands of samples of many tumor types. For example, a recent study [2]
demonstrated the close relationship between patterns of copy-number alterations and
metabolic phenotypes. Another study [3] showed the clinical relevance of metabolic
pathways, as reflected by gene expression profiles of metabolic genes, to patient survival.

In this work, we undertake a systematic analysis of the associations between metabolic
profiles of human tumors and their molecular and clinical features. Our aim is to underline
the role of metabolism in precision cancer medicine by showing that metabolic profiling
can classify tumors into classes that are significantly different in both their molecular-level
features (somatic mutations, structural genomic variants, epigenetic modifications) and in
their clinical aspects (survival probability, tumor grade, histological type). While intrinsi-
cally correlative in nature, this analysis can serve as a guide to mechanistic studies, linking
metabolism to other molecular features, and to the exploration of precision therapeutic
approaches informed by tumor metabolism.

While, ideally, such a study should be based on direct assays of metabolite abun-
dance in primary tumors, these are not yet available on a large scale. Therefore, we use
transcriptomic profiles of tens of thousands of samples of many tumor types, as a proxy
for metabolomic assays, to classify them into metabolic subtypes. We then systematically
correlate such subtypes with molecular and clinical data using appropriate statistical tests,
thus generating a database of thousands of associations.

2. Results
2.1. Transcriptome-Based Classification of Tumors into Metabolic Subtypes

For each tumor type with transcriptomic data Available onlie: the TCGA, and for each
metabolic pathway defined as a set of genes by annotation databases such as the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) [4,5], Reactome [6], and the Gene Ontology [7,8],
we divided the patients into metabolic subtypes by clustering the samples using the ex-
pression profiles of the genes belonging to the pathway. Supplementary Figure S1 shows
the KEGG pathways used in the analysis and the genes assigned to each pathway as a
bipartite network.

Compared with differential expression analyses, e.g., [3], clustering by metabolic
pathways takes into account the fact that the genes associated with a pathway are often
involved in either anabolic or catabolic processes. Therefore the activation of the pathway
in a subset of patients is typically reflected by the transcriptional activation of the former
and repression of the latter. For example, in Figure 1, we show the clustering of low-grade
glioma samples based on the “arachidonic acid metabolism” KEGG pathway: each cluster
is characterized by both up- and downregulated genes, a structure that would not be
captured by simple differential expression of the pathway genes as a whole.

To perform the clustering we used partitioning around medoids (PAM) [9], a more
robust method compared to k-means [10] with respect to the presence of outliers, which
has been shown to be among the best-performing methods for the classification of cancer
samples based on bulk RNA-seq data [11]. A total of 345 metabolic gene sets were used,
as described in the Methods, on 38 tumor classes, for a total of 13,110 gene sets/tumor
pairs. We used a Duda–Hart test [12] to select the pairs characterized by cluster separation
(12,074 pairs, 92.1%). For these pairs, cluster silhouette analysis allowed an unsupervised
choice of the number of clusters. In the majority of cases (9,157, 75.8%), the samples were
subdivided into k = 2 clusters, while in other cases we obtained up to 10 clusters. These
clusters will be referred to as “metabolic subtypes”. The tumor types analyzed with the
number of samples for which expression data were available are shown in Supplementary
Table S1.
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Figure 1. Clustering of low-grade glioma patients using the genes involved in arachidonic metabolism
according to KEGG. Only the 20 genes most differentially expressed between the two clusters
are shown.

It is worth asking whether different metabolic gene sets cluster the patients of the
same tumor in significantly different ways. To answer this question, we computed the
normalized mutual information between the cluster assignments obtained in each tumor
with each metabolic gene set. The results, for the KEGG pathways analyzed are shown
in Figure 2, and suggest that, in most cases, different metabolic gene sets cluster tumor
patients in clearly distinct ways.

2.2. Associations between Metabolic Subtypes and Molecular and Clinical Features

We then proceeded to systematically explore the statistical associations between
metabolic subtypes and several molecular and clinical features of the corresponding tumors,
classified into 9 classes of variables (see Supplementary Table S2): 6 classes of molecu-
lar variables (copy number alterations, global DNA methylation, microRNA expression,
specific point mutations, gene-level mutations, and protein expression); and 3 classes of
phenotypic ones (clinical and histological parameters appropriate for each tumor type,
overall survival, and recurrence-free survival). Statistical tests appropriate to the nature of
the variables describing such features were chosen as described in the Methods. Bonferroni
correction was applied separately to each variable class but to all tumor types together.
Thus, for example, the Bonferroni correction for the association with miRNA expression
takes into account all tests of association between all miRNAs and all metabolic gene sets
across all tumor types.

A total of ∼ 4 × 108 statistical tests were performed, resulting in 878,655 signifcant
associations after Bonferroni correction (0.21% of the tests performed). An overall Bonfer-
roni correction (taking into account together all the tests made for all variable types) would
have given 663,100 significant associations. In the rest of this section, to limit redundancy,
we focus on the results obtained with the KEGG annotation database (a total of 99,462 sig-
nificant associations). Figure 3A shows the distribution of these associations among tumor
types. Note that the number of significant associations for a given tumor type depends on
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the number of available samples: indeed, the Spearman correlation coefficient between
number of associations and number of samples is 0.755. In Figure 3B, we show the num-
ber of associations by KEGG metabolic pathway, suggesting a particular relevance of the
metabolism of amino acids and fatty acids in classifying tumors into classes characterized
by different molecular and/or clinical characteristics.
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Figure 3. (A) Number of samples and of significant associations with molecular and clinical features
by tumor type. (B) Number of significant associations by KEGG metabolic pathway.

2.3. Recurrent Associations

Of particular interest are recurrent associations, i.e., those that are statistically sig-
nificant in more than one tumor type (not considering the tumor types built from the
union of smaller types, such as LUNG, KIPAN, etc.). We found a total of 14,899 such
recurrent associations. Supplementary Table S3 shows the most recurrent associations for
each class of clinical and molecular variables. Notably, the only variable classes with no
recurrent associations are point mutations: all 45 associations with specific mutations and
102 associations with gene-level mutations are specific of a single tumor type.

The most recurrent association was found between the expression of microRNA hsa-
miR-222 and the metabolic subtypes based on the “inositol phosphate metabolism” gene
set defined by KEGG, which recurred in 12 tumor types. Figure 4 shows the expression of
this microRNA in the clusters of breast cancer and lung adenocarcinoma patients obtained
with such a gene set.
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Figure 4. (A) Clustering of breast cancer samples using the genes associated to inositol phosphate
metabolism according to KEGG. (B) Expression of miR-222 in the two clusters. (C,D) Same for lung
adenocarcinoma samples.

2.4. Specific Examples

In the following, we show a few examples of associations, some confirming known
results and some suggesting new lines of investigation, especially in less widely studied
tumor types.

2.4.1. TP53 Mutations and Glucose Metabolism

Mutant TP53 has been shown to promote the Warburg effect, possibly the most no-
torious metabolic hallmark of cancer, in breast and lung cancer cell lines [13]. Indeed,
clustering breast and lung tumors using the genes associated with glucose metabolism
according to REACTOME shows, in both cancer types, the appearance of a cluster char-
acterized by overexpression of several Warburg effect signature genes (such as GAPDH,
PGK1, and PKM2) and by an enrichment in TP53 mutations (Figure 5).
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Figure 5. (A) Clustering of breast cancer samples using the genes associated with glucose metabolism
according to REACTOME. Cluster K2 shows upregulation of Warburg effect genes, such as GAPDH,
PGK1, and PKM2. (B) The prevalence of TP53-mutated samples is significantly higher in cluster K2.
(C,D) Same for lung cancer samples.

2.4.2. Pyruvate Metabolism in Thyroid Cancer

The clustering of thyroid cancer samples according to the genes associated with
KEGG to pyruvate metabolism is shown in Figure 6A. These two clusters show many
significant differences in both clinical and molecular parameters. In particular (Figure 6B,C),
the prevalence of BRAF and NRAS-mutated samples was strikingly different in the two
clusters, with all NRAS-mutated samples found in Cluster 2, and the large majority of
BRAF-mutated samples found in Cluster 1. The two clusters also strongly differed in the
respective prevalence of histological types.
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Figure 6. (A) Clustering of thyroid cancer samples using the genes associated with KEGG to pyruvate
metabolism. (B) Most BRAF-mutated samples fell into Cluster 1. (C) All NRAS-mutated samples
fell into Cluster 2. (D) The two clusters significantly differed in the prevalence of histological types;
(a): other type; (b): thyroid papillary carcinoma - classical/usual; (c): thyroid papillary carcinoma -
follicular (>= 99% follicular patterned); (d): thyroid papillary carcinoma - tall cell (>= 50% tall cell
features)

2.4.3. Fatty Acid Metabolism in Thymoma

Clustering of thymoma samples using the genes associated with fatty acid metabolism
divides the samples into two clusters (Figure 7A) largely overlapping the known histologi-
cal types (Figure 7B) and differing in the prevalence of a recurrent GTF2I mutation [14].
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Figure 7. (A) Clustering of thymoma samples using the genes associated by KEGG to fatty acid
metabolism. (B) The clusters significantly overlap the known histological types; (a): thymoma, type
a; (b): thymoma, type ab; (c): thymoma, type b1; (d): thymoma, type b2; (e): thymoma, type b3;
(f): thymoma, type c. (C) GTF2I mutations significantly segregate between the two clusters.

2.5. Analysis of Cancer Cell Lines

We performed the same analysis on the cancer cell lines included in the cancer cell
line encyclopedia (CCLE) [15]. These cell lines are classified in terms of TCGA tumor types
(22 types are represented by a total of 723 CCLE cell lines). Within each tumor type, cell
lines were clustered based on their transcriptomic data, using the expression of the genes
in the same metabolic gene sets used to cluster TCGA samples. The clusters were then
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correlated with molecular and phenotypic data, including copy number alterations, specific
point mutations, gene-level mutations, protein expression, microRNA expression, and drug
response data (IC50 values).

Since the number of cell lines in the CCLE is about one order of magnitude smaller
than the number of TCGA samples, the power to detect significant associations is also
much smaller. Nevertheless, we found 460 significant associations at a Bonferroni-corrected
significance level of 0.05. For example, KEAP1 mutations in lung adenocarcinoma are asso-
ciated with xenobiotic metabolism in both TCGA samples and CCLE cell lines (Figure 8),
in agreement with the known role of the NRF2/KEAP1 pathway in the regulation of xeno-
biotic response [16]. Note that KEAP1 mutations appear to be associated with the activation
of the pathway, as observed in [17].
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Figure 8. (A) Clustering of lung adenocarcinoma samples using the genes in the xenobiotic
metabolism hallmark gene set. (B) Mutations of KEAP1 are strongly enriched in the K2 cluster
where the pathway appears to be activated. (C) Clustering of lung adenocarcinoma cell lines using
the same gene set. (D) Also in cell lines mutations are enriched in the cluster showing pathway
activation.
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3. Discussion

In this work, we systematically analyzed cancer metabolic subtypes, defined by clus-
tering the patient samples using the transcription profiles of metabolic gene sets. These
subtypes are highly specific for each individual metabolism used to define the gene sets,
and show a myriad of significant associations with both molecular and phenotypic features
of the tumors.

We present these associations as a resource for the community, Available onlie: https:
//metaminer.unito.it (accessed April 22, 2022) which, we believe, will be useful in two
related but distinct ways. One the one hand, our results highlight the key role of metabolic
profiles in classifying individual patients in a way that is potentially useful to devise
precision treatments. This is particularly compelling for tumors for which no established
classification exists, but in which metabolic subtypes strongly associated with phenotypic
characteristics can be found.

On the other hand, our results can help formulate hypotheses on the mechanisms
underlying the associations between metabolic subtypes on one hand, and molecular
and phenotypic features on the other. These can then be experimentally tested in cell
lines or organoids. For example, while both miR-222 (see, e.g., ref. [18] for a recent
review) and inositol phosphate metabolism [19,20] have been often associated with cancer
progression, their association, which recurs in a large number of tumor types, to the best of
our knowledge, has not been previously reported, and deserves a mechanistic investigation.

Some limitations of our study should be pointed out. The strongest is the correlative
nature of our results, which would require experimental analyses to be interpreted in
terms of causality; this limitation is shared by all retrospective analyses of primary tumors.
Moreover, the results pertaining to some specific tumor types need to be interpreted with
caution. In particular, tumor types obtained by the combination of more specific types
(such as GBMLGG, LUNG, etc.) might generate many statistically significant results of
limited biological interest: for example, since GBM and LGG strongly differ in survival
probability, any gene set able to distinguish through clustering between these two types of
tumors will be associated with survival. Moreover, some tumor types are characterized by
mutations leading to widespread metabolic reprogramming (such as IDH1 mutations in
glioma [21] and inactivation of the von Hippel–Lindau tumor suppressor in kidney can-
cer [22]). Therefore, in these tumors, many or most metabolic gene sets are associated with
clinical or molecular features. Such associations, while statistically correct, might not lead to
a manageable number of specific, testable mechanistic hypotheses. Finally, while k-medoid
clustering has been shown to perform well in the classification of cancer samples based on
bulk RNA-seq data [11], we did not explore how other clustering strategies would perform
in detecting associations between metabolic subtypes and molecular/clinical fetaures.

4. Methods
4.1. Data
4.1.1. TCGA

All TCGA data (release 28 February 2016) were obtained from the Broad TCGA
GDAC site (https://gdac.broadinstitute.org/, accessed on January 27, 2021), by means of
firehose_get, version: 0.4.1. The gene expression data clustered to generate the metabolic
subtypes were the normalized gene-level transcript per million (TPM) values obtained with
the RNA-Seq by the Expectation-Maximization (RSEM) method.

Copy number data were obtained from the segmented data using the cghMCR [23],
DNAcopy [24], and CNTools [25] Bioconductor packages. The cghMCR package allows the
calculation of segment gain or loss (SGOL) from segmented data, by means of a modified
version of the Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm.
The segment function of the DNAcopy package was used to segment the normalized data so
that chromosome regions with the same copy number had the same segment mean values.
Then, using the getRS function from CNTools, the data returned by segment were organized
in a matrix format. Finally, the SGOL function of cghMCR was used to compute gene-level

https://metaminer.unito.it
https://metaminer.unito.it
https://gdac.broadinstitute.org/
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SGOL scores by calculating the sum (parameter method) of all the positive and negative
values, respectively, above and below a set threshold (0.5, −0.5). Finally, SGOL scores for
all genes included in each Broad Institute positional gene set were averaged to obtain the
SGOL score of each region.

Genome-wide DNA methylation was obtained from the gene-level summarized Hu-
man Methylome 450 k data, as provided by GDAC, then summed over all genes to associate
a global DNA methylation value to each sample. miRNA expression was obtained from the
Illumina HiSeq data, as deposited in GDAC. Specific point mutations for each sample were
obtained from the “mutation packager oncotated calls” provided by GDAC, considering
only non-synonymous mutations. For gene-level mutations, a sample was considered
as mutated in a gene if it carried one or more specific point mutations associated with
the gene.

Protein expression data produced by Reverse-Phase Protein microArrays (RPPA) were
obtained from the corresponding files annotated with gene names from the GDAC site.
Survival and other clinical data were obtained from the “Tier 1 clinical pick” files Available
onlie: GDAC.

4.1.2. CCLE

Gene expression data of 723 cell lines associated with one of the TCGA tumor types
were obtained, as gene-level TPMs computed with RSEM, from the CCLE web site. We
also retrieved from the CCLE web site the following data to be correlated with metabolic
subtypes:

• Gene-level copy number data: the absolute score provided by CCLE was processed
with the same steps used for the SGOL score reported for the TCGA data to obtain
region-based copy number data;

• miRNA expression data (which were log-transformed for display in the figures);
• Somatic mutation data (here we considered only non-synonymous mutations);
• IC50 values for the available drugs;
• Metabolite levels.

4.1.3. Metabolic Gene Sets

Gene sets were obtained from the c2.KEGG, c2.REACTOME, c5.BP, and Hallmark
MSigDB v5.2 collections. Metabolic gene sets were defined as those whose name matched
the string “metabol” but not the string “regul” (to include only gene sets directly involved in
metabolic pathways rather than in their regulation). In this way, we obtained 345 metabolic
gene sets (41, 35, 265, and 4 for the c2.KEGG, c2.REACTOME, c5.BP, and Hallmark collec-
tions, respectively).

4.2. Generation of Metabolic Clusters

For each tumor type and each metabolic gene set, a Duda–Hart test [12] was per-
formed to detect cluster separation. This was conducted on both log-transformed and
rank-transformed expression values. Since the latter method turned out to be more conser-
vative, it was used in the following. For the gene set/tumor pairs for which the Duda–Hart
test revealed the existence of a cluster structure (p < 0.001), the patients were divided into
metabolic subtypes using partition around medoid (PAM) clustering [9] on the Spearman
rank correlation coefficient-based distance matrix obtained from the expression of the genes
in the gene set. The number of clusters (the maximum being set at 10) generated by each
metabolic gene set was based on optimizing the average silhouette width. The normalized
mutual information between two clusterings of the same patients based on different gene
sets was computed with the R package infotheo [26], using the entropy of the empirical
probability distribution and normalizing to the geometric mean of the entropies. Genes
differentially expressed among clusters were identified using a Kruskal–Wallis test. The
top 20 genes by p-value are shown in the heatmaps.



Cancers 2022, 14, 2145 13 of 15

4.3. Statistical Tests of Association

The statistical tests used for establishing the association between each clinical/molecular
feature and metabolic subtypes depend on the type of variable describing the feature.
The metabolic subtype is always a categorical variable indicating the cluster membership
of each patient.

• For continuous variables (microRNA expression, DNA methylation, CNA SGOL
scores) a we used Mann–Whitney U test (Kruskal–Wallis for k > 2). In the case of
microRNA expression, given the large number of microRNAs with expression equal
to zero in each sample, the expression data were rank-transformed with random
resolution of ties before the statistical test.

• For categorical variables (e.g., presence of a given mutation) we used Fisher’s exact
test (χ2 test for tables larger than 2 × 2, removing levels for which the expected count
was less than 5).

• For survival (RFS or OS), we used the log-rank test. The test was not considered valid
when the expected number of events in any metabolic subtype was less than 5.

Multiple Testing

Bonferroni correction was applied separately to each variable type and to all tumor
types together. Thus, for example, the Bonferroni correction for the association with miRNA
expression takes into account all tests of association between all miRNAs and all metabolic
gene sets across all tumor types. We chose to perform the correction separately for the
feature types because these contain very different numbers of variables (hundreds of
variables for miRNA expression and a single one for overall survival). Therefore, an overall
Bonferroni correction would unduly penalize the variable types containing few variables.

5. Conclusions

The systematic analysis of the associations between transcriptomic-based metabolic
subtypes and other clinical and molecular tumor features can serve as a guide to the
formulation of mechanistic hypotheses for experimental validation, with the potential to
improve our understanding of the role of metabolic alterations in cancer progression and
to exploit metabolism-based stratification to develop new precision medicine strategies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14092145/s1. Figure S1: The KEGG pathways (red squares) used to cluster tumor
samples and the respective genes (grey triangles) represented as a bipartite network. The size of the
squares is proportional to the number of associated genes. Table S1: Number of samples used for each
tumor type. Table S2: Molecular and phenotypic variables analyzed for association with metabolic
subtypes. Table S3: Top recurrent associations for each class of variables. Data S1: Clustering of TCGA
patients into metabolic subtypes. NA indicates no cluster separation according to the Duda–Hart
test. Data S2: Associations between metabolic subtypes and molecular/phenotypic features in TCGA.
Data S3: Clustering of CCLE cell lines into metabolic subtypes. Data S4: Associations between
metabolic subtypes and molecular/phenotypic features in CCLE.
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