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Simple Summary: In 2016, the World Health Organization (WHO) recommended the incorporation
of molecular parameters, in addition to histology, for an optimal definition of the central nervous
system (CNS) tumors. Gliomas, being among the most common types of CNS tumors, have distinct
clinical outcomes and treatment strategies based on different tumor grades, isocitrate dehydrogenase
(IDH) mutation, and 1p/19q codeletion statuses. This paper uses radiomics models to noninvasively
predict the glioma subtype with clinical Magnetic Resonance Imaging (MRI) images. Different
settings in the radiomics pipeline were investigated to achieve optimal performance, together with a
better understanding of the exact role of each setting in the model performance. The characteristics of
the radiomic features that best distinguish the glioma subtypes were also analyzed. This paper not
only provides a radiomics pipeline which works well for predicting the glioma subtype, but it also
contributes to the radiomics model development and interpretability.

Abstract: Gliomas are among the most common types of central nervous system (CNS) tumors. A
prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the
treatment strategy. The objective of this study was to develop a radiomics pipeline based on the
clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as
defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q
codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low
Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM)
datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were
investigated to improve the classification, including the Z-score normalization, the feature extraction
strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat
harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached
an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on
the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions.
The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935
(±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to
0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion
status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from
0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features
that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status,
respectively. Apart from the promising prediction of the glioma subtype, this study also provides a
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better understanding of the radiomics model development and interpretability. The results in this
paper are replicable with our python codes publicly available in github.

Keywords: radiomics; gliomas; glioblastomas; tumor grade; IDH mutation; 1p/19q codeletion

1. Introduction

Gliomas are among the most common primary central nervous system (CNS) tumors
in the brain [1]. The 2016 World Health Organization Classification of Tumors of the Central
Nervous System (2016 CNS WHO) modified the classification criteria of gliomas from
its 2007 version, by now defining the glioma entity based on its molecular status and
tumor histology [2]. Figure 1 in paper [2] shows a simplified decision tree of the glioma
classification based on the 2016 CNS WHO. Apart from the not otherwise specified (NOS)
subtype, there are five subtypes of gliomas classified according to tumor histology, isoci-
trate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. Astrocytoma,
oligoastrocytoma, and oligodendroglioma, which all belong to the low-grade gliomas
(LGG, with WHO grades I, II, and III), follow the same classification branch, in contrast to
glioblastoma (Grade IV), which follows another. Thus, we propose to simplify the afore-
mentioned criteria by relying on the tumor grade instead of the histology and summarize
the classification of gliomas based on tumor grade, IDH mutation, and 1p/19q codeletion
status, which yields Figure 1.

The five different subtypes of gliomas (according to different tumor grades, IDH
mutation, and 1p/19q codeletion statuses) are characterized by distinct clinical outcomes
and, thus, benefit from different treatments. For example, if one patient is diagnosed with
low-grade glioma (LGG), then the IDH-mutant and 1p/19q-codeletion status indicates the
most favorable prognosis, while IDH mutant without 1p/19q codeletion corresponds to an
intermediate prognosis, and IDH wild type leads to the poorest outcomes that are almost
similar to the prognosis of glioblastoma [3]. If a patient is diagnosed with glioblastoma, also
known as glioblastoma multiforme (GBM), then the IDH-mutant cases usually have better
prognoses than those with IDH wild type [4]. Notably, although not considered in this paper,
the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is also one
of the most important biomarkers for glioblastomas. For example, patients with secondary
glioblastoma have the best response to temozolomide (standard of care for glioblastoma in
the first-line setting [4]) if the tumor is IDH-mutated and MGMT-methylated [5].

Tumor grade

IDH status 

1p/19q 
codeletion
status

Low-grade gliomas (grade I, II, III) Glioblastomas (grade IV)

Gliomas

IDH mutant IDH mutantIDH wild-type IDH wild-type

1p/19q intact1p/19q codeletion

(Subtype 1) (Subtype 2)

(Subtype 3) (Subtype 4) (Subtype 5)

Figure 1. Classification of the glioma tumors used in this paper. This is a simplified version of the
classification criteria of gliomas from the 2016 CNS WHO [2]. The subtype numbers 1 to 5 represent
the five different glioma subtypes. They can be summarized, respectively, as subtypes “1—LGG,
IDH mutant, 1p/19q codeleted”, “2—LGG, IDH mutant, 1p/19q intact”, “3—LGG, IDH wild type”,
“4—GBM, IDH mutant”, and “5—GBM, IDH wild type”.
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Therefore, detecting such molecular signatures and tumor subtypes is crucial for the
diagnosis, prognosis, and treatment planing of glioma patients. Stereotactic brain biopsy
is the standard of care procedure for the diagnosis of brain tumors. Nevertheless, it is
invasive with the risk of inter-reader variability and sampling errors [6]. Therefore, it is
important to propose a fast, noninvasive, efficient, and reliable approach for the prediction
of tumor grade and molecular characterization in gliomas.

Radiomics is a promising and plausible alternative method, which has become in-
creasingly popular in recent years [7–9]. A radiomics-based approach extracts the radiomic
features from the clinical medical images, then fits these features and some other clinical in-
formation into a machine learning model, aiming to solve a specific medical problem. When
genomic data are involved in radiomics, the latter is then termed as radiogenomics. Previ-
ous researches have evaluated the role of radiomics in predicting the tumor grade [10–18],
the IDH mutation status [19–29] , the 1p/19q codeletion status [30–33], or all three glioma
labels [34,35].

In this paper, we also used the radiomics method to analyze the tumor grade, IDH
mutation, and 1p/19q codeletion status of the gliomas and, thus, to predict the glioma
subtype as defined by the 2016 CNS WHO. This task can be regarded as a multilabel
classification task (each tumor can have three labels: tumor grade, IDH mutation status,
and 1p/19q codeletion status), or a multiclass classification task (five subtypes, as we show
in Figure 1). A common method to perform such multilabel or multiclass classification tasks
involves converting it into a list of binary classification tasks. Specifically, here, we tackle
three binary classification tasks, namely, (1) LGG vs. GBM; (2) IDH mutant vs. IDH wild
type; and (3) 1p/19q codeletion vs. 1p/19q intact. Based on the prediction results obtained
with these three binary classification tasks, we then predict the tumor subtype based on the
criteria in Figure 1. In contrast to the previous publications, we perform a deeper analysis
to assess the influence of the various factors in the radiomics pipeline on the classification
performance. In detail, we study the impact of the intensity normalization, the radiomics
feature extractor, the image filters applied to the medical images before extracting the
features, the introduction of the clinical information, the ComBat harmonization method,
etc. As the three binary classification tasks may be dependent and correlated, we also linked
these tasks into a classifier chain to see whether it would help improve the performances.

2. Materials and Methods
2.1. Datasets

The public retrospective datasets The Cancer Genome Atlas Glioblastoma Multi-
forme (TCGA-GBM) [36,37] and The Cancer Genome Atlas Low Grade Glioma (TCGA-
LGG) [37,38] were used in our paper. They were used to develop the radiomics models,
to predict the tumor grade, IDH mutation status, and 1p/19q codeletion status of the
glioma patients, each corresponding to a binary classification task. We introduce hereafter
the Magnetic Resonance Imaging (MRI) images and the molecular status of the datasets,
and then describe how we clean the data before the analysis.

2.1.1. Clinical MRI Scans

The clinical MRI scans of the TCGA-GBM and TCGA-LGG datasets were downloaded
from the Cancer Imaging Archive (TCIA [39], https://www.cancerimagingarchive.net/,
accessed on 18 July 2021) platform, which de-identifies and hosts numerous medical
images of different cancers for public download purposes. We downloaded the data of
243 glioma patients from the TCIA, including 135 patients (102 train data and 33 test data)
from the TCGA-GBM dataset and 108 patients (65 train data and 43 test data) from the
TCGA-LGG dataset.

For each patient, four 3D-MRI images representing four different MRI sequences are
available, including the native T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 fluid attenuated inversion recovery (T2-FLAIR) volumes. These MRI
images were originally collected from multiple institutions, using different MRI scanners

https://www.cancerimagingarchive.net/
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and different clinical protocols. Then, before being published in the TCIA platform, these
MRI images were preprocessed—they were reoriented to the left posterior superior (LPS)
coordinate system, co-registered to the same anatomical template (SRI24 [40]), resampled
to a 1 × 1 × 1 mm voxel resolution, and then skull-stripped [37]. Note that, as mentioned
in [37], the bias field correction method should not be applied because it may mistake the
tumor region for intensity inhomogeneity artifacts and, thus, obliterate the T2-FLAIR signal.

Besides the four MRI volumes, the segmentation mask corresponding to the four co-
registered MRI scans is also available for each patient. Two different segmentation masks are
provided here, (a) with the “_GlistrBoost.nii.gz” suffix representing the computer-aided segmen-
tation masks achieved by GLISTRboost [41]; (b) with the “_GlistrBoost_ManuallyCorrected.nii.gz”
suffix, representing the manually corrected segmentation labels, which are corrected on
the basis of the automatic segmentation masks by GLISTRboost [37]. In our analysis, we
chose the manually corrected segmentation mask when available, otherwise we used the
GLISTRboost segmentation mask. We show an example slice of the four MRI volumes and
the corresponding segmentation mask of one patient in Figure 2.

Each segmentation mask covers one glioma tumor, with different label values rep-
resenting different tumor parts, namely, the necrotic/non-enhancing tumor core (NCR
or NET, label = 1), the peritumoral edematous/invaded tissue (ED, label = 2), and the
GD-enhancing tumor (ET, label = 4) [37,42]. Moreover, the combination of the necrosis
(NCR) part and the enhancing tumor (ET) part is named as the tumor core (TC), and the
whole tumor (WT) contains the tumor core (TC) and the peritumoral edema (ED) [42].
The segmentation image in Figure 2 shows these subregions of a glioma tumor in different
colors, as an example. Specifically, some glioma tumors in our dataset may not have an
enhancing tumor (ET) or an edema (ED) zone.

Figure 2. The four MRI sequences (T1, T1Gd, T2, T2-FLAIR) and the corresponding segmentation
mask of an example patient “TCGA-02-0047”. The whole tumor (WT) consists of the necrotic part
(NCR, red color), the enhancing tumor part (ET, yellow color), and the peritumoral edematous tissue
(ED, green color). The tumor core (TC) consists of the necrotic part (NCR, red color) and the enhancing
part (ET, yellow color).

2.1.2. Clinical Information and Molecular Status

For patients involved in the TCGA-GBM and TCGA-LGG datasets, their molecular
status (tumor grade, IDH mutation status, 1p/19q codeletion status, etc.) and clinical
information (age, sex) were downloaded from The Cancer Genome Atlas (TCGA, https:
//www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga, ac-
cessed on 18 July 2021) platform using TCGAbiolinks and R codes.

2.1.3. Data Cleaning

The downloaded clinical MRI scans, the clinical information (age, sex), and the target
variables (the tumor grade, IDH mutation, and 1p/19q codeletion status) can be concate-
nated by the patient ID. Prior to using the data in radiomics models, for further analysis,
we cleaned them as follows:

• Dropped two patients (“TCGA-06-0177” and “TCGA-CS-4941”) because of their very
poor image qualities and abnormal image histograms.

• Dropped patient “TCGA-EZ-7265A” because the patient ID could not be found in the
TCGA platform.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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• Dropped 23 patients who lacked IDH mutation statuses. Among the 23 patients,
22 patients were of the GBM type and 1 was of the LGG type.

• Dropped five patients who lacked the 1p/19q codeletion status. Among the five patients,
four patients were GBM with the IDH wild type, one patient was GBM with the IDH
mutant.

After dropping these patients, 212 patients were left for our analysis to predict the
glioma subtype. We summarize the repartition size of the dataset regarding the tumor
grade, IDH mutation status, and 1p/19q codeletion status in Table 1. It can be seen that,
in our dataset, most low-grade gliomas were the IDH-mutant, while most glioblastomas
were IDH wild type. Only 27 out of the 212 glioma patients were 1p/19q-codeleted,
and they were all from the IDH-mutant low-grade gliomas.

Table 1. Summary of the repartition size of the dataset regarding the tumor grade, IDH mutation
status, and 1p/19q codeletion status. Each value represents the number of patients of that glioma
type in our dataset.

IDH Mutant IDH Wild Type
All

1p/19q Codeletion 1p/19q Intact 1p/19q Codeletion 1p/19q Intact

GBM 0 4 0 103 107

LGG 27 57 0 21 105

All 27 61 0 124 212

The 212 patients were then randomly split into the train and test data, with the ratio
of 7:3, in a stratified fashion (stratified by the five glioma subtypes), keeping the same
data distributions in the train and test data. The detailed sizes of the train and test data
regarding the different target variables are listed in Appendix A.1. The train data were
used for the radiomics pipeline tuning, model selection, and hyperparameter tuning with a
five-fold cross-validation, while the hold-out test data were used to test the performance of
the final model.

2.2. Image Preprocessing

As stated previously, the clinical MRI scans have already been preprocessed, including
reorientation, co-registration, resampling, and skull-stripping. Li et al. [43] demonstrated
that the intensity normalization would help relieve the nonbiological variations at the image
level, which were introduced by different MRI scanners or protocols when collecting the im-
ages. Thus, we show the image histograms and compare the radiomics model performance
before and after applying Z-score intensity normalization in the following section.

2.3. Extract Radiomic Features

We extracted 106 radiomic features using the python package Pyradiomics [44] for
each three-dimensional volume of interest (VOI), consisting of 14 3D shape-based features,
18 first-order features, 16 gray level run length matrix (GLRLM) features, 16 gray level
size zone matrix (GLSZM) features, 14 gray level dependence matrix (GLDM) features,
5 neighbouring gray tone difference matrix (NGTDM) features, and 23 gray level co-
occurrence matrix (GLCM) features. We extracted these radiomic features from all four
MRI sequences (T1, T1Gd, T2, and T2-FLAIR). Notice that the shape features are the same
for these four co-registered MRI scans, so for one VOI, we extracted the shape features only
once from the four scans for the same patient.

As shown in Figure 2, the whole tumor consists of different parts of the tumor, includ-
ing the tumor core (necrosis and enhancing tumor parts) and edema. Thus, the radiomic
features could be extracted from five possible subregions, namely, necrosis (NCR), enhanc-
ing tumor (ET), edema (ED), tumor core (TC), and whole tumor (WT). However, some
tumors do not have ET or ED parts, so instead of extracting radiomic features from ET or
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ED parts, we used two indicator columns to provide information as to whether ET or ED
exist in a glioma tumor. We then compared the classification performances of different
feature strategies in the model tuning, Section 3.1.2.

2.4. Basic Radiomics Pipeline

In order to predict the glioma subtype, we trained three radiomics models to predict
the glioma grade, IDH mutation status, and 1p/19q codeletion status, each corresponding
to a binary classification task. First, we used the following basic radiomics pipeline for
binary classification as a benchmark, and then gradually tuned the pipeline to improve the
classification performance.

(1) Medical images: we used the clinical MRI scans without any intensity normalization
or image filters for the radiomics feature extraction.

(2) Feature extraction: for each patient, we extracted the radiomic features from the whole
tumor (WT) volume in the four MRI scans (T1, T1Gd, T2, T2-FLAIR).

(3) Feature scaling: we applied a robust scaler [45] to scale features robustly to outliers.
(4) Feature selection: we used the ANOVA F-test as the feature selection method because

of its high efficiency and good performance. We set the number of selected features
as a hyperparameter to be tuned from set {20, 40, 60, 80, 100} by random search and
five-fold cross validation. The highly correlated features were not "dropped out",
because this step significantly increased the training time without obviously improving
the performance in our experiments.

(5) Classifiers: seven classifiers were compared, namely, support vector machine (SVM),
perceptron, logistic regression, decision tree, random forest, extra trees, and gradient
boosting. The hyperparameters of each classifier were tuned automatically by a ran-
dom search method (50 parameter settings were randomly sampled) and five-fold
cross validation. Some specific hyperparameters were included in this hyperparam-
eter tuning process to avoid overfitting, such as the regularization methods and the
regularization parameters used in SVM, perceptron, and logistic regression, and the
parameters, such as “max_depth”, “min_samples_split” and “min_samples_leaf” for
the tree-based methods. The area under the receiver operating characteristic curve
(ROC AUC, or AUC for simplicity) was used as the score metric in the random search.
The classifier that achieved the highest mean cross-validation AUC among the seven
classifiers was chosen as the final classifier.

2.5. Tuning the Radiomics Pipeline

We gradually tuned the basic radiomics pipeline defined above to obtain better classifi-
cation performance. First, Z-score intensity normalization was applied to the MRI scans to
see how it influences the MRI images and the radiomics models. Second, different feature
extraction strategies were compared, such as extracting features only from the whole tumor
region, or from the necrosis, tumor core, and whole tumor regions, or whether incorpo-
rating the ED and ET indicator columns. Third, since there are numerous image filters
available in Pyradiomics, including wavelet, Laplacian of Gaussian (LoG), square, square
root, logarithm, exponential, gradient, and local binary pattern, we selected the one that
performed the best for each task. Fourth, clinical information, such as age and sex, were easy
to collect from the patients, so we tested whether to incorporate them into the radiomics
models. After that, ComBat [46], a popular harmonization method in radiomics to remove
the nonbiological scanner effects, was applied. Then, strategies for data imbalance were
applied to deal with the data imbalance present in the 1p/19q codeletion prediction task.
Lastly, the prediction of the glioma grade, IDH mutation, and 1p/19q codeletion may be
correlated. Thus, inspired by the classifier chain [47], we linked the three classification tasks
into a chain, and used the predicted labels of the former classifiers in the chain as additional
input for the current classifier, to see whether it could help improve the performance.
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3. Results

All of the experiments and the computational statistics provided in this section were
performed using python codes, available at https://github.com/Yingping-LI/Radiomics
(accessed on 29 March 2022) for reproducibility purpose.

3.1. Pipeline Tuning

Based on the basic radiomics pipeline defined in Section 2.4, we now discuss how
each modification in the radiomics pipeline influences the performance of the classification
tasks. All of the random seeds involved in this subsection were set to 2021 to make our
results reproducible. Box plots were used for better illustrative and intuitive comparisons
among the abundant experiments, where the values in the y-axis represent the AUC values
reported on the validation sets in the cross validation process. In each box plot, the median
cross-validation AUC is marked by a median line with the accurate value displayed over it,
while the mean cross-validation AUC is marked by green triangles. The diamond-shape
points located outside the whiskers of the box plot represent the outliers.

3.1.1. Impact of Z-Score Intensity Normalization

We first present the histograms of the MRI images before and after Z-score intensity
normalization (Appendix A Figure A1). The Z-score normalization helps make the image
histograms more consistent among the patients. We investigate how Z-score normalization
influenced the radiomics model performances for predicting the glioma grades and gene
statuses. As shown in Figure 3, when predicting the tumor grade, IDH mutation status, and
1p/19q codeletion status, the radiomic features extracted from the Z-score normalized images
always had higher median/mean cross-validation AUC values than those from the original
images for almost all of the classifiers. This is a strong indicator that the features extracted
from the Z-score normalized images have stronger “feature ability”, to predict the glioma
subtype. Thus, in the following experiments, we retained Z-score as a preprocessing method
applied to MRI images before extracting the radiomics features.

(a) GBM vs. LGG.

(b) IDH mutant vs. IDH wild type.

Figure 3. Cont.

https://github.com/Yingping-LI/Radiomics
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(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 3. Impact of the Z-score normalization in predicting (a) tumor grade, (b) IDH mutation status,
and (c) 1p/19q codeletion status.

3.1.2. Impact of the Feature Extraction Strategy

As shown in Figure 4, different feature extraction strategies are compared for their
radiomic model performances. Obviously, using radiomic features extracted from three
subregions (NCR, TC, WT) has a significant improvement of the median/mean cross-
validation AUC values than just using features extracted from the WT region for almost all
the classifiers when predicting the tumor grade. When predicting the IDH mutation and
1p/19q codeletion status, incorporating the additional NCR and TC parts for extracting
radiomic features does not significantly influence the prediction performances. Thus,
to keep consistent for the three binary classification tasks, we chose to use the radiomic
features extracted from NCR, TC, and WT parts, with two indicator columns telling whether
a glioma tumor has ED or ET parts, so as to include more information without damaging
the performances.

To conclude, for each patient, 1146 radiomic features (42 shape features, 216 first-order
features, and 888 texture features) and 2 additional indicator features were extracted and
fitted into the proposed radiomics pipeline, which included the ANOVA F-test feature se-
lection.

(a) GBM vs. LGG.
Figure 4. Cont.
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(b) IDH mutant vs. IDH wild type.

(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 4. Impact of different feature extraction strategies on predicting (a) tumor grade, (b) IDH
mutation status, and (c) 1p/19q codeletion status. WT means using the radiomic features extracted
from the whole tumor, and NCR-TC-WT means using features extracted from three subregions
including necrosis, tumor core, and whole tumor. “With indicator columns” means two indicator
columns are included as additional features to tell whether the glioma tumor has ED or ET parts.

3.1.3. Impact of Image Filters

In the above experiments, we used the MRI images without any image filters applied
before extracting the radiomic features. We tested all of the image filters available in
Pyradiomics to see how they could affect the prediction of the tumor grade, IDH mutation,
and 1p/19q codeletion status of the gliomas. As shown in Figure 5, the image filters have an
obvious impact on the radiomics model performances. Thus, for each binary classification
task, we chose the one that achieved the relatively best performances for almost all of the
classifiers, namely, the “original” image filter for predicting tumor grade, “square root” for
predicting IDH mutation status, and “Laplacian of Gaussian (LoG)” for predicting 1p/19q
codeletion status.

(a) GBM vs. LGG.

Figure 5. Cont.
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(b) IDH mutant vs. IDH wild type.

(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 5. Impact of different image filters for predicting (a) tumor grade, (b) IDH mutation sta-
tus, and (c) 1p/19q codeletion status of the gliomas. Notably, the wavelet image filter has eight
decompositions defined by using different high or low pass filters in each dimension. We chose to
display “Wavelet-LLL” here because of its best performance compared to the other wavelet filters in
our experiments.

3.1.4. Impact of the Age and Sex Information

Apart from the radiomic features extracted from the clinical MRI scans, other clinical
information, such as age and sex, were easy to collect from the patients. Thus, we also
incorporated this information in the radiomics models to see whether it improved the
performances or not. As shown in Figure 6, the age information helps to improve the
prediction of the IDH mutation status slightly for almost all of the classifiers, but it does not
have a clear influence on the prediction of the tumor grade and 1p/19q codeletion status.
Besides the age information, adding the sex feature does not further improve the prediction
performances. Hence, we did not incorporate the sex information but only the patient
age, as an additional feature in our radiomics models to predict the IDH mutation status.
The age information was also included when predicting the tumor grade and 1p/19q
codeletion status, for better consistency among the three classification tasks.
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(a) GBM vs. LGG.

(b) IDH mutant vs. IDH wild type.

(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 6. Impact of incorporating the age and sex information as additional features to predict
(a) tumor grade, (b) IDH mutation status, and (c) 1p/19q codeletion status of the gliomas.

3.1.5. Impact of ComBat Harmonization

The TCGA-GBM and TCGA-LGG datasets used in our paper include patients collected
from different institutions with different image scanners or clinical protocols; thus, the
nonbiological scanner effects might be introduced. We applied Z-score normalization on
the MRI images as a preprocessing step; however, according to the conclusion of our recent
study [43], only applying the intensity normalization might not be enough for radiomics
models. Thus, we tested the ComBat method to see whether it helped improve the feature
ability of the radiomic models. As displayed in Figure 7, ComBat does not help in any of the
three binary classification tasks. None of the ComBat variants (namely, standard ComBat
without using empirical Bayes (EB), parametric ComBat using parametric EB, and non-
parametric ComBat using nonparametric EB), appeared to help improve the median/mean
cross-validation AUC values significantly, whether using “magnetic field strength” or “site
label” as scanner setting labels, or keeping the age and sex information during harmoniza-
tion. Thus, we decided not to use a ComBat method in the following experiments.
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(a) GBM vs. LGG.

(b) IDH mutant vs. IDH wild type.

(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 7. Impact of ComBat harmonization on predicting (a) tumor grade, (b) IDH mutation status,
and (c) 1p/19q codeletion status of the gliomas. Here “site” corresponds to using the institution/site
label as the scanner setting label during harmonization, while “3T” represents using the magnetic
field strength (1.5T or 3T) as a scanner setting label. “With covariates” means keeping the age and sex
information during the harmonization process.

3.1.6. Impact of Data Imbalance Strategy

When predicting the 1p/19q codeletion status, the data are highly imbalanced (27
1p/19q codeleted patients vs. 185 1p/19q intact patients). When tuning the hyperparam-
eters for the classifiers using the random search method, we already added the possible
regularization parameters. Here, we further applied some other data imbalance strategies,
such as setting the class weights or using data sampling-based methods (random under-
sampling/over-sampling, SMOTE [48], SVM-SMOTE [49], Borderline-SMOTE [50], etc.)
to deal with the data imbalance. The experiment results are shown in Figure 8. Surpris-
ingly, these data imbalance methods did not further improve the prediction of the 1p/19q
codeletion status significantly in our dataset.
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Figure 8. Impact of further data imbalance strategies on predicting the 1p/19q codeletion status
of the gliomas. Here, the possible regularization was already applied for each classifier, so “base”
means not further using any other data imbalance strategies. “SMOTE and random under-sampling”
represents the combination of SMOTE and random under-sampling method.

3.1.7. Impact of Using Classifier Chain Idea

In the above experiments, we considered the problem of classifying the glioma sub-
types as three independent binary classification tasks. However, the three labels we are
predicting may be highly correlated. For example, most of the LGG tumors are IDH
mutants and most of the GBM tumors are IDH wild type. Therefore, we now consider
using the classifier chain idea and linking these three binary classification tasks as a chain,
namely, (1) predicting tumor grade→ (2) predicting IDH mutation status→ (3) predicting
1p/19q codeletion status. When predicting the current label, the results of all the previous
classifiers in the chain will be added as additional features. First, we compared if the
performance would improve if the true labels of the former classifiers were given. That is,
(1) when predicting the IDH mutation status, the true tumor grade is given; and (2) when
predicting 1p/19q codeletion status, both the true tumor grade and true IDH mutation
status are given. The experiment results in Figure 9 show that, if the true label of the tumor
grade and IDH mutation status are given, then there will be a significant improvement
of the median/mean cross-validation AUC value for predicting the 1p/19q codeletion
status. Similarly, if the true tumor grade is known, then the median/mean cross-validation
AUC value for predicting the IDH mutation status also improves, obviously. However,
in most cases, both the tumor grade and IDH mutation status are unknown and needed to
be predicted. Therefore, in the following experiments, we retained the predicted labels of
the former classifiers instead.

(a) IDH mutant vs. IDH wild type.

Figure 9. Cont.
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(b) 1p/19q codeleted vs. 1p/19q intact.

Figure 9. Comparison of whether it helps to improve the performances by using the classifier chain
idea, with the true labels of previous classifiers given. (a) Predicting IDH mutation status of the
gliomas; (b) predicting 1p/19q codeletion status of the gliomas.

3.2. Summarized Pipeline

In the above subsection, we tuned the settings in the radiomics pipeline. In this
subsection, we will summarize the final fine-tuned radiomics pipeline for classifying the
gliomas. Notably, the analyses and conclusions in Section 3.1 are based on the fixed random
seed 2021. When tuning the settings in the pipeline, we looked at the overall performances
of all seven classifiers to avoid a “lucky” choice. Now, after fine-tuning the settings in the
radiomics pipeline, we used more random seeds to test the robustness of our fine-tuned
radiomics pipeline. A total of 50 integers in (0, 5000) were randomly sampled with the
fixed random seed 2021 to compose a set of random seeds. By splitting the train/test
data and fitting the radiomics pipeline with these 51 random seeds (including 2021), we
achieved 51 mean (standard deviation) cross-validation AUC values, each corresponding
to an experiment with a chosen fixed random seed. We compared the 51 mean (standard
deviation) cross-validation AUC values before and after the pipeline tuning process and
display their distributions by a violin plot in Figure 10. Obviously, by tuning the settings
in the radiomics pipeline, the mean cross-validation AUC improved significantly, and
the standard deviation of the cross-validation AUC decreased, for almost all seven classifiers
and for all three binary classification tasks. This indicates that our pipeline tuning process
helps to improve the classification performance significantly and robustly with the obvious
higher mean and lower standard deviation of the cross-validation AUC, and is not just a
"lucky choice" of a fixed random seed.

(a) GBM vs. LGG.

(b) IDH mutant vs. IDH wild type.

Figure 10. Cont.
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(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 10. Distribution (displayed by violin plot, box plot, and strip plot) of the mean and STD
cross-validation AUC values before and after the pipeline tuning process, for predicting (a) the tumor
grade, (b) IDH mutation status, and (c) 1p/19q codeletion status of the gliomas. Each reported point
corresponds to a sample random run within 51 random seeds.

We summarized the performance of the seven classifiers on 51 independent random
runs, to assess the robustness and efficacy of our classifiers for each task. The average and
the 95% confidence interval (CI) of the mean and standard deviation (STD) cross-validation
AUC values computed over 51 random seeds before and after the pipeline tuning process
are listed in Table 2. From the table, we can easily conclude that, after tuning the settings in
the pipeline, SVM achieved the best performance for predicting the tumor grade, with an
average “mean cross-validation AUC” of 0.9443 (95% CI: [0.9403, 0.9483]) and an average
“STD cross-validation AUC” of 0.0372 (95% CI: [0.0348, 0.0395]). When predicting the IDH
mutation labels, logistic regression works the best, with an average “mean cross-validation
AUC” of 0.9445 (95% CI: [0.9408, 0.9481]) and an average “STD cross-validation AUC” of
0.0379 (95% CI: [0.0356, 0.0403]). Logistic regression also outperforms the other classifiers
when predicting the 1p/19q codeletion status, with an average “mean cross-validation AUC”
of 0.8631 (95% CI: [0.8553, 0.8710]) and an average “STD cross validation AUC” of 0.0831
(95% CI: [0.0783, 0.0879]). Thus, in our final radiomics pipeline, SVM was used for predicting
the tumor grade, and logistic regression was chosen for predicting both the IDH mutation
and 1p/19q codeletion labels.

To conclude, we summarize our final radiomics pipeline for predicting each glioma
label (tumor grade, IDH mutation, and 1p/19q codeletion) in Figure 11. In detail, after we
obtained the preprocessed MRI data (reorientation, co-registration, resampling, and skull-
stripping), Z-score normalization was further applied to normalize the image intensities.
Then different image filters were applied to obtain better feature capabilities for each binary
classification task. In other words, the square root image filter is applied for predicting IDH
mutation status, Laplacian of Gaussian (LoG) image filter was applied to predict 1p/19q
codeletion, and the original image, without any image filters, was used to predict the
tumor grade. Then 1146 radiomic features were extracted from the processed MRI scans,
specifically from the three subregions (including necrosis, tumor core, and whole tumor) of
all four processed MRI sequences (T1, T1Gd, T2, and T2-FLAIR). The extracted radiomic
features were then scaled by robust scaling and selected using the ANOVA F-test to select
the most important features for each task. The selected radiomic features, as well as other
features, such as ED/ET indicator features, the scaled patient age, and the predicted labels
of the previous classifiers in the classifier chain, were fitted into the machine learning model
to tune the hyperparameters of the classifier with random search and the cross-validation
method. The number of selected radiomic features were also tuned {20, 40, 60, 80, 100}
in this process. The model with the hyperparameters corresponding to the highest mean
cross-validation AUC were saved and then retrained with the whole train dataset before
making the prediction on the test data.
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Table 2. Mean and standard deviation (STD) of the cross-validation (CV) AUC values during the
cross-validation process for each classifier, before and after the pipeline tuning process. The table
reports the average and 95% confidence interval (in square brackets), computed over 51 random
realizations, of the mean/std cross-validation AUC for predicting the glioma grade, IDH mutation
status, and 1p/19q codeletion status. The best performance for each task is marked in bold italics.

Classifier Description
Tumor Grade IDH Mutation Status 1p/19q Codeletion Status

Mean
CV AUC

Std
CV AUC

Mean
CV AUC

Std
CV AUC

Mean
CV AUC

Std
CV AUC

SVM
Before tuning 0.9039

[0.8991, 0.9087]
0.0534

[0.0511, 0.0556]
0.8769

[0.8703, 0.8834]
0.0601

[0.0572, 0.0631]
0.7048

[0.6906, 0.7190]
0.1317

[0.1260, 0.1373]

After tuning 0.9443
[0.9403, 0.9483]

0.0372
[0.0348, 0.0395]

0.9407
[0.9372, 0.9443]

0.0398
[0.0376, 0.0421]

0.8443
[0.8343, 0.8543]

0.0945
[0.0887, 0.1003]

Perceptron
Before tuning 0.8723

[0.8632, 0.8813]
0.0659

[0.0614, 0.0704]
0.8328

[0.8256, 0.8400]
0.0743

[0.0705, 0.0782]
0.6370

[0.6198, 0.6541]
0.1531

[0.1456, 0.1607]

After tuning 0.9032
[0.8961, 0.9103]

0.0686
[0.0605, 0.0768]

0.9189
[0.9123, 0.9256]

0.0587
[0.0517, 0.0658]

0.7536
[0.7384, 0.7688]

0.1450
[0.1358, 0.1543]

Logistic Regression
Before tuning 0.9048

[0.8994, 0.9102]
0.0522

[0.0498, 0.0546]
0.8732

[0.8666, 0.8799]
0.0614

[0.0582, 0.0645]
0.7176

[0.7036, 0.7317]
0.1259

[0.1199, 0.1320]

After tuning 0.9330
[0.9287, 0.9374]

0.0421
[0.0397, 0.0445]

0.9445
[0.9408, 0.9481]

0.0379
[0.0356, 0.0403]

0.8631
[0.8553, 0.8710]

0.0831
[0.0783, 0.0879]

Random Forest
Before tuning 0.8758

[0.8690, 0.8825]
0.0591

[0.0563, 0.0618]
0.8437

[0.8361, 0.8513]
0.0684

[0.0650, 0.0717]
0.6924

[0.6770, 0.7077]
0.1288

[0.1228, 0.1348]

After tuning 0.9348
[0.9308, 0.9388]

0.0401
[0.0380, 0.0421]

0.9349
[0.9309, 0.9388]

0.0431
[0.0408, 0.0454]

0.8196
[0.8102, 0.8289]

0.1000
[0.0956, 0.1044]

Decision Tree
Before tuning 0.7850

[0.7770, 0.7931]
0.0794

[0.0761, 0.0826]
0.7415

[0.7325, 0.7504]
0.0835

[0.0801, 0.0869]
0.5962

[0.5840, 0.6083]
0.1285

[0.1232, 0.1339]

After tuning 0.8745
[0.8682, 0.8807]

0.0609
[0.0583, 0.0636]

0.8828
[0.8764, 0.8892]

0.0611
[0.0585, 0.0637]

0.6991
[0.6842, 0.7139]

0.1331
[0.1278, 0.1384]

Extra Trees
Before tuning 0.8739

[0.8668, 0.8811]
0.0591

[0.0564, 0.0618]
0.8438

[0.8357, 0.8520]
0.0686

[0.0647, 0.0725]
0.6901

[0.6747, 0.7055]
0.1300

[0.1241, 0.1359]

After tuning 0.9386
[0.9344, 0.9428]

0.0403
[0.0383, 0.0423]

0.9420
[0.9382, 0.9458]

0.0393
[0.0371, 0.0415]

0.8424
[0.8323, 0.8526]

0.0879
[0.0824, 0.0934]

Gradient Boosting
Before tuning 0.8825

[0.8764, 0.8886]
0.0572

[0.0547, 0.0598]
0.8550

[0.8473, 0.8628]
0.0655

[0.0618, 0.0691]
0.6910

[0.6746, 0.7073]
0.1310

[0.1250, 0.1369]

After tuning 0.9316
[0.9277, 0.9355]

0.0427
[0.0403, 0.0451]

0.9354
[0.9312, 0.9396]

0.0423
[0.0401, 0.0446]

0.8151
[0.8062, 0.8240]

0.1034
[0.0976, 0.1092]

1. MRI data and image preprocessing

MRI data
(T1, T1Gd, T2, T2-FLAIR)

Image preprocessing
(reorientation, co-registration, 
resampling and skull-stripping)

Z-Score normalization

Image filters
 Tumor grade: no image filter; 
 IDH status: square root filter;  
 1p/19q status: LoG filter;

2. Extract the radiomics features and perform feature selection

Extract the radiomics features 
from the 3 gliomas subregions (NCR, TC, WT) of 
each MRI sequence (T1, T1Gd, T2, T2-FLAIR);

ED and ET indicator features
Patient age 

scaled by robust scaler

Additional features 
from the classifier chain.
 Tumor grade: None; 
 IDH status: predicted tumor 

grade;
 1p/19q status: predicted tumor 

grade and IDH mutation label;

Feature selection
by ANOVA F-test 

Feature Scaling
by robust scaler

3. Classification by machine learning methods

Hyperparameter tuning of the machine learning model
and the number of selected features with random search 
and cross-validation method;

 Tumor grade: SVM; 

 1p/19q status: logistic regression;  

Retrain the machine learning model 
with the whole train dataset 

Prediction

 IDH status: logistic regression;  

Figure 11. Final radiomics pipeline for predicting each binary classification label (tumor grade, IDH
mutation status, and 1p/19q codeletion status) of the gliomas tumor. During the hyperparameter
tuning process, the mean cross-validation AUC is used as the evaluation metric.
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3.3. Predict Glioma Subtype by the Final Pipeline

In Section 3.2, we summarize the final radiomics pipeline for predicting each label (tu-
mor grade, IDH mutation status, 1p/19q codeletion status) of the glioma tumor (Figure 11).
We used this pipeline and report the prediction performances on the hold-out test dataset,
also based on the 51 random seeds for a robust analysis. Moreover, the performance of
the basic radiomics pipeline (Section 2.4) without our pipeline tuning process is also listed
as a comparison. As shown in Table 3, our final radiomics pipeline outperforms the basic
radiomics pipeline significantly, indicating the great significance of our pipeline tuning
process. In detail, the mean AUC on the hold-out test data computed on 51 random runs
improved significantly, from 0.8935 (±0.0351) to 0.9319 (±0.0386) for predicting the tumor
grade, from 0.8676 (±0.0421) to 0.9283 (±0.0333) for predicting the IDH mutation status,
and from 0.6473 (±0.1074) to 0.8196 (±0.0702) for predicting the 1p/19q codeletion status.
Meanwhile, the mean accuracy also had obvious improvement; that is, from 0.8171 (±0.0442)
to 0.8453 (±0.0691), from 0.7840 (±0.0636) to 0.8560 (±0.0333), from 0.7209 (±0.2250) to
0.8499 (±0.0351), for predicting the glioma grade, the IDH mutation status, and the 1p/19q
codeletion status, respectively.

Table 3. Summary of the prediction performance on the hold-out test data before the pipeline tuning
(basic radiomics pipeline) and after the pipeline tuning (final radiomics pipeline). The mean and
standard deviation (in brackets) AUC/accuracy averaged on the 51 random seeds are reported,
regarding different tumor grades, IDH mutation status, 1p/19q codeletion status, and the glioma
subtypes. Note that, when reporting the accuracy, the threshold that maximizes the F1-score of the
train data were chosen as the final threshold for each binary classification task.

Tumor Grade IDH Mutation Status 1p/19q Codeletion Status 5 Glioma Subtypes

AUC Accuracy AUC Accuracy AUC Accuracy Accuracy

Basic radiomics pipeline
(Section 2.4)

0.8935
(±0.0351)

0.8171
(±0.0442)

0.8676
(±0.0421)

0.7840
(±0.0636)

0.6473
(±0.1074)

0.7209
(±0.2250)

0.5772
(±0.0816)

Final radiomics pipeline
(Section 3.2)

0.9319
(±0.0386)

0.8453
(±0.0691)

0.9283
(±0.0333)

0.8560
(±0.0333)

0.8196
(±0.0702)

0.8499
(±0.0351)

0.6716
(±0.0655)

Given the predicted labels of the glioma grade, IDH mutation and 1p/19q codeletion
status, we could then convert the three predicted glioma labels to the prediction of the
five glioma subtypes, according to the simplified criteria of 2016 CNS WHO in Figure 1.
On the hold-out test data, compared to the mean accuracy of 0.5772 (±0.0816) by the
basic radiomics pipeline, we achieved a mean accuracy of 0.6716 (±0.0655) using our final
fine-tuned radiomics pipeline for predicting the five gliomas subtypes.

Figure 12 shows the confusion matrices for predicting the tumor grade, IDH mutation
status, 1p/19q codeletion status, and the glioma subtype on the hold-out test data using
our final radiomics pipeline, with a fixed random seed 4442 as an example for its median
prediction accuracy of the glioma subtypes (0.6719) among the 51 random seeds.

As shown in Figure 12d, predicting subtype “2—LGG, IDH mutant, 1p/19q intact”
and “5—GBM, IDH wild type” are relatively easy tasks when compared to predicting
the other subtypes. We computed the average (STD) of the F1-score for the prediction
performance on the hold-out test data for each of the 5 glioma subtypes, averaged on the
51 fixed random seeds. We achieved an average (STD) F1-score of 0.3503 (±0.1717) for
predicting subtype “1—LGG, IDH mutant, 1p/19q codeleted”, 0.6688 (±0.1247) for subtype
“2—LGG, IDH mutant, 1p/19q intact”, 0.2018 (±0.1550) for subtype “3—LGG, IDH wild
type”, 0.0203 (±0.0872) for subtype “4—GBM, IDH mutant”, and 0.8454 (±0.0468) for
subtype “5—GBM, IDH wild type”. Note that we obtained a rather low average F1-score
of 0.0203 for subtype “4—GBM, IDH mutant”, mainly because we only had three samples
of this type for training and one sample for the test.
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(a) (b) (c) (d)

Figure 12. The confusion matrices on the hold-out test data for predicting (a) GBM vs. LGG, (b) IDH
mutant vs. IDH wild type, (c) 1p/19q codeleted vs. 1p/19q intact, and (d) the five glioma subtypes
defined by the 2016 CNS WHO. Random seed was fixed as 4442 because of its median prediction
accuracy of the glioma subtype (accuracy = 0.6719) among the 51 random seeds. Here, the accuracy
for predicting the tumor grade, IDH mutation, and 1p/19q codeletion was 0.8125, 0.8594, and 0.8281,
respectively.

3.4. Interpretability of the Radiomics Models

To better understand which features distinguished the glioma grade, IDH mutation
status, and 1p/19q codeletion status, respectively, we checked the radiomic features ex-
tracted by our final radiomics pipeline and the corresponding feature importance calculated
by the ANOVA F-value for each task. To avoid the bias caused by a single chosen random
seed, for each feature, we averaged their feature importance calculated by the experiments
using the 51 random seeds. In Figure 13, we see the first 100 radiomic features with the
highest average feature importance and other non-radiomic features, such as age and
ED/ET indicator features. Obviously, the predicted tumor grade is an important feature
for predicting the IDH mutation status (Figure 13b), while the predicted tumor grade and
IDH mutation status are of high feature importance to predict 1p/19q codeletion status
(Figure 13c). Moreover, when predicting the tumor grade and IDH mutation status, com-
pared to the ET indicator feature (“has_ET”), the ED indicator feature (“has_ED”) has a
very low average feature importance, meaning that the existence of edema is not as related
to the tumor grade or the IDH mutation status. Meanwhile, the patient age provides some
information for predicting the tumor grade and IDH mutation status, but not for predicting
the 1p/19q codeletion status.

(a) GBM vs. LGG

Figure 13. Cont.
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(b) IDH mutant vs. IDH wild type

(c) 1p/19q codeleted vs. 1p/19q intact.

Figure 13. The non-radiomic features and the first 100 radiomic features with the highest average
feature importance calculated by the ANOVA F-value for predicting (a) tumor grade, (b) IDH
mutation status, and (c) 1p/19q codeletion status. The feature importance annotated on each feature
bar refers to the mean feature importance averaged on the 51 random seeds.

For the radiomic features that have the highest average feature importance, we further
analyzed their MRI sequences, tumor subregions, and feature types. Here, we performed
the statistics on the first 20 important radiomic features to emphasize the most important
ones. As the statistics show in Figure 14, the first 20 radiomic features were extracted from
the T1Gd sequence for both the tumor grade (Figure 14a) and the IDH mutation (Figure 14b)
prediction tasks, while the first 20 important radiomic features for predicting the 1p/19q
codeletion were from the four MRI sequences, with 9 out of 20 from the T2-FLAIR scans
(Figure 14c). Moreover, the features extracted for predicting the tumor grade were mostly
from the tumor core and the whole tumor region (Figure 14a), while the features for
predicting the IDH mutation status were mostly from the tumor core and the necrosis
region (Figure 14b). For predicting the 1p/19q codeletion status, the first 20 important
radiomic features were from the necrosis (13 features), the tumor core (4 features), and the
whole tumor (3 features), as displayed in Figure 14c.

Regarding the feature types, among the first 20 radiomic features for predicting the
glioma grade, most of them were first-order features (Figure 14d). When predicting the
IDH mutation status, the first-order features and other features, especially the GLRLM
features, constituted the best 20 radiomic features (Figure 14e). Twelve out of the twenty
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radiomic features were first-order features when predicting the 1p/19q codeletion status,
while the others were from texture feature types, such as GLSZM and GLDM (Figure 14f).

(a) (b) (c)

(d) (e) (f)

Figure 14. Statistics of the first 20 radiomic features with the highest average feature importance
calculated by ANOVA F-value and averaged on 51 random seeds. The first row shows the statistics
of the MRI sequences and tumor subregions (a) for predicting tumor grade, (b) for predicting IDH
mutation status, and (c) for predicting 1p/19q codeletion status. The second row shows the statistics
of the feature types (d) for predicting tumor grade, (e) for predicting IDH mutation status, and (f) for
predicting the 1p/19q codeletion status, respectively. The values in the brackets represent the number
of features.

To conclude, when predicting the glioma grade, the most important features are the
first-order features extracted from the tumor core and the whole tumor region in the original
T1Gd images. The first-order features and GLRLM texture features from the tumor core and
necrosis regions in the filtered T1Gd MRI images by square root, as well as the predicted
tumor grade, constitute the most important features for predicting IDH mutation status.
When predicting the 1p/19q codeletion status, apart from the predicted tumor grade and
IDH mutation labels, the first-order features and other texture features, such as GLSZM
and GLDM, are of high importance.

4. Discussion

In this paper, we investigated the use of radiomics models, a noninvasive method,
in predicting the glioma subtype, based on the 2016 CNS WHO. The five subtypes of the
gliomas are related to three gliomas features, namely, the tumor grade, the IDH mutation
status, and the 1p/19q codeletion status. Thus, instead of taking the problem as a multilabel
or multiclass classification problem, we converted it into three binary classification tasks.
For each binary classification task, we started with a basic radiomics pipeline and then
gradually tuned the settings, with the aim to obtain the possible best classification per-
formance, along with a deeper understanding as to how each modification influences the
radiomics model performance. Finally, we arrived at an optimal pipeline and summarized
it as a final radiomics pipeline for classifying the glioma tumors. A total of 212 patients
from the public retrospective TCGA-LGG and TCGA-GBM datasets were used, so all of the
experiment results and analyses in our study are replicable with publicly available codes.
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When tuning the settings in the radiomics pipeline, we acquired some interesting
findings. First, Z-score normalization not only renders the MRI scans as more comparable
among the patients, but it also significantly improves the classification performances for all
three binary classification tasks. Second, the image filter applied to the MRI scans before
extracting the radiomic features has an obvious impact on the classification performances.
In our cases, we chose the relatively best one for each task, namely, the original image
without any filters for predicting tumor grade, the square root filter for predicting IDH
mutation, and the Laplacian of Gaussian filter for predicting the 1p/19q codeletion status.
Third, ComBat harmonization did not help improve the performance of any of the three
binary classification tasks in our study. This was not surprising, as Orlhac et al. [51]
reported that, among the 51 papers published since 2017 using ComBat harmonization,
although 41% reported better performances after using ComBat, there were still 18% that did
not observe any benefit in using ComBat; the other 41% presented the results with ComBat
harmonization but without reporting the results before ComBat. Moreover, by linking the
three binary classification tasks into a chain, we found that, if the true glioma grade is given
as an additional feature, then the prediction of IDH status improves significantly. Similarly,
there is a significant improvement for predicting 1p/19q codeletion status if the true glioma
grade and IDH mutation status are added as additional features. In real practice, the glioma
grade and IDH mutation labels are possibly unknown, so we used their predicted labels
from our trained radiomics models instead.

Remarkably, after the pipeline tuning process, the prediction of the glioma subtype
improved significantly. In detail, on the hold-out data, which is never seen during any
pipeline tuning, model selection, or hyperparameter tuning processes, the mean AUC,
averaged on the results of multiple random seeds, improves from 0.8935 (±0.0351) to
0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to
0.8196 (±0.0702) for predicting the tumor grade, IDH mutation, and 1p/19q codeletion
status, respectively. Meanwhile, the mean accuracy also improves, from 0.8171 (±0.0442)
to 0.8453 (±0.0691), from 0.7840 (±0.0636) to 0.8560 (±0.0333), from 0.7209 (±0.2250) to
0.8499 (±0.0351), and from 0.5772 (±0.0816) to 0.6716 (±0.0655) for predicting the glioma
grade, the IDH mutation status, the 1p/19q codeletion status, and the five glioma subtypes,
respectively.

To better interpret the radiomics model, we also analyzed the characteristics of the
first 20 radiomic features with the highest average feature importance calculated by the
ANOVA F-value. The first-order features extracted from the tumor core and the whole
tumor region in the original T1Gd MRI scan can significantly depict the differences in the
tumor grade. For predicting the IDH mutation status, the predicted tumor grade, as well
as the first-order features and GLRLM texture features from the tumor core and necrosis
regions in the T1Gd MRI scans with the square root image filter, are the most important
features. For predicting the 1p/19q codeletion status, apart from the predicted tumor grade
and IDH mutation labels, the first-order features and other features extracted from the
LoG-filtered MRI images are of high importance.

In summary, this paper provides a promising tool for the prediction of the glioma
subtype as well as a better understanding of the radiomics model development and the
feature interpretability. However, this paper also has some limitations. First, we only used
the public retrospective datasets TCGA-GBM and TCGA-LGG in this study. The analyses
and conclusions need to be further confirmed on other possible independent datasets.
Second, the radiomics model we developed is not an end-to-end manner because the
segmentation masks should be provided for the new patients. The automatic segmentation
can be achieved by training a neural network, such as nnU-Net [52] with the public dataset
of the brain tumor segmentation (BraTS) challenge. The BraTS 2021 dataset [42] consists of
2000 patients from multiple institutions, corresponding to 8000 pre-operative multipara-
metric MRI scans (T1, T1Gd, T2, T2-FLAIR). We did not use the predicted segmentation
labels from the nnU-Net trained with the BraTS 2021 dataset, because TCGA-GBM and
TCGA-LGG are part of the BraTS2021 data and cannot be identified from the renamed
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patient IDs in BraTS 2021 (risking data leakage). We mention here that, although most
of the segmentation masks used in our paper (downloaded from TCIA platform) have
already been manually corrected based on the automatic segmentation masks achieved by
GLISTRboost software, there is still room for improvement, especially when segmenting
the necrosis and enhancing tumor parts. Third, the MRI scans downloaded from TCGA-
LGG and TCGA-GBM datasets have already been preprocessed, including reorientation,
co-registration, resampling, and skull-stripping, so the same preprocessing steps should be
performed for the new patients when using our radiomics pipeline. Finally, even though
a promising performance in the prediction of the glioma grade and IDH mutation status
was achieved, more efforts can be invested (through larger investigations in the future) to
improve the prediction of the 1p/19q codeletion status.

5. Conclusions

In this paper, we investigated using the radiomics models to noninvasively predict
the gliomas subtype as defined by the tumor grade, IDH mutation, and 1p/19q codeletion
status. Several investigations were conducted on the public retrospective TCGA-GBM
and TCGA-LGG datasets to evaluate the impacts of different settings in the radiomics
pipeline on the classification performance, such as Z-score normalization, feature extraction
strategy, image filters, ComBat harmonization, classifier chain strategy, etc. After tuning
these settings, a final radiomics pipeline for the prediction of the glioma subtype was
proposed. Furthermore, the characteristics of the various radiomic features were analyzed
to tell which features distinguished the most for predicting the glioma grade, IDH mutation,
and 1p/19q codeletion status, respectively.

Author Contributions: Conceptualization, S.A., N.L., E.C., L.L, A.Q., T.A. and Y.L.; methodology,
S.A., N.L., E.C., A.Q., T.A. and Y.L.; formal analysis, S.A., N.L., E.C. and Y.L.; data curation, Y.L.,
L.L. and S.A.; writing—original draft preparation, Y.L.; writing—review and editing, T.A. and E.C.;
supervision, S.A., N.L. and E.C.; All authors have read and agreed to the published version of
the manuscript.

Funding: Y.L.’s PhD thesis is funded by the China Scholarship Council (CSC), grant number
201801810027.

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to the use of the public retrospective datasets (TCGA-GBM and TCGA-LGG).

Informed Consent Statement: Patient consent was waived due to the use of the public retrospective
datasets (TCGA-GBM and TCGA-LGG).

Data Availability Statement: The data used in this paper are public available. Researchers can down-
load the clinical MRI images of the dataset from The Cancer Imaging Archive (TCIA) platform, with
the link https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666 (accessed
on 18 July 2021) for the TCGA-GBM dataset and the link https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=24282668 (accessed on 18 July 2021) for the TCGA-LGG dataset.
The corresponding gene status and clinical information can be downloaded from The Cancer
Genome Atlas Program (TCGA) platform using TCGAbiolinks and R codes, see our codes here
https://github.com/Yingping-LI/Radiomics/tree/main/extract_gene_data, accessed on 29 March
2022.

Acknowledgments: The authors would like to thank The Cancer Imaging Archive (TCIA) and The
Cancer Genome Atlas (TCGA) platforms for collecting and publishing the medical data of different
cancers. Sincere thanks go out to the China Scholarship Council (CSC) for supporting the PhD thesis
of Y.L.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282668
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282668
https://github.com/Yingping-LI/Radiomics/tree/main/extract_gene_data


Cancers 2022, 14, 1778 23 of 26

Abbreviations
The following abbreviations are used in this manuscript:

CNS central nervous system
WHO World Health Organization

2016 CNS WHO
2016 World Health Organization Classification of Tumors of the
Central Nervous System

TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archive
LGG low-grade glioma
GBM glioblastoma multiforme
TCGA-LGG The Cancer Genome Atlas Low Grade Glioma
TCGA-GBM The Cancer Genome Atlas Glioblastoma Multiforme
IDH isocitrate dehydrogenase
MGMT O6-methylguanine-DNA methyltransferase
MRI magnetic resonance imaging
FLAIR fluid attenuated inversion recovery
VOI volume of interest
ROC AUC area under the receiver operating characteristic curve
ROC receiver operating characteristic
AUC area under the ROC curve
EB empirical Bayes
BraTS brain tumor segmentation
CI confidence interval
SVM support vector machine
GLRLM gray level run length matrix
GLSZM gray level size zone matrix
GLDM gray level dependence matrix
NGTDM neighbouring gray tone difference matrix
GLCM gray level co-occurrence matrix

Appendix A

Appendix A.1. Summary of the Train and Test Data

In total, 212 patients from the retrospective TCGA-GBM and TCGA-LGG datasets
were studied in this paper. The 212 patients were split into the train and test data randomly,
at a 7:3 ratio, in a stratified fashion (stratified by the five tumor subtypes). The sizes of the
train and test data regarding different glioma subtypes, and regarding tumor grade, IDH
mutation status, and 1p/19q codeletion status, are summarized in Tables A1 and A2, re-
spectively.

Table A1. Summary of the train and test data regarding different glioma subtypes.

Tumor Subtypes Train Data Test Data Total

1—LGG, IDH mutant, 1p/19q codeleted 19 8 27

2—LGG, IDH mutant, 1p/19q intact 40 17 57

3—LGG, IDH wild type 14 7 21

4—GBM, IDH mutant 3 1 4

5—GBM, IDH wild type 72 31 103
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Table A2. Summary of the data regarding different tumor grades, IDH mutation status, and 1p/19q
codeletion status.

Data Tumor Grade IDH Mutation 1p/19q Codeletion

Train data
(148 patients) 75 GBM vs. 73 LGG 62 IDH mutant

vs. 86 IDH wild type
129 1p/19q codeleted
vs. 19 1p/19q intact

Test data
(64 patients) 32 GBM vs. 32 LGG 26 IDH mutant

vs. 38 IDH wild type
56 1p/19q codeleted
vs. 8 1p/19q intact

Appendix A.2. Image Histograms before and After Normalization

Figure A1 visualizes the image histograms of the MRI images in our study before and
after Z-score intensity normalization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A1. The intensity histograms of the original images (first row) and the Z-score normalized
images (second row) for the four sequences of the MRI images. Each colored line corresponds to an
image histogram of one preprocessed brain MRI image downloaded from the TCGA-GBM or TCGA-
LGG dataset. The subfigures correspond to the image histograms of (a) original T1 MRI, (b) original
T1Gd MRI, (c) original T2 MRI, (d) original T2-FLAIR MRI, (e) Z-score normalized T1 MRI, (f) Z-score
normalized T1Gd MRI, (g) Z-score normalized T2 MRI, and (h) Z-score normalized T2-FLAIR MRI
images. Obviously, the Z-score normalized images have more consistent image histograms.

References
1. Walker, C.; Baborie, A.; Crooks, D.; Wilkins, S.; Jenkinson, M. Biology, genetics and imaging of glial cell tumours. Br. J. Radiol.

2011, 84, S90–S106. [CrossRef] [PubMed]
2. Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.;

Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

3. Delev, D.; Heiland, D.H.; Franco, P.; Reinacher, P.; Mader, I.; Staszewski, O.; Lassmann, S.; Grau, S.; Schnell, O. Surgical
management of lower-grade glioma in the spotlight of the 2016 WHO classification system. J. Neuro-Oncol. 2019, 141, 223–233.
[CrossRef]

4. Chai, R.; Li, G.; Liu, Y.; Zhang, K.; Zhao, Z.; Wu, F.; Chang, Y.; Pang, B.; Li, J.; Li, Y.; et al. Predictive value of MGMT promoter
methylation on the survival of TMZ treated IDH-mutant glioblastoma. Cancer Biol. Med. 2021, 18, 272–282. [CrossRef] [PubMed]

5. Qi, S.; Yu, L.; Gui, S.; Ding, Y.; Han, H.; Zhang, X.; Wu, L.; Yao, F. IDH mutations predict longer survival and response to
temozolomide in secondary glioblastoma. Cancer Sci. 2012, 103, 269–273.

6. Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.R.; Asare, C.K.; Ankrah, A.A.; Khanna, N.; et al. A
review on a deep learning perspective in brain cancer classification. Cancers 2019, 11, 111. [CrossRef] [PubMed]

http://doi.org/10.1259/bjr/23430927
http://www.ncbi.nlm.nih.gov/pubmed/22433833
http://dx.doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://dx.doi.org/10.1007/s11060-018-03030-w
http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0179
http://www.ncbi.nlm.nih.gov/pubmed/33628600
http://dx.doi.org/10.3390/cancers11010111
http://www.ncbi.nlm.nih.gov/pubmed/30669406


Cancers 2022, 14, 1778 25 of 26

7. Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.; Dekker, A.; Fenstermacher, D.; et al.
Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [CrossRef] [PubMed]

8. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577.
[CrossRef] [PubMed]

9. Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.;
Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017,
14, 749–762. [CrossRef] [PubMed]

10. Qin, J.B.; Liu, Z.; Zhang, H.; Shen, C.; Wang, X.C.; Tan, Y.; Wang, S.; Wu, X.F.; Tian, J. Grading of gliomas by using radiomic
features on multiple magnetic resonance imaging (MRI) sequences. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 2168–2178.
[CrossRef] [PubMed]

11. Ditmer, A.; Zhang, B.; Shujaat, T.; Pavlina, A.; Luibrand, N.; Gaskill-Shipley, M.; Vagal, A. Diagnostic accuracy of MRI texture
analysis for grading gliomas. J. Neuro-Oncol. 2018, 140, 583–589. [CrossRef] [PubMed]

12. Cho, H.H.; Lee, S.H.; Kim, J.; Park, H. Classification of the glioma grading using radiomics analysis. PeerJ 2018, 6, e5982.
[CrossRef] [PubMed]

13. Tian, Q.; Yan, L.F.; Zhang, X.; Zhang, X.; Hu, Y.C.; Han, Y.; Liu, Z.C.; Nan, H.Y.; Sun, Q.; Sun, Y.Z.; et al. Radiomics strategy
for glioma grading using texture features from multiparametric MRI. J. Magn. Reson. Imaging 2018, 48, 1518–1528. [CrossRef]
[PubMed]

14. Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. Computer-aided grading of gliomas combining automatic segmentation and radiomics.
Int. J. Biomed. Imaging 2018, 2018, 2512037. [CrossRef] [PubMed]

15. Sun, P.; Wang, D.; Mok, V.C.; Shi, L. Comparison of feature selection methods and machine learning classifiers for radiomics
analysis in glioma grading. IEEE Access 2019, 7, 102010–102020. [CrossRef]

16. Park, Y.W.; Choi, Y.S.; Ahn, S.S.; Chang, J.H.; Kim, S.H.; Lee, S.K. Radiomics MRI phenotyping with machine learning to predict
the grade of lower-grade gliomas: A study focused on nonenhancing tumors. Korean J. Radiol. 2019, 20, 1381–1389. [CrossRef]

17. Cinarer, G.; Emiroglu, B.G. Classification of brain tumours using radiomic features on MRI. New Trends Issues Proc. Adv. Pure Appl.
Sci. 2020, 12, 80–90. [CrossRef]

18. Xiao, T.; Hua, W.; Li, C.; Wang, S. Glioma grading prediction by exploring radiomics and deep learning features. In Proceedings
of the Third International Symposium on Image Computing and Digital Medicine, Xi’an, China, 24–26 August 2019; pp. 208–213.

19. Zhang, X.; Tian, Q.; Wang, L.; Liu, Y.; Li, B.; Liang, Z.; Gao, P.; Zheng, K.; Zhao, B.; Lu, H. Radiomics strategy for molecular
subtype stratification of lower-grade glioma: Detecting IDH and TP53 mutations based on multimodal MRI. J. Magn. Reson.
Imaging 2018, 48, 916–926. [CrossRef]

20. Kim, M.; Jung, S.Y.; Park, J.E.; Jo, Y.; Park, S.Y.; Nam, S.J.; Kim, J.H.; Kim, H.S. Diffusion-and perfusion-weighted MRI radiomics
model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur. Radiol.
2020, 30, 2142–2151. [CrossRef]

21. Arita, H.; Kinoshita, M.; Kawaguchi, A.; Takahashi, M.; Narita, Y.; Terakawa, Y.; Tsuyuguchi, N.; Okita, Y.; Nonaka, M.;
Moriuchi, S.; et al. Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter
mutations in grade II/III gliomas. Sci. Rep. 2018, 8, 11773. [CrossRef]

22. Liu, X.; Li, Y.; Li, S.; Fan, X.; Sun, Z.; Yang, Z.; Wang, K.; Zhang, Z.; Jiang, T.; Liu, Y.; et al. IDH mutation-specific radiomic
signature in lower-grade gliomas. Aging 2019, 11, 673. [CrossRef] [PubMed]

23. Choi, Y.S.; Bae, S.; Chang, J.H.; Kang, S.G.; Kim, S.H.; Kim, J.; Rim, T.H.; Choi, S.H.; Jain, R.; Lee, S.K. Fully automated hybrid
approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro-Oncology 2021, 23, 304–313.
[CrossRef] [PubMed]

24. Wu, S.; Meng, J.; Yu, Q.; Li, P.; Fu, S. Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction
of diffuse gliomas. J. Cancer Res. Clin. Oncol. 2019, 145, 543–550. [CrossRef]

25. Tan, Y.; Zhang, S.T.; Wei, J.W.; Dong, D.; Wang, X.C.; Yang, G.Q.; Tian, J.; Zhang, H. A radiomics nomogram may improve the
prediction of IDH genotype for astrocytoma before surgery. Eur. Radiol. 2019, 29, 3325–3337. [CrossRef] [PubMed]

26. Chougule, T.; Shinde, S.; Santosh, V.; Saini, J.; Ingalhalikar, M. On Validating Multimodal MRI Based Stratification of IDH
Genotype in High Grade Gliomas Using CNNs and Its Comparison to Radiomics. In International Workshop on Radiomics and
Radiogenomics in Neuro-Oncology; Springer: Cham, Switzerland, 2019; pp. 53–60.

27. Yu, J.; Shi, Z.; Lian, Y.; Li, Z.; Liu, T.; Gao, Y.; Wang, Y.; Chen, L.; Mao, Y. Noninvasive IDH1 mutation estimation based on a
quantitative radiomics approach for grade II glioma. Eur. Radiol. 2017, 27, 3509–3522. [CrossRef]

28. Li, Z.C.; Bai, H.; Sun, Q.; Zhao, Y.; Lv, Y.; Zhou, J.; Liang, C.; Chen, Y.; Liang, D.; Zheng, H. Multiregional radiomics profiling from
multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma. Cancer Med. 2018, 7, 5999–6009.
[CrossRef]

29. Gore, S.; Chougule, T.; Saini, J.; Ingalhalikar, M.; Jagtap, J. Local Binary and Ternary Patterns Based Quantitative Texture Analysis
for Assessment of IDH Genotype in Gliomas on Multi-modal MRI. In Machine Learning in Clinical Neuroimaging and Radiogenomics
in Neuro-Oncology; Springer: Cham, Switzerland, 2020; pp. 240–248.

30. Shofty, B.; Artzi, M.; Bashat, D.B.; Liberman, G.; Haim, O.; Kashanian, A.; Bokstein, F.; Blumenthal, D.T.; Ram, Z.; Shahar, T. MRI
radiomics analysis of molecular alterations in low-grade gliomas. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 563–571. [CrossRef]

http://dx.doi.org/10.1016/j.mri.2012.06.010
http://www.ncbi.nlm.nih.gov/pubmed/22898692
http://dx.doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://dx.doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://dx.doi.org/10.12659/MSM.901270
http://www.ncbi.nlm.nih.gov/pubmed/28478462
http://dx.doi.org/10.1007/s11060-018-2984-4
http://www.ncbi.nlm.nih.gov/pubmed/30145731
http://dx.doi.org/10.7717/peerj.5982
http://www.ncbi.nlm.nih.gov/pubmed/30498643
http://dx.doi.org/10.1002/jmri.26010
http://www.ncbi.nlm.nih.gov/pubmed/29573085
http://dx.doi.org/10.1155/2018/2512037
http://www.ncbi.nlm.nih.gov/pubmed/29853828
http://dx.doi.org/10.1109/ACCESS.2019.2928975
http://dx.doi.org/10.3348/kjr.2018.0814
http://dx.doi.org/10.18844/gjpaas.v0i12.4989
http://dx.doi.org/10.1002/jmri.25960
http://dx.doi.org/10.1007/s00330-019-06548-3
http://dx.doi.org/10.1038/s41598-018-30273-4
http://dx.doi.org/10.18632/aging.101769
http://www.ncbi.nlm.nih.gov/pubmed/30696801
http://dx.doi.org/10.1093/neuonc/noaa177
http://www.ncbi.nlm.nih.gov/pubmed/32706862
http://dx.doi.org/10.1007/s00432-018-2787-1
http://dx.doi.org/10.1007/s00330-019-06056-4
http://www.ncbi.nlm.nih.gov/pubmed/30972543
http://dx.doi.org/10.1007/s00330-016-4653-3
http://dx.doi.org/10.1002/cam4.1863
http://dx.doi.org/10.1007/s11548-017-1691-5


Cancers 2022, 14, 1778 26 of 26

31. van der Voort, S.R.; Incekara, F.; Wijnenga, M.M.; Kapas, G.; Gardeniers, M.; Schouten, J.W.; Starmans, M.P.; Tewarie, R.N.;
Lycklama, G.J.; French, P.J.; et al. Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally
validated machine learning algorithm. Clin. Cancer Res. 2019, 25, 7455–7462. [CrossRef]

32. Kocak, B.; Durmaz, E.S.; Ates, E.; Sel, I.; Gunes, S.T.; Kaya, O.K.; Zeynalova, A.; Kilickesmez, O. Radiogenomics of lower-grade
gliomas: Machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Eur. Radiol. 2020, 30, 877–886.
[CrossRef]

33. Kong, Z.; Jiang, C.; Zhang, Y.; Liu, S.; Liu, D.; Liu, Z.; Chen, W.; Liu, P.; Yang, T.; Lyu, Y.; et al. Thin-Slice Magnetic Resonance
Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade II and III Gliomas. Front. Neurol.
2020, 11, 1304. [CrossRef]

34. Zhou, H.; Vallières, M.; Bai, H.X.; Su, C.; Tang, H.; Oldridge, D.; Zhang, Z.; Xiao, B.; Liao, W.; Tao, Y.; et al. MRI features predict
survival and molecular markers in diffuse lower-grade gliomas. Neuro-Oncology 2017, 19, 862–870. [CrossRef] [PubMed]

35. Lu, C.F.; Hsu, F.T.; Hsieh, K.L.C.; Kao, Y.C.J.; Cheng, S.J.; Hsu, J.B.K.; Tsai, P.H.; Chen, R.J.; Huang, C.C.; Yen, Y.; et al. Machine
learning-based radiomics for molecular subtyping of gliomas. Clin. Cancer Res. 2018, 24, 4429–4436. [CrossRef]

36. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmentation labels
for the pre-operative scans of the TCGA-GBM collection [Data set]. Cancer Imaging Arch. 2017. [CrossRef]

37. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the
cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117.
[CrossRef]

38. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.; Freymann, J.; Farahani, K.; Davatzikos, C. Segmentation labels
and radiomic features for the pre-operative scans of the TCGA-LGG collection [Data Set]. Cancer Imaging Arch. 2017. [CrossRef]

39. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The
Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057.
[CrossRef]

40. Rohlfing, T.; Zahr, N.M.; Sullivan, E.V.; Pfefferbaum, A. The SRI24 multichannel atlas of normal adult human brain structure.
Hum. Brain Mapp. 2010, 31, 798–819. [CrossRef] [PubMed]

41. Bakas, S.; Zeng, K.; Sotiras, A.; Rathore, S.; Akbari, H.; Gaonkar, B.; Rozycki, M.; Pati, S.; Davatzizkos, C. GLISTRboost: Combining
multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma
segmentation. In BrainLes 2015; Springer: Cham, Switzerland, 2015; pp. 144–155.

42. Baid, U.; Ghodasara, S.; Mohan, S.; Bilello, M.; Calabrese, E.; Colak, E.; Farahani, K.; Kalpathy-Cramer, J.; Kitamura, F.C.;
Pati, S.; et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv
2021, arXiv:2107.02314.

43. Li, Y.; Ammari, S.; Balleyguier, C.; Lassau, N.; Chouzenoux, E. Impact of Preprocessing and Harmonization Methods on the
Removal of Scanner Effects in Brain MRI Radiomic Features. Cancers 2021, 13, 3000. [CrossRef]

44. Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.C.; Pieper, S.;
Aerts, H.J. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [CrossRef]
[PubMed]

45. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

46. Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods.
Biostatistics 2007, 8, 118–127. [CrossRef] [PubMed]

47. Read, J.; Pfahringer, B.; Holmes, G.; Frank, E. Classifier chains for multi-label classification. Mach. Learn. 2011, 85, 333–359.
[CrossRef]

48. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

49. Tang, Y.; Zhang, Y.Q.; Chawla, N.V.; Krasser, S. SVMs modeling for highly imbalanced classification. IEEE Trans. Syst. Man
Cybern. Part B (Cybern.) 2008, 39, 281–288. [CrossRef]

50. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In
International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

51. Orlhac, F.; Eertink, J.J.; Cottereau, A.S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.; Boellaard, R.; Buvat, I. A guide to ComBat
harmonization of imaging biomarkers in multicenter studies. J. Nucl. Med. 2022, 63, 172–179. [CrossRef] [PubMed]

52. Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based
biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [CrossRef]

http://dx.doi.org/10.1158/1078-0432.CCR-19-1127
http://dx.doi.org/10.1007/s00330-019-06492-2
http://dx.doi.org/10.3389/fneur.2020.551771
http://dx.doi.org/10.1093/neuonc/now256
http://www.ncbi.nlm.nih.gov/pubmed/28339588
http://dx.doi.org/10.1158/1078-0432.CCR-17-3445
http://dx.doi.org/0.7937/K9/TCIA.2017.KLXWJJ1Q
http://dx.doi.org/10.1038/sdata.2017.117
http://dx.doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.1002/hbm.20906
http://www.ncbi.nlm.nih.gov/pubmed/20017133
http://dx.doi.org/10.3390/cancers13123000
http://dx.doi.org/10.1158/0008-5472.CAN-17-0339
http://www.ncbi.nlm.nih.gov/pubmed/29092951
http://dx.doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/TSMCB.2008.2002909
http://dx.doi.org/10.2967/jnumed.121.262464
http://www.ncbi.nlm.nih.gov/pubmed/34531263
http://dx.doi.org/10.1038/s41592-020-01008-z

	Introduction
	Materials and Methods
	Datasets
	Clinical MRI Scans
	Clinical Information and Molecular Status
	Data Cleaning

	Image Preprocessing
	Extract Radiomic Features
	Basic Radiomics Pipeline
	Tuning the Radiomics Pipeline

	Results
	Pipeline Tuning
	Impact of Z-Score Intensity Normalization
	Impact of the Feature Extraction Strategy
	Impact of Image Filters
	Impact of the Age and Sex Information
	Impact of ComBat Harmonization
	Impact of Data Imbalance Strategy
	Impact of Using Classifier Chain Idea

	Summarized Pipeline
	Predict Glioma Subtype by the Final Pipeline
	Interpretability of the Radiomics Models

	Discussion
	Conclusions
	Appendix A
	Appendix A.1. Summary of the Train and Test Data
	Appendix A.2. Image Histograms before and after Normalization

	References

