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Simple Summary: Cancer is a complex phenomenon and cancer research is increasingly data-rich.
Representing this knowledge in a manner that is both human and computer-friendly can help manage
and analyze the high volumes of complex cancer data that are created by scientific research and
health care. This review looks at the last decade of works on using ontologies—computational
representations of knowledge—in cancer, describing their contributions and achievements and
charting a path for future research in this area.

Abstract: The complexity of cancer research stems from leaning on several biomedical disciplines for
relevant sources of data, many of which are complex in their own right. A holistic view of cancer—
which is critical for precision medicine approaches—hinges on integrating a variety of heterogeneous
data sources under a cohesive knowledge model, a role which biomedical ontologies can fill. This
study reviews the application of ontologies and knowledge graphs in cancer research. In total, our
review encompasses 141 published works, which we categorized under 14 hierarchical categories
according to their usage of ontologies and knowledge graphs. We also review the most commonly used
ontologies and newly developed ones. Our review highlights the growing traction of ontologies in
biomedical research in general, and cancer research in particular. Ontologies enable data accessibility,
interoperability and integration, support data analysis, facilitate data interpretation and data mining,
and more recently, with the emergence of the knowledge graph paradigm, support the application of
Artificial Intelligence methods to unlock new knowledge from a holistic view of the available large
volumes of heterogeneous data.

Keywords: ontologies; semantic technologies; knowledge graph; cancer; oncology; review

1. Introduction

Understanding complex phenomena that cannot be modeled purely mathematically is
a challenging endeavor transverse to all biomedical research. Ultimately, all boils down
to the complex interplay between genes and environment, which manifests in the inter-
actions between the cells in an organism, between host and pathogen, between drug and
body. From its genesis, medicine focused on understanding the phenomena which can be
generalized between individuals, dating back to the first texts on anatomy by the Ancient
Egyptians. Indeed, nomenclature and classification are the first steps towards understand-
ing complex phenomena, and are inextricable from modern medicine, which relies on its
precise terminology and its compendium of pathogens, diseases, symptoms, genes and
mutations, and drugs and therapies, as well as of the relationships between them.

Over the last three decades, the rise of the digital age and subsequent informatization of
clinical records and biomedical research drove the encoding of terminologies, classification
schemes and knowledge models into digital machine-readable formats (often captured
under the umbrella term ‘ontology’) to promote standardization, support information
systems, and enable knowledge discovery. One of the first major efforts to this effect in the
biomedical domain was the compilation of the Systematized Nomenclature of Medicine—
Clinical Terms (SNOMED CT) [1] to support the standardization and interoperability of
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clinical information systems and electronic health records. Another major effort was the
classification and trans-species standardization of gene functional characteristics under the
Gene Ontology (GO) [2]. In the footsteps of these efforts, several hundred other ontologies
have been developed for the biomedical domain throughout the years [3], among which we
must note the National Cancer Institute Thesaurus (NCIt), a compendium of terminology
spanning all aspects of cancer research and health care [4].

More recently, medicine has been witnessing a shift towards the particular, enabled by
the decreasing costs of acquiring genetic information, and driven by the understanding that
tailored treatments that contemplate the genetic makeup of the patient will likely be more
effective and less prone to nefarious side-effects. Cancer is the family of diseases that is
benefiting from these precision (or personalized) medicine approaches the most, as despite
commonalities, each cancer is genetically unique, and can react very differently to different
types of treatment. Moreover, understanding the fine differences between cancer cells and
healthy cells can be the key for more successful and less aggressive treatments. Yet the
precision medicine paradigm places additional emphasis on having a holistic understanding
of the gene–environment interplay in all its manifestations, which requires the integrative
analysis of large volumes of heterogeneous data that are individually already complex
(e.g., clinical records, medical imaging, transcriptomic data, immunopeptidomic data) [5].
Here too, ontologies have been playing an important role in enabling data integration and
facilitating data analysis.

In this article, we review the applications of ontologies in cancer research over the
past decade, summarizing published works within this time frame, and categorizing them
with respect to their usage of ontologies. Section 2 details core concepts underlying this
review article, Section 3 outlines the methodology adopted to conduct the review, Section 4
summarizes both the ontologies reused in the works and the ones created for them, Section 5
reviews and categorizes the aforementioned published works, and Section 6 features our
prospects regarding the present and future use of ontologies in cancer research.

2. Background
2.1. Ontologies

The term “ontology” was borrowed from philosophy to computer science to signify a
machine-readable formalization of a conceptualization pertaining to a particular domain of
knowledge [6]. That is to say, an ontology is a digital artifact that can be interpreted by both
humans and computers and which encodes the terminology and the semantic relations
between concepts in a given domain. The term “ontology” is often used with some latitude,
also encompassing thesauri [7]. While our review of published works adopts the same
encompassing perspective, it is important to make a formal distinction between ontologies
proper and thesauri due to their different purposes and applications.

Ontologies proper are typically encoded in the Web Ontology Language (OWL), devel-
oped by the W3C OWL Working Group [8], which includes various serializations, namely
the Open Biomedical Ontologies (OBO) format or the more popular Resource Description
Framework (RDF) format in which statements take the form of triples of the form <subject>
<predicate> <object>. OWL defines several types of entities which can be used in construct-
ing ontologies, such as: classes, datatypes, object properties, data properties, annotation
properties, individuals and literals, among others. All entities in an ontology are identified
by an International Resource Identifier (IRI), although in OBO ontologies this is abbreviated
to an alphanumeric code. Annotation properties (e.g., label) are used to describe the entities
in the ontology for human readers, and thus, encode the terminological component of
ontologies; they have no semantic value. Individuals (or instances) and literals are data-level
entities representing, respectively, concrete objects (e.g., my heart) and data values (e.g.,
“60 beats/min”). The remaining entities are model-level, with classes representing abstract
sets of individuals (e.g., heart), datatypes representing abstract sets of literals (e.g., string),
object properties representing relations that can be used to connect individuals (e.g., part of )
and data properties representing attributes that can be used to describe individuals with
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literals (e.g., has heart beat). Moreover, OWL defines intrinsic properties that can be used
to connect classes (subclass, disjoint), to assert that individuals belong to a class (type), or to
constrain object or data properties with respect to the classes that can have them as subjects
(domain), the classes or datatypes they can take as objects (range), or their usage and logic
(e.g., transitive, symmetric). Finally, OWL enables the definition of class expressions, which
are classes defined semantically, for example through application of logical operators (union,
intersection, not) between classes, or through existential, universal or cardinality restrictions
on objects or data properties (e.g., part of some chest, which can be applied to class heart).
OWL ontologies have different degrees of expressiveness depending on which of these fea-
tures they use, ranging from simple class hierarchies up to semantically intricate knowledge
models, which has implications on the possible applications of ontologies. Namely, OWL
supports deductive reasoning, that is to say, the use of logical inference to derive non-stated
facts from the collection of facts explicitly asserted in the ontology, which will be both harder
and more likely to result in non-evident facts the more expressive the ontology is.

Ontologies are often published with only the model-level layer, serving as knowledge
models for a given domain, without any data. In some cases, ontologies are used to annotate
external data, such as text documents or database entries, without actually instantiating the
ontology (e.g., the Gene Ontology is used to annotate genes and proteins, but these are not
individuals of the ontology). In other cases, ontologies are developed (or adopted) to serve
as the semantic backbone for describing data in a machine interpretable form. When a large
number of individuals is represented in a graph that employs an ontology as its schema, we
can consider it a Knowledge Graph (KG) [9]. Figure 1 depicts a simplified example of a KG,
based on NCIt. Classes are represented as circles in a descending hierarchy stemming from
the superclass “owl:Thing”, class instances as grey rectangles, and relationships between
them are depicted as arrows, corresponding to object properties in an ontology. This KG
shows the network around the concepts renal cell carcinoma, MET gene, antineoplastic
agent and protein tyrosine kinase, with instances of patient (“Patient X”) and antineoplastic
agent (“Sunitinib”).

Figure 1. Knowledge graph representing a smaller network that includes renal cell carcinoma, MET
gene, antineoplastic agent and proten tyrosine kinase, with instances of a Patient X and the drug
Sunitinib. All concepts are derived from the class owl:Thing. Adapted from the NCIt.
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Thesauri are much simpler than ontologies, and are typically encoded in the Simple
Knowledge Organization System (SKOS), which, curiously, is defined on top of OWL.
In SKOS, there is no data-level layer, only a model-level layer comprised of concepts, their
terminological characterization through annotations, and the loose semantic relations be-
tween them (broader, narrower, related). Thus, thesauri are almost exclusively terminological,
and do not enable many of the more sophisticated applications of ontologies proper, namely
applications that involve reasoning.

2.2. Ontologies in Cancer Research

The ability to model complex domains is the reason why ontologies are suitable for
cancer research and healthcare. For an especially complex disease, such as cancer, that
tends towards individual uniqueness and is comprised of various factors and variables,
the ability to represent it fully in a manner that can be understood by both clinicians and
researchers, and machine algorithms, is invaluable. As such, ontologies represent a unique
opportunity to support the domain complexity while allowing for the construction of
equally complex solutions that further aid in diagnosing and treating cancer.

At present, there are numerous publicly available biomedical ontologies that have as
their principal aim the description of cancer and its characteristics. The National Cancer
Institute Thesaurus (NCIt) is perhaps the most often seen. Additionally, there are other
biomedical ontologies that, while not directly related to the subject of cancer, are invaluable
in its research, for describing fundamental concepts of biology and medicine that form a
solid base on which further information stands. Of these, the Gene Ontology (GO) is the
most commonly used.

Ontologies in cancer research can be used in varied manners with differing focal
objectives. First, despite the fact that cancer-focused ontologies already exist, further
conceptualizations of the domain can be developed in the form of new ontologies [10].
These can be reformulations of actual ontologies, updated to include more entities, or even
a new, original, ontology to establish a previously less explored section of knowledge.
Furthermore, ontologies can be used to annotate data and connect it to the overall context
of the domain it pertains to [11]. In this way, for instance, a single value is not simply an
isolated value, it is now a single result value from an RNA Sequencing experiment that
is placed in a particular section of biomedical knowledge and holds specific relationships
to the remaining domain. This annotated value can then be further integrated into de-
veloping solutions and their overall context. In addition, ontologies can be directly used
as vocabularies to support the organization of data according to known domain informa-
tion [12]. One objective for this use is, for instance, allowing users to search data that has
been annotated using ontologies in a database. Furthermore, NLP methods also need a
comprehensive set of terms to use in their application, that then allows for the identification
of this information in long-form text, for example [13]. Due to their axiom-based structure,
ontologies can support reasoning applications, first to confirm consistency in the ontology
and data themselves [14] but also to obtain further inferences from the formal definitions
that are established by the ontologies [15]. Lastly, annotation of data with ontologies allows
for further use in mining and analyzing this data, for example, with enrichment meth-
ods or similarity measures [16,17]. Additionally, there has been an increase in the use of
ontology-structured data as input for ML methods, particularly in the biomedical domain
with, for example, gene function predictions and clinical decision support systems [18,19].

3. Materials and Methods
3.1. Initial Search and Screening

We carried out an initial search of PubMed [20] on 10 January 2022 with the search
query: (“ontology” OR “knowledge graph”) AND “cancer”. We restricted the search to open
access articles between between 2012 and 2021, setting the search to both Title and Other
Term, and in the case of the “cancer” query, additionally also MeSH Terms. We complemented
this initial search with a search of Google Scholar [21] on 21 March 2022 with the search
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query: (“ontology” OR “knowledge graph”) AND (“cancer” OR “oncology”). The search was
constrained to only the title and between 2012 and 2021. The combined results of the two
searches were 360 articles.

We screened the resulting lists of articles with the following exclusion criteria: dupli-
cated articles, non-open access articles, and out of scope articles. The latter encompassed
articles not related to cancer (misclassification, typos such as oncology/ontology, or men-
tion of only cancer cell lines but not to cancer), articles which did not clearly describe the
use of ontologies, and review articles. Additionally, from the Google Scholar results we
also excluded theses and non-international and/or non-peer-reviewed publications (which
were not an issue in the PubMed search). The screening was conducted in stages, by first
examining the title and accessibility of the article, then reading the abstract, and finally
reading the article in its entirety. From the initial list of 360 articles, the screening resulted
in only 141. A workflow diagram of the whole process can be viewed in Figure 2.

Figure 2. PRISMA flowchart with the steps taken to reach the final list of articles for categorization.

3.2. Categorization

We developed a novel categorization scheme composed of 14 hierarchical categories that
describe how the reviewed works employ ontologies and knowledge graphs. These categories
fall into two main branches: Terminology-focused applications and Semantic-focused applications.

The original purpose of clinical and biomedical ontologies was to serve as a source of
controlled terminology to tackle the challenges of data-intensive research and clinical prac-
tice. As biomedical data production increases and the further it spreads across databases
and repositories, there is a reinforced need to connect it to the overall context and to assign
the same “meaning” to data that is saved in different and independent places. Ontologies
represent the domain concepts in a standardized manner—using a unique identifier for
each concept—and placing data into this context increases its own individual reusability
by ensuring that it will be understood by anyone, but also, it allows for data from different
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sources to be easily matched in their relation to a specific entity.
We have organized Terminology-focused applications under four categories:

• Data Annotation: ontologies are used to describe data under a common schema,
linking data objects to ontology classes that describe them.

• Data Integration: ontologies support the integration of different data sets or databases.
• Database Interface: ontologies are used to support user interfaces for databases,

where labels of ontology classes and relations allow text annotation. These interfaces
are notably useful in dealing with medical data, for integration and querying of
different knowledge resources.

• NLP: ontologies are used as the vocabulary source for Natural Language Processing
(NLP) methods, where entities, events or relations in a text are identified through the
corresponding ontology labels.

Semantic-focused applications fall under two sub-categories, which are further sub-
dividided:

• Reasoning: Automatic reasoners process ontologies’ axioms and their formal defini-
tions.

– Inference of New Knowledge: complex reasoning-based queries can reveal
novel biological knowledge based on the already defined axioms.

– Error Detection: reasoning applied to check for consistency (or contradictions)
in the ontology.

• Data Mining and Analytics: ontologies are used to support data mining and analytics
tasks.

– Semantic Filtering: ontology-based annotations are used to filter and process
data.

– Semantic Similarity: ontology-based annotations are used to compare data
entities.

– Machine Learning: ontologies and KGs are explored by machine learning algo-
rithms.

– Gene Set Enrichment: statistical analysis of gene set ontology-annotations.

From the final list, articles were sorted into one or more of the 10 leaf categories
according to how the work uses ontologies.

The schema of classification is shown in Figure 3, outlining all the categories and their
hierarchical organization used in the following sections.
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Figure 3. Classification schema for the works included in this articles.

4. Ontologies in Oncology
4.1. Ontologies Used in the Reviewed Applications

One of the ontologies most commonly used in cancer research is, as expected, the Na-
tional Cancer Institute thesaurus (NCIt) [22], which is a comprehensive ontology de-
voted specifically to cancer and encompassing both the clinical and research aspects.
The SNOMED-CT [1], a broad scope healthcare ontology that has played a key role in sys-
tematizing electronic health records, has been used in applications involving clinical data.
UMLS [23] is also popular, and is the largest compendium of biomedical terminology, ag-
gregating several healthcare ontologies and vocabularies (namely NCIt and SNOMED-CT)
and including mappings between them to enable interoperability.

The Medical Subject Headings (MeSH) thesaurus [24], which are used to index scien-
tific publications, have often been used for bibliographic searches and natural language
processing applications. The Disease Ontology (DO) [25] is narrower in scope than the
UMLS, focusing only on diseases, but also includes extensive mappings to other healthcare
vocabularies (namely MeSH, NCIt and SNOMED-CT).

Other ontologies with narrower scope nevertheless describe aspects that are critical for
cancer research. Among them, we include the oncology subset (ICD-O) of the International
Classification of Disease (ICD) [26], which categorizes tumors; the Ontology for Biomedical
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Investigations (OBI) [27], which aims to describe the terms related to biological and medical
investigations; the Cell Line Ontology [28] which classifies cell lines; the Time Event
Ontology (TEO) [29], which models temporal expressions and is especially useful when
dealing with timed occurrences as healthcare often includes; and the Gene Ontology
(GO) [2], which describes gene functions. The latter is the most used ontology of the works
reviewed, as it is employed in almost all Gene Set Enrichment applications.

4.2. Ontologies Created for the Reviewed Applications

Several works pertaining to ontologies in cancer research reported on the creation of
new ontologies, as summarized in Table 1. The fact that multiple ontologies have been
developed in this domain reflects the fact that an ontology is a conceptualization formalized
for a particular objective, which represent a given point of view of the underlying domain.
As such, despite the existence of several ontologies within the domain, it is often necessary
to develop new ontologies for different purposes or to model novel datasets. This is also
a testament to the complexity of the cancer research domain, and the several biomedical
disciplines it traverses.

One common reason why new ontologies have been developed was to semantically
formalize already existing standards. Within this category, Nicholson et al. [30] derived
the ENCR core-data ontology from the European Network of Cancer Registries (ENCR)
data-validation rules to further support the validation of cancer datasets through an unam-
biguous formalization and ensure coherence through automatic reasoning logic. Similarly,
Zhang et al. [31] also developed the Ontology for the Documentation of vAriable selecTion
and daTa sourcE Selection and inTegration (OD-ATTEST) based on a set of reporting guide-
lines for cancer risk factor variable and data source selection to serve as a standardization
of data models. With the aim of describing cancer cells and capturing the properties of
tumorigenesis, Rasmussen et al. [32] created the OncoCL. Jusoh et al. [33] built a breast
cancer ontology using a hybrid approach to help integrate cancer data from different
sources into a single database. Furthermore, in the breast cancer domain, Myneni et al. [34]
created OntoMama to assist medical students and professionals. Malty et al. [35] created
an ontology of standardized cancer treatments that maps to standard nomenclatures based
on HemOnc. Dinakarpandian et al. [36] created the Temporal Ontology for Comparing
the Survival Outcomes (TOCSOC), a temporal ontology of survival outcome measures of
clinical trials in oncology, reusing numerous ontologies. PCLiON is a new standardized
lifestyle ontology created by Chen et al. [37], reusing multiple ontologies to harmonize the
different data types related to prostate cancer. Looking to generalize the pattern of defi-
nitions to correctly classify all gastrointestinal tumor configurations, Herrmann et al. [38]
developed their ontology based on BioTopLite2.

Another common reason for ontology development is to create a semantic model for
existing datasets. For example, Esteban-Gil et al. [39] used data from a cancer registry
relational database to develop a semantic model that can then be queried to analyze patient
data through ontology-driven search. The NeoMark European project [11] also developed
a specialized ontology for their data content, the NeoMark Ontology, built from its existing
database. Amith et al. [40] used a lightweight Open Information Extraction (OIE) tool to
extract semantic information from MedlinePlus and seed a knowledge-base. To represent
obesity related cancer information, organize and allow data querying, Elhefny et al. [41]
reused DOID to develop the Fuzzy Ontology for Obesity-Related Cancer (FOORC).

Ontologies have also been developed to harmonize the communication between clini-
cians and patients, namely by exploiting social media. Tapi Nzali et al. [42] built a Consumer
Health Vocabulary (CHV) in french for breast cancer by mapping terms from forum mes-
sages and standardized medical terms. Lee et al. [43] created an ontology to understand
information needs and emotions regarding cancer from social media. Myneni et al. [34] de-
veloped the Profile Ontology for Cancer Survivors (POCS) to facilitate the fast development
of patient-engaging mobile apps.
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Supporting the development of applications to aid diagnosis and treatment by providing
a semantic representation of existing knowledge has been another major motivation for the
development of new ontologies. For hepatocellular carcinoma (HCC), Messaoudi et al. [44]
developed the Ontology of Hepatocellular Carcinoma (OntHCC) to support their application
in the detection of nodules in medical imaging, while Gurcan et al. [45] created the Quan-
titative Histopathological Imaging Ontology (QHIO) to represent both data and methods
used in clinical imaging and analysis. Boeker et al. [46] developed TNM-O to represent the
Tumor–Node–Metastasis (TNM) classification of malignant tumors and Tagliaferri et al. [47]
developed the ENT COBRA (COnsortium for BRachytherapy data Analysis) ontology to
standardize data collection for head and neck cancer patients that have been specifically
treated with interventional radiotherapy, while SKIN-COBRA has a similar objective for
non-melanoma skin cancer patients with the same treatment [48]. With a very focused aim,
Oyelade et al. [14] proposed Breast Cancer Fuzzy Ontology (BCFO) to address vagueness in
the domain of this specific cancer. Mahmoodi et al. [49] manually created the Gastric Cancer
Ontology (GCO) with experts to support the extraction of association rules. Gao et al. [50]
constructed a treatment-based cancer ontology using a Bayesian derivation that focuses
on cancer reclassification and drug inference. For lung cancer, Sesen et al. [51] constructed
the LUCADA ontology to use with the clinical decision support application Lung Cancer
Assistant. In the domain of bladder cancer, Barki et al. [52] developed an ontology to predict
side effects caused by treatments.

Finally, ontologies have been developed for enabling data interoperability and inte-
gration, a pressing demand given the increasing volume of heterogeneous data sources
available for cancer research. To study the connection between various risk factors and
cancer survival, Zhang et al. [53] created the Ontology for Cancer Research Variables
(OCRV) reusing some existing resources, and then linked it to a data integration pipeline.
Lin et al. [10] developed the Cancer Care Treatment Outcome Ontology (CCTOO) that orga-
nizes high-level oncology treatment end points into four domains: cancer treatment, health
services, physical, and psycho-social health-related concepts. To aid drug target prediction,
Tao et al. [54] created the CRC ontology, reusing PharmGKB. Balasubramanian et al. [55]
reused BFO and created the Ontology of Cancer Related Social-Ecological Variables (OCR-
SEV) to enable data integration and posterior association between Social-Economical Fac-
tors and health outcomes in cancer. Aiming to increase interoperability between data
sources to allow the creation of Big Data studies that involve several treatment centers,
Bibault et al. [56] created the Radiation Oncology Structures (ROS) based on FMA. To also
support integrative data analysis in cancer outcomes research, Zhang et al. [57] created
the Ontology for Documentation of Variable and Data Source (ODVDS) reusing BFO. Di-
vakar et al. [58] developed CCOWL in order to analyze patient’s cytological tissue images
of cervical cancer. Additionally, RiskExplorer was created by Daowd et al. [59] to represent
causal associations between the incidence of breast cancer and risk factors.

Some works also report on updates or extensions to existing ontologies, motivated
by some of the same objectives for creating new ontologies. Serra et al. [60] developed
the Cancer Cell Ontology (CCL) as an extension of the Cell Ontology (CL), to serve as a
formal representation of immunophenotyping cell types from hematologic malignancies.
The Cell Line Ontology (CLO) was updated and extended by Ong et al. [61] to include NIH
Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) cell lines,
with a subset LINCS-CLOview being generated. Campbell et al. [62] created additional
concepts for Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) that
unify it with Logical Observation Identifier Names and Codes (LOINC) for colorectal and
breast cancer.
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Table 1. New ontologies.

Ref Objective Ontology Name Domain Reused Ontologies Language

[51] Model lung cancer for the clinical decision
support application Lung Cancer Assistant LUCADA ontology Clinical SNOMED-CT OWL

[33] Use a hybrid approach to build a breast cancer
ontology N/A Breast Cancer N/A OWL

[32] Describe cancer cells and capture the
properties of tumorigenesis OncoCL Cell Lines

CL, UBERON, BTO,
Pathway Ontology,
PATO, CPO, SO

OWL

[11] Represent the project domain and link the
NeoMark data to other domains NeoMark ontology Clinical BFO, RO OWL

[50] Cancer reclassification and drug inference N/A Farmacology N/A N/A

[54] Drug target prediction CRC ontology Colorectal
Cancer PharmGKB OWL

[63] Assist medical students and professionals in
the breast cancer domain OntoMama Clinical N/A N/A

[34] Development of an ontology-driven survivor
engagement framework for mobile apps POCS Social FOAF OWL

[46] Creation of TNM-O TNM-O Anatomical FMA, BioTopLite 2 OWL

[41]
Represent obesity-related cancer (ORC)
ontology to organize information and allow
data querying

FOORC
Obesity
Related
Cancer

DOID OWL

[49] Extraction of association rules from large
datasets on gastric cancer patients

Gastric cancer
ontology Clinical N/A N/A

[55] Aid data integration; enable association
between SE variables and health outcomes OCRSEV

Social-
Ecological
Factors

BFO OWL

[45] Interoperability across quantitative
histopathological imaging data sets QHIO Imaging OBI OWL

[39] Design of a semantic model for local cancer
registries N/A Epidemiology SIO, OBI OWL

[40] Development of ontologies for the public
health domain N/A Public Health N/A OWL

[61] Understand cellular responses to different
perturbations LINCS-CLOview Cell Lines CLO OWL

[53] Integrate heterogeneous datasets OCRV Cancer
Outcomes BFO, NCIt, TEO OWL

[47]
Define a specific terminological system to
standardized data collection for head and neck
cancer patients

ENT COBRA
ontology Clinical N/A N/A

[10] Use structured knowledge representation with
concepts of treatment end points CCTOO Clinical NCIt, CTCAE OBO

[62]
Represent the data elements identified by the
synoptic worksheets of College of American
Pathologists

SNOMED CT
observable ontology Clinical SNOMED CT,

LOINC N/A

[35]
Create a standardized hierarchic ontology of
cancer treatments, mapped to standard
nomenclatures

N/A Cancer
Treatments HemOnc OWL

[56]
Increase interoperability between data sources
to allow the creation of Big Data studies
involving several treatment centers

ROS Radiation
Oncology FMA OWL

[36] Create temporal ontology of survival outcome
measures of clinical trials in oncology TOCSOC Clinical EFO, CCTOO, IOBC,

NCIT OWL

[60]
Provide an ontological representation of
immunophenotyping cell types found in
hematologic malignancies

CCL Hematologic
Malignancies CL OWL

[42] Semi-automatic development of CHV for
breast cancer MuEVo Clinical MeSH, MedDRA,

SNOMEDint SKOS

[44] Offer ontology-based approach modeling HCC
tumors OntHCC Liver Cancer N/A OWL
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Table 1. Cont.

Ref Objective Ontology Name Domain Reused Ontologies Language

[57] Support integrative data analysis in cancer
outcomes research ODVDS Risk Factors BFO OWL

[58] Cytological tissue image analysis of cervical
cancer CCOWL Cervical

Cancer N/A OWL

[31]
Standardize the terminology used in the
selection and integration steps of RF variables
and data sources

OD-ATTEST Risk Factors
BFO, others in
NCBO (not
specified)

OWL

[48]
Standardize data collection for non-melanoma
skin cancer patients treated with
brachytherapy

SKIN-COBRA
ontology Clinical N/A N/A

[43]
Analyze social media data to identify
information needs and emotions related to
cancer

N/A Social LCO, BCO, GCO,
SOSW N/A

[37]

Solve the heterogeneity and diversity of
different data types related to prostate cancer
by establishing a standardized lifestyle
ontology

PCLiON Risk Factors

NCIT, WordNet,
SNOMED CT, The
Cochrane Library,
FooDB, CheBI

OWL

[59]
Build a knowledge graph that represents
causal associations between incidence of breast
cancer and risk factors

RiskExplorer Clinical UMLS N/A

[30] Facilitate the integrity and maintenance of
ENCR core data set. ENCR core-data Epidemiology N/A OWL

[14] Minimizing vagueness in the formalization of
medical knowledge BCFO Clinical DO OWL

[52] Predict side effects of bladder cancer
treatments N/A Bladder

Cancer N/A OWL

[38]
Provide a generalizing pattern of more concise
definitions to correctly classify all tumor
configurations

N/A Gastrointestinal
Tumors BioTopLite2 N/A

5. Ontologies and Knowledge Graph Applications in Cancer Research

The categorization of the reviewed works relied exclusively on the information pre-
sented in the article and no additional searches were conducted to obtain further details.
The information gathered in the process of categorization is presented in Tables 2–4 orga-
nized into columns relevant to each category.

5.1. Terminology-Focused Applications

Table 2 describes the articles from these categories, according to the ontologies and
data employed and cancer type.

5.1.1. Data Annotation

Most Data Annotation works use existing ontologies, such as NCIt, Medical Subject
Headings (MeSH), and GO, among others, but there are quite a few instances where new
ontologies were created to address specific needs.

In breast cancer, Zhu et al. [15] used the semantic modeling of drugs from PharmGKB
to infer repositioning. As cancer care is a continuum, Myneni et al. [34] developed an
ontology-driven adolescent and young adult survivor engagement framework, to aid the
development of mobile apps for information dissemination about treatments and effects
of cancer therapies provided through Survivorship Care Plans. Esteban-Gil et al. [39]
created a semantic representation of data from a cancer registry database, that results in
a model that can be reused and extended to other registries and is capable of supporting
further semantic queries on patient profiles that are crucial to research. Yan et al. [13] used
NLP tools and an enriched ontology from the MeSH graph to develop UDT-RF, aiming to
categorize literature into the corresponding cancer hallmarks through text annotation by
estimating the information of interest contained. Using the Time Event Ontology (TEO),
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Chen et al. [64] semantically modeled the time component of Common Data Elements
(CDEs) that, in capturing clinical research data, highly benefit from a temporal dimension.
For HCC, in addition to developing OntHCC, Messaoudi et al. [44] used it to help in the
classification of the staging of tumors that are detected in medical imaging.

5.1.2. Data Integration

A vital part of having large amounts of data in differing repositories and/or originating
from various sources is integrating them into a single cohesive semantic representation.

Salvi et al. [11] used a focused ontology to annotate their data from various sources that
they have compiled in their relational database concerning Oral Squamous Cell Carcinoma
(OSCC). The web-based application LncRNA Ontology was developed by Li et al. [65]
from the results of their approach to predict probable functions of most human long non-
coding RNAs (lncRNAs). Focusing on reusability and comparison of different sources,
Milian et al. [66] developed a method that automatically structures clinical trial eligibility
criteria from text. Kim et al. [67] used a graph-based framework that integrates multi-
omics data with genomic knowledge in order to improve predictions of clinical outcomes.
Wu et al. [68] developed a focused view of the DO from a variety of cancer datasets of
various sources in order to enable pan-cancer analysis across datasets. Bona et al. [69] fo-
cused on accessibility of non-image data from the Cancer Imaging Archive (TCIA) by using
ontologies to integrate it into semantic representations. In their two papers, refs. [53,70] also
created a focused ontology, OCRV, but then used it with a data integration pipeline for data
in relational databases with the aim of making the semantic relationships explicit and clear
across different sources. Hasan et al. [71] developed a prototype of a KG that semantically
encodes cancer registry data with the expressed aim of enabling the connection to third-
party data to further enable new research. Li et al. [72], on the other hand, constructed a KG
by first extracting knowledge triples from available data and then using these to construct
a network for healthcare professionals that allows them to traverse this contextualized
knowledge. Tao et al. [12] developed a web-based system called Interactive Mapping
Interface (IMI) to first map the data dictionary in use by the North American Association of
Central Cancer Registries (NAACCR) to the NCIt with the final goal of facilitating the dis-
semination and reuse of North American cancer registries data. Chen et al. [73] established
a consensus knowledge for cancer hallmarks using functional annotations and gene set
overlap, again aiming towards enabling the ability to compare data from different sources.

5.1.3. Database Interfaces

One application reported in the articles lies on ontology-based annotations to create
user interfaces for databases, where labels of ontology classes and relations allow text
annotation. These interfaces are notably useful in dealing with medical data, for integration
and querying of different knowledge resources.

Works within this category that have already been mentioned before are Myneni et al. [34]
and Esteban-Gil et al. [39] from data annotation, and Milian et al. [66], Hasan et al. [71],
and Tao et al. [12] from data integration. Sesen et al. [51] used a lung ontology with the
clinical decision support application Lung Cancer Assistant to categorize patients and
produce treatment recommendations. González-Beltrán et al. [74] aimed to ease queries
over cancer research data, by extending an existing tool, caGrid [75], with additional
services, its domain metadata consisting of ontology-based annotations associated with
the structural information of each incorporated data source. In lung cancer, circ2GO is a
database developed by Lyu et al. [76] that holds information about the functional annotation
of circular RNAs by integrating GO information for all genes in their dataset.

5.1.4. Natural Language Processing

Natural Language Processing (NLP) is also a field that can benefit from the use of
a standardized organization of knowledge and terms. The works by Milian et al. [66]
and Yan et al. [13] have been mentioned in previous sub-categories. In the case of Tapi
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Nzali et al. [42], the goal was to use their own french CHV of non-experts’ expressions for
breast cancer and compare them to biomedical terms used by health care professionals.
Directed toward a social scope, Lee et al. [43] created an ontology from a social media
crawler and NLP, to evaluate social media data and understand information needs and
emotions related to cancer.

Table 2. Terminology-focused applications.

Ref Summary Ontologies Data Tag Cancer
Type

[51]
Ontology for a clinical decision support
system to produce treatment
recommendations

SNOMED-CT,
New ontology N/A Database Interface Lung

[74] Ontology-based querying for cancer
research data NCIt N/A Database Interface Various

[77] Mining of genetic marker data in a journal SNOMED-CT,
HUGO NEJM NLP Various

[11] Automatic translation of NeoMark
relational database

BFO, RO, OBI,
OGMS, HDO NeoMark database Data Integration OSCC

[15] Manual identification and inference of
associations between breast cancer drugs New ontology PharmGKB, NCI Data Annotation Breast

[65] Genome-wide functional predictions of
lncRNAs GO

Gencode, Ensembl,
ENCODE project
LncRNA Ontology

Data Integration Various

[66] Extraction of semantic entities in eligibility
criteria and annotation UMLS CTG

Data Integration,
Database Interface,
NLP

Breast

[34]
Development of an ontology-driven
survivor engagement framework for
mobile apps

FOAF N/A Database Interface,
Data Annotation POCS

[67]
Prediction of clinical outcomes from a
graph-based approach with multi-omics
and genetic data

GO TCGA Data Integration Ovarian

[68] Development of a focused view within the
DO from cancer datasets DO COSMIC, TCGA, ICGC,

TARGET, IO, EDRN Data Integration Various

[39] Development of a platform for analysis and
visualization of data

ICD10,
ICD-O-3, TNM
staging, SIO,
OBI, OQuaRE

NCRI Data Annotation,
Database Interface Various

[13] Automatic annotation of cancer hallmarks
on biomedical literature MeSH N/A Data Annotation,

NLP Various

[70] Connection of predictors with cancer
survival with a use-case ontology OCRV FCDS 2000 U.S. census,

BRFSS Data Integration Various

[69]
Data integration of several databases with
ontologies to enable querying of patient
data

DO, UBERON TCIA, TCGA, LIDC-IDRI,
Head-Neck-PET-CT Data Integration Various

[78] Construcion of OCRV based on data
analysis needs

NCIt, TEO,
ICD-O-3,
ICD-9-CM

UF Health CCCA, FCDS,
ATSDR, USCB, BRFSS,
County Health Ranking
& Roadmaps

Data Integration Various

[64] Manual representation of semantic
temporal components of CDEs TEO NCI, caDSR Data Annotation Various

[44] Ontology built following the
MethOntology methodology [79] DICOM University Hospital of

Clermont-Ferrand Data Annotation HCC

[42] Semi-automatic development of CHV for
breast cancer

INDC
dictionary N/A NLP Various

[71] KG of cancer registry data, with data
analysis and visualization New ontology LTR Data Integration,

Database Interface Various

[43] Development of an ontology to understand
information needs and emotions

LCO, BCO,
GCO, SOSW N/A NLP Various
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Table 2. Cont.

Ref Summary Ontologies Data Tag Cancer
Type

[72] KGHC is a KG constructed from clinical
data available publicly UMLS PubMed, UpToDate,

CTG, SemMedDB Data Integration HCC

[76] Functional annotation of circRNAs
obtained from sequencing lung cell lines GO Lung cell lines

sequencing data Database Interface Lung

[12]
IMI is a web-based system that creates
mappings from the NAACCR data
dictionary to NCIt

NAACCR data
dictionary,
NCIt

KCR Data Integration,
Database Interface Various

[73] Comparative analysis of cancer hallmark
mapping strategies GO

MSigDB, KEGG, cancer
hallmark mapping
schemes, TCGA

Data Integration Various

5.2. Semantic-Focused Applications
5.2.1. Formalized Definitions and Axioms: Reasoning with Ontologies

In the works collected, reasoning is applied to the inference of new knowledge from
ontologies or error detection is also reported, as summarized in Table 3. The most com-
mon way to access and use reasoners in the reviewed papers consisted of using Protégé,
an ontology editor, while creating or editing ontologies, due to ease of access [80].

There are works that use reasoners to infer new knowledge from semantically anno-
tated data and/or established rules. Alfonse et al. [81] used FaCT++ to determine the type
and stage of a patient’s cancer in order to recommend treatments. Zhu et al. [15] used a
rule-based Description Logic (DL) unnamed OWL reasoner to infer additional associations
in pathways, drugs, genes and diseases for 18 breast cancer drugs from the ontological
representation of the PharmGKB pathway data file. Moreover, using the same ontological
representation of PharmGKB, Tao et al. [82] used Pellet to predict new targets for therapy
development. Mahmoodi et al. [49] derived association rules from the GCO and patient
data using a modified version of an Apriori algorithm, to establish system-wide associa-
tions between events in text through large-scale text mining. Barki et al. [52] predicted side
effects of treatments for bladder cancer with Pellet. Nicholson et al. [83] used reasoners to
signal rule violations in the validation of international rules for multiple primary tumors.

Reasoners can also be used to detect errors in the ontologies or models that have been built.
Works by Barki et al. [52], and Nicholson et al. [30,83] were described above. Herrmann et al. [38]
aimed at providing a generalizing pattern to classify tumors. Boeker et al. [46] used HermIT DL
in their TNM Ontology to evaluate its soundness. Oyelade et al. [14] focused on addressing the
issue of vagueness in breast cancer ontology (BCO).

Table 3. Semantic-focused applications: reasoning with ontologies.

Ref Objective Input
Ontologies Reasoner Tag Cancer

Type

[81] Determine cancer type and stage of the
patient to recommend treatments

LuCO, BCO,
LCO FaCT++ New Knowledge

Inference Various

[15] Identification of new indications for
existing drugs New ontology Automated semantic

inference (Protégé)
New knowledge
Inference Breast

[82] Prediction of new drug targets New ontology Pellet (Protégé) New knowledge
Inference Colorectal

[49] Extraction of association rules from
large datasets on gastric cancer patients GCO Apriori algorithm New Knowledge

Inference Gastric
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Table 3. Cont.

Ref Objective Input
Ontologies Reasoner Tag Cancer

Type

[38]
Provide a generalizing pattern of more
concise definitions to correctly classify
all tumor configurations

New ontology HermiT DL (Protégé) Error Detection Various

[46] Creation of TNM-O FMA,
BioTopLite 2 HermIT DL Error Detection Various

[52] Predict side effects of bladder cancer
treatments New ontology Pellet (Protégé)

New knowledge
Inference + Error
Detection

Bladder

[83]
Signal rule violations in a validation
process of multiple primary tumors
international rules

ICD-O-3 FaCT++, HermiT
New knowledge
Inference + Error
Detection

Multiple
primary
tumors

[30] Facilitate the integrity and maintenance
of ENCR core data set New ontology FaCT++ (Protégé) Error Detection Various

[14] Minimizing vagueness in the
formalization of medical knowledge DO Fuzzy DL,

HermiT/Pellet (Protégé) Error Detection Breast

5.2.2. Mining and Analyzing Multimodal Data with Ontologies

By far the majority of the works reviewed, fall into the category of mining and ana-
lyzing, as can be partially observed by Table 4 and the additional 72 gene set enrichment
articles not present in it that belong to this category. The use of ontologies in cancer research
has undoubtedly opened a new avenue in data analysis, where different methodologies (or
combinations of) are used to achieve the most varied goals to derive meaning from large
quantities of data.

One of the applications reported in data analysis and mining is semantic filtering [84].
The annotation of data with its semantic concepts enables the use of those same concepts to
filter data. Chen et al. [85] used biomedical ontologies to guide a set of sequential filtering
steps with the objective of predicting microRNAs related to the regulation of glucocorticoid
resistance in the specific case of pediatric acute lymphoblastic leukemia (ALL). In another
case, users can use the Semantic Web platform developed by Esteban-Gil et al. [39] to run
semantic queries over the annotated data and visualize the results in different ways.

An additional use is similarity measuring [86], where the distance between items is
measured by the overlap in meaning, to discern what concepts (and therefore their data) are
closer or further apart. For example, Modules and Gene Ontology-based Gene Prioritiza-
tion, developed by Su et al. [17], uses fuzzy similarity for cancer-related gene prioritization.

One of the main approaches used to analyze large amounts of biomedical data is the
employment of ML techniques on data that has been semantically annotated. With the
evolution of AI algorithms, researchers have been increasingly able to pose more complex
questions and use various methodologies to obtain their answers, which is easily observed
from the variety of methods and objectives in the articles reviewed. UMVMO-select is a
Unsupervised Multi-View Multi-Objective clustering-based gene selection approach de-
veloped by Acharya et al. [87] that uses functional annotation to identify gene markers.
Su et al. [88] used an ML method over functionally annotated genetic information to look
into the immunofunctionomes of ovarian clear cell carcinoma (OCCC). Chen et al. [64] pre-
dicted drug synergy using a deep belief network over genetic expression and an ontological
profile of genes built from literature (Ontology Fingerprints). For clinical decision support,
Shen et al. [19] outlined an architecture that combines Case-Based Reasoning (CBR) with a
Multi-Agent System (MAS) to provide treatment suggestions. [77] used the Multi-threaded
Clinical Vocabulary Server (MCVS) NLP engine to mine data related to genetic markers
from the New England Journal of Medicine (NEJM), with the aim of further supporting the
role of inflammation in cancer. To predict drug targets, Tao et al. [82] used a combination of
ontology reasoning with network-assisted gene ranking over an ontology that represents
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PharmGKB data. Althubaiti et al. [18] used neuro-symbolic feature learning over several
ontologies to predict cancer driver genes. Deep GONet, developed by Bourgeais et al. [89],
is a self-explainable deep learning model where each biological function is represented by
a neuron, that can be used to predict phenotypes. Gao et al. [50] obtained drug inference re-
sults from a treatment-based cancer ontology obtained by Bayesian derivation. Comparing
the same method with and without ontologies, Min et al. [90] used a rule learning system to
predict patients’ ability to perform activities of daily living. Furthermore, to predict cervical
cancer cells from cytological tissue images, Divakar et al. [58] used deep neural networks
(DNN) on their developed ontology. Salvi et al. [11] used a variety of classifiers—Bayesian
networks, artificial neural networks (ANN), support vector machines (SVMs), decision
trees and random forests—in a data analysis model of their NeoMark system that holds
its own semantic model. By comparing several different models, Yan et al. [13] reached
an approach that outperforms the others that uses ontological features with a combined
use of United Decision Trees and Random Forest algorithms. González-Beltránet al. [74]
developed a system for ontology-based queries over the caGrid infrastructure than can be
reused with other service-oriented and model-driven infrastructures. Xi et al. [91] leverages
KG embeddings for tolerating missing data from breast cancer clinical ultrasound reports.
Using graph attention networks (GAT), Zhang et al. [92] developed a method for real-time
inference on a lung KG, using a new ontology.

However, in the end, the most common approach to the use of ontologies in the
analysis of biomedical data was the application of GO in Gene Set Enrichment Analysis
(GSEA) [16,53,73,93–159]. GSEA statistically compares set of genes that share biological
characteristics and interprets their expression data in light of on whether they differ across
defined phenotypes [160] and as such is commonly used in biomedical research to, for ex-
ample, establish candidate genes for further studies.

Table 4. Semantic-focused applications: mining and analyzing multimodal data with ontologies.

Ref Objective Method Input
Ontologies Input Data Tag Cancer

Type

[77] Mining of genetic marker
data in a journal MCVS NLP engine SNOMED CT,

HUGO NEJM ML Various

[74] Ontology-based querying
for cancer research data

Construction of a OWL
Generation facility NCIt caGrid ML Various

[11]

Represent the project
domain and link the
NeoMark data to other
domains

Bayesian Networks, ANN,
SVMs, Decision Trees,
Random Forests

BFO, RO, OBI,
OGMS, HDO N/A ML OSCC

[50] Cancer reclassification
and drug inference

Vazquez Bayesian
clustering algorithm N/A HemOnc.org ML Various

[19] Ontological application in
Clinical Decision Support CBR and MAS UML Patient Health

Records ML Gastric

[82] Prediction of new drug
targets

KEGG functional
PharmGKB drug
annotation. Network
neighborhood modeling
ranking

New ontology,
ATC

PharmGKB, GAD,
CGC, OMIM, NCI,
DrugBank, TTD

ML Colorectal

[39]
Design of a semantic
model for local cancer
registries

Ontology-driven search
filters and aggregates
properties of interest

ICD10,
ICD-O-3,
TNM staging,
SIO, OBI,
OQuaRE

NCRI Filtering Various

[90]

Discover patterns related
to the patients’ ability to
perform daily living
activities

AQ21—multi-task ML and
data mining system UMLS

Surveillance,
Epidemiology,
and End
Results—Medicare
HOS

ML Various
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Table 4. Cont.

Ref Objective Method Input
Ontologies Input Data Tag Cancer

Type

[13]
Automatic annotation of
cancer hallmarks on
biomedical literature

United Decision Tree and
Random Forest MeSH Pubmed abstracts ML Various

[85]
Prediction of microRNA
related to glucocorticoid
resistance

Manual background
literature search. Semantic
searches in resulting
subset

OMIT, NCRO,
MeSH PubMed Filtering Pediatric

ALL

[17] Cancer-related gene
prioritization Fuzzy similarity GO GSEA website,

TCGA, SNP4Disease Similarity PAC,
Breast

[161] Predict drug synergy in
cancer treatment

Stacked Restricted
Boltzmann machine

GO, Ontology
Fingerprints

AstraZeneca-Sanger
Drug Combination
Prediction Challenge,
GDSC, KEGG

ML Various

[18]
Identification of cancer
driver genes with role
distinction

Neuro-symbolic deep
learning on semantic
knowledge representation
on genetic information

CMPO, GO,
MP

Uniprot, MGI
database, Mutational
Cancer Drivers
Database, CPD

ML
Naso-
pharyngeal,
Colorectal

[87]

Identification of relevant,
expression data
non-redundant cancer
gene markers

Unsupervised Multi-View
Multi-Objective clustering GO

Gene expression
datasets from
own lab

ML
Prostate,
DLBCL,
FL

[58]
Predict cervical cancer
cells from cytological
tissue images

DNN New ontology
hospital cervical
cancer data, kaggle
data repository

ML Cervical

[88]

Complement system role
inference from
immunofunctionome
analysis

SVMs GO GEO database ML OCCC

[89] Cancer detection based
on gene expression data Multilayer Perceptrons GO

Affymetrix
HG-U133Plus2 chip
arrays, TCGA

ML Various

[91]

Tolerating data missing in
breast cancer diagnosis
from clinical ultrasound
reports

KG embeddings BI-RADS Ultrasound reports ML Breast

[92] Real-time inference on a
lung KG GAT New ontology KEGG, Uniprot,

DrugBank, TCGA ML Lung

Of the 141 papers selected in this systematic review, 72 employed gene set enrichment
in some manner. Of these, 21 only used GO, and 48 used it in conjunction with other
resources, of which Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
was more common with 45 articles, followed by REACTOME pathway database with 3.
Of this application, we have the example of Tian et al. [131] that profiled the transcriptome
of gastric cancer patients and used the enrichment to confirm the annotation of genes
with digestive system process, secretion and digestion. She et al. [109] used GO and
KEGG in an enrichment analysis with the overall objective of finding the importance of
C reactive protein and its interactors in HCC. Moreover, developing research in the same
cancer, Agioutantis et al. [16] also used enrichment with both GO and REACTOME in their
pursuit of deciphering molecular heterogeneity and drug responsiveness by exploring the
molecular diversity of tumors and drug sensitivity. No table is provided for this type of
use since the methodology is standardized.

6. Conclusions

Over the last two decades, ontologies gained traction in biomedical research in general,
and cancer research in particular, enabling FAIR data (findability, accessibility, interoper-
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ability and reusability) [162], supporting data integration and analysis, and facilitating
data interpretation and data mining. Presently, we are witnessing the emergence of the
knowledge graph paradigm, whereby large volumes of heterogeneous data are brought
together under a single holistic ontological knowledge model. Yet, there are still a number
of open challenges to the development and application of ontologies and knowledge graphs
for cancer research.

One major challenge lies in reusing existing ontologies. With over 800 biomedical
ontologies publicly available in BioPortal [3], most biomedical subjects are covered by one
or more ontologies, and it might seem foolish not to reuse them. However, the fact that
there are so many ontologies and many overlap in domain makes it difficult to navigate
the ontology landscape and select which ones to reuse. Moreover, many ontologies were
typically developed with a singular purpose in mind, and have a particular perspective
on the domain they model which may be unsuited for other purposes. This means that
additional care is needed when selecting ontologies to reuse, to make sure that their
perspective on the domain is compatible with the new use case. Last but not least, it may
be the case that existing ontologies are no longer actively maintained and kept up to date,
which in a dynamic domain like biomedicine, will render them useless in a short time
span. Ultimately, it may very well be that no existing ontology is compatible with or usable
in the new use case, and that a new ontology must be developed, which indeed is the
main reason why there are presently so many ontologies. Thus, to avoid perpetuating the
problem, new ontologies should be designed circumspectly, taking into account possible
other applications within their specific domain [30].

Another challenge lies in the disconnection between data and ontologies, due to the
fact that, in the large majority of cases, biomedical ontologies do not include data. In fact,
few biomedical ontologies were designed with the prospect of directly encoding data,
as the biomedical research community has, for the most part, viewed ontologies merely as
abstract knowledge models used for classification or at best annotation of data, with the
data kept in relational databases or even data files. This is tied to the reusability challenge,
as existing ontologies may not be reusable for use cases such as constructing knowledge
graphs if they are unsuited to being instantiated. Furthermore, it means that construct-
ing biomedical knowledge graphs to support cancer research requires (semi-)automated
approaches to integrating the data with the knowledge model, which, considering the
variety and heterogeneity of relevant biomedical data sources, can be burdensome [163].
However, as the knowledge graph paradigm becomes more popular, we may witness a
shift in the biomedical community towards storing data in graph databases rather than
relational databases.

Tied to the two previous challenges is the challenge of integrating multiple ontologies,
a necessity for constructing holistic knowledge graphs for cancer research, due to the
multidisciplinarity of the domain. Although there are comprehensive ontologies on cancer
(e.g., NCIt), available data is often connected to more specialized ontologies (e.g., GO,
MeSH), eliciting the need to integrate them. The problem is that, due to their different
perspectives, overlapping ontologies may be semantically irreconcilable [164], which may
impede their joint use. Thus, the costs of reusing existing ontologies may outweigh their
benefits, prompting the development of an independent ontological knowledge model for
a knowledge graph, ideally with mappings to existing ontologies to ensure interoperability
and facilitate data integration.

The benefits of developing holistic knowledge graphs that integrate all the data
relevant for cancer research are deeply tied to the potential of AI approaches to unlock
knowledge conducive to better diagnostics or treatments. Knowledge graphs can serve
as sources of background knowledge to AI approaches, compensating for missing values
in the data, they can support image classification and NLP approaches to enrich image or
textual data, which in turn can improve the performance of AI approaches relying on that
data, and they provide a means to afford explainability to AI approaches [165], tackling the
black-box problem of state-of-the-art AI methods.
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The immense potential of ontologies and the knowledge graph paradigm to support
cancer research data management and analysis is increasingly recognized by the oncology
research community as an essential building block of the P4 medicine vision (preventative,
predictive, personalized and participatory).
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BCFO Breast Cancer Fuzzy Ontology
BCO Breast Cancer Ontology
BFO Basic Formal Ontology
BRFSS Behavioral Risk Factor Surveillance System
BTL2 BioTopLite 2
caDSR Cancer Data Standards Repository
CBR Case-Based Reasoning
CCL Cancer Cell Ontology
CCTOO Cancer Care Treatment Outcome Ontology
CDEs Common Data Elements
CGC Cancer Gene Census
CHV Consumer Health Vocabulary
CL Cell Ontology
CLO Cell Line Ontology
CMPO Cellular Microscopy Phenotype Ontology
COBRA COnsortium for BRachytherapy data Analysis
COnQueSt Cancer Ontology Querying System
CPD Cellular Phenotype Database
CTCAE Common Terminology Criteria for Adverse Events
CTG ClinicalTrials.gov
DICOM Digital Imaging and Communications in Medicine
DL Description Logic
DLBCL Diffuse Large B Cell Lymphoma
DO Disease Ontology
EFO Experimental Factor Ontology
ENCR European Network of Cancer Registries
ENCR core-data European Cancer-Registry core-data ontology
FCDS Florida Cancer Data System
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FL Follicular Lymphoma
FMA Foundational Model of Anatomy
FOAF Friend of a Friend ontology
FOORC Fuzzy Ontology for Obesity-Related Cancer
GAD Genetic Association Database
GCO Gastric Cancer Ontology
GDSC Genomics of Drug Sensitivity in Cancer
GO Gene Ontology
HDO Human Disease Ontology
HCC Hepatocellular Carcinoma
HOS Health Outcomes Survey
HUGO Gene Nomenclature Human Genome Organization Gene Nomenclature

ICD-9-CM
International Classification of Diseases Ninth Revision Clinical
Modification

ICD-O-3 International Classification of Disease for Oncology 3rd edition
IMI Interactive Mapping Interface
IOBC Interlinking Ontology for Biological Concepts
KCR Kentucky Cancer Registry
KEGG Kyoto Encyclopedia of Genes and Genomes
KG Knowledge Graph
LCO Liver Cancer Ontology
LCKGO Lung Cancer Knowledge Graph Ontology
LINCS Library of Integrated Network-based Cellular Signatures
lncRNAs long non-coding RNAs
LOINC Logical Observation Identifier Names and Codes
LTR Louisiana Tumor Registry
LuCO Lung Cancer Ontology
MAS Multi-Agent System
MCVS Multi-threaded Clinical Vocabulary Server
MedDRA Medical Dictionary for Regulatory Activities
MeSH Medical Subject Headings
MGI Mouse Genome Informatics
ML Machine Learning
MP Mammalian Phenotype ontology
MuEVo Multi-Expertise Vocabulary
NAACCR North American Association of Central Cancer Registries
NCI National Cancer Institute
NCIt National Cancer Institute Thesaurus
NCRI National Cancer Registry Ireland
NCRO Non-Coding RNA Ontology
NEJM New England Journal of Medicine
NLP Natural Language Processing
OBDA Ontology-Based Data Access
OBI Ontology for Biomedical Investigators
OCCC Ovarian clear cell carcinoma
OCRV Ontology for Cancer Research Variables
OCRSEV Ontology of Cancer Related Social-Ecological Variables

OD-ATTEST
Ontology for the Documentation of vAriable selecTion and daTa
sourcE Selection and inTegration

ODVDS Ontology for Documentation of Variable and Data Source
OGMS Ontology of General Medical Science
OIE Open Information Extraction
OMIM Online Mendelian Inheritance in Man
OMIT Ontology for MicroRNA Target
OntHCC Ontology of Hepatocellular Carcinoma
OQuaRE Ontology Quality Evaluation Framework
OSCC Oral Squamous Cell Carcinoma
OWL Web Ontology Language
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PAC Prostatic Adenocarcinoma
POCS Profile Ontology for Cancer Survivors
QHIO Quantitative Histopathological Imaging Ontology
RO Relation Ontology
ROS Radiation Oncology Structures
SCRS Semantic Cancer Registry System

SEER-MHOS
Surveillance, Epidemiology, and End Results—Medicare Health
Outcomes Survey

SIO Semanticscience Integrated Ontology
SKOS Simple Knowledge Organization System
SNOMED CT Systematized Nomenclature of Medicine Clinical Terms
SNOMEDint SNOMED International
SOSW Sentiment Ontology for Social Web
SVMs Support Vector Machines
SWIT Semantic Web Integration Tool
TCGA The Cancer Genome Atlas
TEO Time Event Ontology
TNM Tumor–Node–Metastasis
TNM-O Tumor–Node–Metastasis Ontology
TOCSOC Temporal Ontology for Comparing the Survival Outcomes
TTD Therapeutic Target Database
UMLS Unified Medical Language System
USCB United States Census Bureau
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