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Simple Summary: Prostate cancer (PCa) occurs in males at a rate of 21.8%, predominantly at the
customary primary site. High cure rates are possible through early detection and therapy when
the tumor is still restricted to the prostate. These tumors do not grow rapidly, allowing for periods
of up to 20 years between diagnosis and death. Multiparametric MRI (mp-MRI) is used as a non-
invasive approach to diagnose PCa in subjects. This imaging method uses MR imaging with at
least one functional MRI sequence to detect and characterize PCa. The use of multiparametric
magnetic resonance imaging has refined the diagnosis of prostate cancer in radiology. Malignancy-
modified critical features in tissue composition, such as heterogeneity, are associated with adverse
tumor biology. Heterogeneity can be quantified through texture analysis, an effective technique for
reviewing tumor images acquired in routine clinical practice. This study focused on identifying and
quantifying tumor heterogeneity from prostate mp-MRI utilizing texture analysis.

Abstract: (1) Background: Multiparametric MRI (mp-MRI) is used to manage patients with PCa.
Tumor identification via irregular sampling or biopsy is problematic and does not allow the compre-
hensive detection of the phenotypic and genetic alterations in a tumor. A non-invasive technique to
clinically assess tumor heterogeneity is also in demand. We aimed to identify tumor heterogeneity
from multiparametric magnetic resonance images using texture analysis (TA). (2) Methods: Eighteen
patients with prostate cancer underwent mp-MRI scans before prostatectomy. A single radiologist
matched the histopathology report to single axial slices that best depicted tumor and non-tumor
regions to generate regions of interest (ROIs). First-order statistics based on the histogram analysis,
including skewness, kurtosis, and entropy, were used to quantify tumor heterogeneity. We compared
non-tumor regions with significant tumors, employing the two-tailed Mann–Whitney U test. Analysis
of the area under the receiver operating characteristic curve (ROC-AUC) was used to determine
diagnostic accuracy. (3) Results: ADC skewness for a 6 × 6 px filter was significantly lower with an
ROC-AUC of 0.82 (p = 0.001). The skewness of the ADC for a 9 × 9 px filter had the second-highest re-
sult, with an ROC-AUC of 0.66; however, this was not statistically significant (p = 0.08). Furthermore,
there were no substantial distinctions between pixel filter size groups from the histogram analysis,
including entropy and kurtosis. (4) Conclusions: For all filter sizes, there was poor performance in
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terms of entropy and kurtosis histogram analyses for cancer diagnosis. Significant prostate cancer
may be distinguished using a textural feature derived from ADC skewness with a 6 × 6 px filter size.

Keywords: texture analysis; prostate cancer; prostatectomy; multiparametric MRI (mp-MRI); heterogeneity

1. Introduction

Prostate cancer is the second most frequent tumor identified in men worldwide and the
leading cause of mortality in this population [1]. The prostate is a male reproductive organ
with the diameter of a walnut that produces an alkaline fluid comprising about 20–30% of
the ejaculate [2]. The use of multiparametric magnetic resonance imaging (mp-MRI) has
improved the clinical diagnosis of prostate carcinoma [3]. mp-MRIs normally encompass
T1 and T2 anatomical sequences and diffusion-weighted imaging (DWI), and generate the
apparent diffusion coefficient (ADC) for the prostate [4,5].

Malignancies are heterogeneous at the genetic and histopathological levels, having
dimensional alterations in cellularity, angiogenesis, extravascular and extracellular ma-
trices, and regions of necrosis [6–8]. Tumor heterogeneity is a good metric to identify
therapy sensitivity and possible therapeutic efficacy. Lesions with severe heterogeneity
are associated with poor outcomes [9]. Tumor heterogeneity is difficult to assess from
either irregular sampling or biopsy. Establishing a non-invasive technique to assess the
heterogeneity of a tumor is a clinical necessity [10,11].

TA is an image processing method that quantifies heterogeneity depending on the
spatial dissemination of pixel levels potentially missed by the naked eye [5]. Imaging
provides quantifiable, clinically relevant tumor parameters for assessing heterogeneity.
Applying image signal heterogeneity and pattern recognition in the analysis of differences
that are undetectable by the human eye to regular clinical imaging procedures may greatly
enhance and aid diagnosis [8]. TA uses several mathematical methods to assess an object’s
gray level strength and pixel positions to produce texture attributes indicating intralesional
heterogeneity [8,12,13]. Statistically based techniques are commonly used to describe gray-
level value distribution and relationships. In statistically built TA, two parameter classes are
described: first- and second-order statistical methods. The first-order correlates gray-level
frequency division in the area of interest from the histogram of pixel intensities [8,14]. TA
has been successfully applied to oncology studies on tumor detection, grading, diagnosis,
and reviews of treatment response [8,12,15]. TA provides additional heterogeneity metrics
for tissue that may increase accuracy when differentiating tumor tissue from adjacent
benign nodular tissue [13,15]

The use of enhanced radical prostatectomy (RP) data as input has improved the
classification of TA metrics utilized in prostate lesion identification [16,17]. A pathologist’s
appropriate investigation of the RPs is significant in deciding the necessity for additional
therapy and the prognosis of the subject. Standardization of the procedures used for
tissue specimen mounting and reporting has provided consistent and comprehensive data
and clinical reporting [18]. Histopathological assessments provide the gold standard for
microscopic heterogeneity. Radical prostatectomy decisions depend on histological features,
including extraprostatic extension, Gleason grade, tumor identification, and spreading
toward the seminal vesicles [18–22].

In the present study, we aimed to quantify prostate tumors and assess carcinoma het-
erogeneity from prostate multiparametric magnetic resonance images using texture analysis.

2. Materials and Methods
2.1. Patient Group

The group contained 18 patients with suspected prostate malignancies who received a
prostatic mp-MRI prior to diagnosis and were undergoing prostatectomy. Men with a tumor
in the transition zone (TZ) or peripheral zone (PZ) underwent a biopsy before mp-MRI and
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were diagnosed based on systemic biopsy. In the study population, the maximum time
interval was 1 month from biopsy to mp-MRI and 3 months from prostatectomy to mp-MRI.
The exclusion and inclusion criteria (shown in Figure 1) were: (a) patients scanned in the
same scanner 3T with the same mp-MRI and receiver coils were included; (b) patients who
underwent 3T mp-MRI before prostatectomy were included; (c) patients were excluded if
their mp-MRI and examination indicated an artifact or no visible lesion; and (d) patients
with a significant tumor (≥3 + 4) at radical prostatectomy were included. Table 1 outlines
the demographics for 18 subjects with a mean age of 63 (55–76 years), a mean prostate-
specific antigen (PSA) serum concentration of 7.5 ng/mL (ranging 1.2–10.9 ng/mL), and a
mean tumor area of 1.58 cm2 (at histology post-prostatectomy).

Figure 1. Flowchart of inclusion and exclusion criteria for patient selection.

Table 1. The demographic data and ROIs for significant tumors.

Tumor Significance Subject Number Mean Years Mean PSA
(ng/mL)

Mean Area
(cm2)

Significant (≥3 + 4) 18 63 7.5 1.58

2.2. Multiparametric Magnetic Resonance Imaging

Subjects underwent mp-MRI scans utilizing a Philips Ingenia 3T mp-MRI (Philips
medical system) and receiver coils. The mp-MRI approach included the acquisition of a
T1-weighted image, T2-weighted images, and an ADC map image. Apparent diffusion coef-
ficient values were automatically measured by the software and presented as a parametric
map reflecting the level of diffusion for water molecules. Table 2 illustrates the mp-MRI
acquisition parameters in detail. Figure 2 presents mp-MRI images from a patient with a
clinically verified prostate tumor.
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Table 2. Multiparametric MRI sequence parameters used in this study, including T1, T2, and ADC
map images.

Sequence Parameter T1 T2 ADC Map Image

Repetition time (ms) 4755.32 724.99 4137.73
Echo time (ms) 100 6.48 84.94

Flip angle (degrees) 90 90 90
Bandwidth (Hz/px) 210 620 2068
Field of view (mm) 180 180 180

Phase FoV % 100 100 100
Slice thickness (mm) 3 3 4

Slice gap (mm) 3 3 4
Average 2 1 7

Phase encoding direction COL ROW COL
Base matrix 256 560 144

Number of acquisitions 5 7 15
Acquisition duration(s) 217.49 304.34 297.91

Figure 2. Significant tumor from a single axial slice (arrow images); (a) T1-weighted image;
(b) T2-weighted image; (c) ADC map image. Images are from a 58-year-old patient with a significant
tumor (≥3 + 4) according to the Gleason and ISUO grades.

2.3. Prostatectomy Specimen Procedure

The following is the procedure used to process prostatectomy specimens in the
histopathology laboratory. The prostate is received in a fresh state, assigned a histopathol-
ogy number, and photographed. The seminal vesicles are removed, and the prostate is then
weighed [23] by placing the fresh prostate in a graduated cylindrical structure containing
a precisely measured volume of water. The displacement level of the water is recorded
proportionate to the volume of the gland (Archimedes’ principle) [24]. The gland and
its separated seminal vesicles are placed in neutral buffered formalin for approximately
48 h [25]. Following this initial fixation, the right lobe of the prostate is painted with red
ink, the left lobe with green ink, and black ink is applied over the apex and base [19]. The
prostate is fixed for a further 30–60 min to allow the ink to fully adhere to the surface. The
gland is rinsed with cold water and patted dry with tissues. The gland is then serially
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sectioned at 4 mm intervals. The serial sections are then laid out onto a blue background
and assigned identifying labels, e.g., A1, A2, etc., from apex to base. Tissue sections are
stained routinely with hematoxylin and eosin stains [21].

For the microscopic examination, macroslides are used for larger than usual sections
obtained from prostate tissue blocks. These sections were systematically examined by one
or two pathologists depending on the complexity of the case. The tissue section area was
measured using a transparent plastic grid in which each square centimeter was divided
into 25 smaller squares, measuring 0.04 cm2 individually. In this way, it was possible to
obtain a closer approximation of the tumor’s true area. We confirmed the accuracy of our
measurements using a digital system (Hitachi).

The report sent to the surgeon for each radical prostatectomy included a written
account of the histopathology findings and a schematic representation of the tumor location,
grade, quantity, and proportion (%) in each affected section. Pericapsular and perineural
spread were illustrated, as well as seminal vesicle involvement. This illustrated report also
included a schematic representation of pre-operative biopsy results compared with the
radical prostatectomy findings. All cases were discussed with the urology surgeons at a
multidisciplinary meeting.

2.4. Histopathology Review

Prostatectomy specimens were reported by a histopathologist specializing in the
interpretation of prostate cancer at University Hospital Galway. Patients were labeled as
having a significant tumor (≥3 + 4) based on the Gleason and ISUO grades or no significant
cancer (≤3 + 4) [5,26].

2.5. Histology–MRI Matching

An experienced radiologist (D.S.), knowledgeable about histological findings, re-
viewed each dataset using Picture Archiving and Communication System (PACS) DICOM
viewer and aligned the single axial slice focal most suspected cancer to the site of cancer
proven according to histopathology report.

However, mp-MRI regions of interest (ROIs), including ADC, T2, and T1, were guided
by a radiologist (D.S.). The most inclusive tumor diameter on a single axial slice was used
to determine an ROI for each ADC, T2, and T1. Non-tumor regions were examined based
on the same zone (in different regions) examined for each patient’s tumor.

2.6. Magnetic Resonance Textural Analysis

mp-MRI regions of interest (ROIs) were guided by an experienced radiologist, as
described in Section 2.5. The ADC map, and T2- and T1-weighted ROIs from the decided
axial slice showing a non-tumor region and a malignant tumor were processed. We then
adjusted the focus for the most inclusive tumor diameter based on the histopathology
reports for every patient. The images were subjected to mp-MRI texture analysis (mp-
MRI TA) using in-house designed MATLAB software (v. 2019a, MathWorks, Natick, MA,
USA) and verified using ImageJ (Rasband, W.S., ImageJ, U.S.A., National Institutes of
Health, Bethesda, MA, USA, 1997–2018) and MaZda software [27]. mp-MRI TA consisted
of image histogram interpretation followed by the quantification of textures. Firstly, the
initial filtration step highlighted ROIs with texture attributes from a selection of specified
filter scales (3 × 3, 6 × 6, and 9 × 9 px) using a fast Fourier transform-based bandpass
filter in ImageJ (Joachim Walter’s FFT Filter). This step filtered out ROIs of the specified
size using Gaussian filtering in the Fourier space, allowing a histogram interpretation of
the refined image [13,28]. Secondly, image histogram interpretation was used to quantify
tumor heterogeneity based on a first-order statistical analysis of skewness, kurtosis, and
entropy. These specifications emulate the amount, intensity, and variation in areas of high
and low signal intensity. The symmetry of the image intensity was determined by skewness.
Entropy is a parameter evaluating the disorder of interpixel concentrations at the individual
filter scale. Kurtosis determines the sharpness of the histogram dissemination [13,29].
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2.7. First-Order Statistical Method

The attribute of gray-level distribution is determined for an image area based on its
pixels, whereas its properties are quantified and exploited through space relations funda-
mental to the gray-level distribution [30]. When using this type of analysis, if the picture is
a derivative f (x,y) of space parameters x and y, (x = 0, 1, . . . , N − 1 and y = 0, 1, . . . , M − 1),
then f (x,y) has distinct values i = 0, 1, . . . , G − 1, where G is the whole number of the image
strength degree [29]. The strength degree histogram is a metric that exhibits the number of
image pixels using the intensity as defined in Equations (1) and (2):

h(i) = ∑N−1
x=0 ∑M−1

x=0 δ( f (x, y), i) (1)

where δ(j,i) is the Kronecker delta function:

δ(j, i) =
{

1 , j = i
0, j 6= i

(2)

The intensity-level histogram effectively summarizes the statistical information of the
image. The gray-level histogram includes first-order statistical information and comprises
individual pixels. If the intensity degree histogram is distributed by the whole number
of pixels, then the estimated possible concentration of intensity levels is obtained by
Equation (3).

P(i) =
h(i)
NM

i = 0, 1, . . . , G− 1 (3)

The histogram can be used to quantify the first-order statistical method of the image,
thus providing image features. Furthermore, it can be used to characterize the texture using
Equations (4)–(8) [29].

Mean : µ = ∑G−1
i=0 ip(i) (4)

Variance : σ2 = ∑G−1
i=0 (i− µ)2 p(i) (5)

Skewness : µ3 = σ−3 ∑G−1
i=0 (i− µ)3 p(i) (6)

Kurtosis : µ4 = σ−4 ∑G−1
i=0 (i− µ)4 p(i)− 3 (7)

Entropy : H = −∑G−1
i=0 p(i) log2[p(i)] (8)

2.8. Statistical Analysis

The attributes for malignant and nontumor ROIs were assessed for each textural
metric using a two-tailed Mann–Whitney U test (p-value determined at p < 0.05). ROC
interpretations represented textural features derived from the area of interest of every ADC
and T1 and T2-weighted image to anticipate aggressive prostate cancer. The ROC-AUC and
95% confidence intervals were used to detect ideal individual parameters. The false dis-
covery rate was maintained at less than 5% using the Benjamini–Hochberg procedure [31].
The statistical interpretations were completed using SPSS Statistics software (Windows
version 26; IBM, Armonk, NY, USA).

3. Results
3.1. Patient Group

Malignant tumors ranged from 0.4 to 3.6 cm2 in size, with a mean size of 1.58 cm2.
Tables 3–5 represent the measures of the ROIs’ MR textural variables for subjects with either
non-tumor regions or lesion tumors. p-values indicate the significant difference between
ROIs for each subject, including non-tumor regions and significant tumors. The textural
parameters of the ROC-AUC values for mp-MRI were examined and used to distinguish
significant and non-tumor regions in ROI images.
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Table 3. Illustrating mean ± SEM value of the ADC map and T2- and T1-weighted images from a
first-order statistical analysis of skewness for ROIs containing non-tumors and significant tumors.
p-values for differences between ROIs were computed using two-tailed Mann–Whitney U testing.
The comparison between ROIs, including tumors and non-tumors, was assessed according to the
area under the receiver operator characteristic curve (ROC-AUC) for mp-MRI TA parameters.

Sequence
Non-Tumor

Regions
(Mean ± SEM)

Significant Tumor
(Mean ± SEM) p-Value ROC-AUC

(95% CI)

ADC 3 × 3 0.06 ± 0.12 0.43 ± 0.15 0.94 0.66
T2 3 × 3 0.28 ± 0.94 0.01 ± 0.10 0.54 0.31
T1 3 × 3 −0.16 ± 0.78 0.12 ± 0.10 0.29 0.39

ADC 6 × 6 −0.14 ± 0.13 0.49 ± 0.11 0.001 0.82
T26 × 6 0.14 ± 0.15 0.06 ± 0.03 0.8 0.47
T1 6 × 6 0.05 ± 0.13 0.06 ± 0.17 0.2 0.37

ADC 9 × 9 −0.13 ± 0.12 0.17 ± 0.12 0.08 0.66
T2 9 × 9 −0.03 ± 0.16 0.12 ± 0.10 0.48 0.43
T1 9 × 9 −0.20 ± 0.17 0.16 ± 0.18 0.5 0.56

Table 4. Illustrating mean ± SEM value of the ADC map and T2- and T1-weighted images acquired
from a first-order statistical analysis of kurtosis for ROIs containing non-tumors and significant
tumors. p-values of differences between ROIs were computed using two-tailed Mann–Whitney U
testing. The comparison between ROIs, including tumors and non-tumors, was assessed according to
the area under the receiver operator characteristic curve (ROC-AUC) for mp-MRI TA parameters.

Sequence
Non-Tumor

Regions
(Mean ± SEM)

Significant Tumor
(Mean ± SEM) p-Value ROC-AUC

(95% CI)

ADC 3 × 3 −0.72 ± 0.10 −0.41 ± 0.22 0.37 0.58
T2 3 × 3 0.13 ± 0.11 0.19 ± 0.15 0.6 0.55
T1 3 × 3 −0.57 ± 0.14 0.37 ± 0.40 0.46 0.57

ADC 6 × 6 −0.64 ± 0.16 −0.47 ± 0.19 0.22 0.61
T2 6 × 6 −0.01 ± 0.24 −0.34 ± 0.16 0.72 0.53
T1 6 × 6 0.01 ± 0.19 0.22 ± 0.43 0.65 0.54

ADC 9 × 9 −0.78 ± 0.08 −0.65 ± 0.10 0.81 0.52
T2 9 × 9 −0.09 ± 0.19 −0.51 ± 0.14 0.82 0.47
T1 9 × 9 −0.08 ± −0.29 −0.05 ± 0.45 0.56 0.55

Table 5. Illustrating mean ± SEM value of the ADC map and T2- and T1-weighted images acquired
from a first-order statistical analysis of entropy for ROIs containing non-tumors and significant
tumors. p-values of differences between ROIs were computed using two-tailed Mann–Whitney U
testing. The comparison between ROIs, including tumors and non-tumors, was assessed according to
the area under the receiver operator characteristic curve (ROC-AUC) for mp-MRI TA parameters.

Sequence
Non-Tumor

Regions
(Mean ± SEM)

Significant Tumor
(Mean ± SEM) p-Value ROC-AUC

(95% CI)

ADC 3 × 3 4.09 ± 0.09 4.07 ± 0.15 0.84 0.48
T2 3 × 3 6.25 ± 0.11 6.10 ± 0.22 0.75 0.46
T1 3 × 3 5.61 ± 0.30 5.48 ± 0.31 0.71 0.53

ADC 6 × 6 4.08 ± 0.09 4.15 ± 0.11 0.64 0.54
T2 6 × 6 5.92 ± 0.12 5.86 ± 0.12 0.87 0.51
T1 6 × 6 4.98 ± 0.31 4.85 ± 0.27 0.68 0.54

ADC 9 × 9 4.02 ± 0.10 4.12 ± 0.11 0.54 0.55
T2 9 × 9 5.72 ± 0.13 5.59 ± 0.16 0.56 0.55
T1 9 × 9 4.58 ± 0.27 4.60 ± 0.24 0.89 0.48
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3.2. Textural Parameters

Tables 3–5 illustrate the textural measures for skewness, kurtosis, and entropy. Details
for each parameter are explained below.

Data represented by the mean ± SEM value, skewness of ADC (3 × 3, 6 × 6, and
9 × 9 px), T2 (3 × 3, 6 × 6, and 9 × 9 px), and T1 (3 × 3, 6 × 6, and 9 × 9 px) filter
sizes were ADC (0.06 ± 0.12, −0.14 ± 0.13, −0.13 ± 0.12), T2 (0.28 ± 0.94, 0.14 ± 0.15,
−0.03 ± 0.16), and T1 (−0.16 ± 0.78, 0.05 ± 0.13, −0.20 ± 0.17) for non-tumor regions, and
ADC (0.43 ± 0.15, 0.49 ± 0.11, 0.17 ± 0.12), T2 (0.01 ± 0.10, 0.06 ± 0.03, 0.12 ± 0.10), and
T1 (0.12 ± 0.10, 0.06 ± 0.17, −0.05 ± 0.45) for malignant tumors. The median skewness
of the ADC (6 × 6 px) filter size was considerably less for subjects (p = 0.001), although
median T1 and T2 levels of skewness for the remaining filter sizes were not statistically
significant (Table 3).

Data represented by the mean ± SEM value, kurtosis of ADC (3 × 3, 6 × 6, and
9 × 9 px), T2 (3 × 3, 6 × 6, and 9 × 9 px), and T1 (3 × 3, 6 × 6, and 9 × 9 px) filter
sizes were ADC (−0.72 ± 0.10, −0.64 ± 0.16, −0.78 ± 0.08), T2 (0.13 ± 0.11, −0.01 ± 0.24,
−0.09 ± 0.19), and T1 (−0.57 ± 0.14, 0.01 ± 0.19, −0.08 ± −0.29) for non-tumor regions,
and ADC (−0.41 ± 0.22, −0.47 ± 0.19, −0.65 ± 0.10), T2 (0.19 ± 0.15, −0.34 ± 0.16,
−0.51 ± 0.14), and T1 (−0.05± 0.45, 0.22± 0.43, 0.22± 0.43) for malignant tumors. Kurtosis
medians in reference to ADC, T2, and T1 (3 × 3, 6 × 6, and 9 × 9 px) filters were not
significant for p-values of ADC (p = 0.37, 0.22, 0.81), T2 (p = 0.6, 0.72, 0.82), and T1 (p = 0.46,
0.65, 0.56) (Table 4).

Data represented by the mean ± SEM value, entropy of ADC (3 × 3, 6 × 6, and
9 × 9 px), T2 (3 × 3, 6 × 6, and 9 × 9 px), and T1 (3 × 3, 6 × 6, and 9 × 9 px) were ADC
(4.09 ± 0.09, 4.08 ± 0.09, 4.02 ± 0.10), T2 (6.25 ± 0.11, 5.92 ± 0.12, 5.72 ± 0.13), and T1
(5.61 ± 0.30, 4.98 ± 0.31, 4.58 ± 0.27) for non-tumor regions, and were ADC (4.07 ± 0.15,
4.15 ± 0.11, 4.12 ± 0.11), T2 (6.10 ± 0.22, 5.86 ± 0.12, 5.59 ± 0.16), and T1 (5.48 ± 0.31,
4.85 ± 0.27, 4.60 ± 0.24) for malignant tumors. The entropy medians were not significantly
different between tumors and non-tumor regions (p = 0.56–0.89) (Table 5).

3.3. Disease Classification (Textural Metrics)

ADC skewness for a 6 × 6 px filter was the only reliable acting classifier with a ROC-
AUC of 0.82 (95% CI). Figure 3 shows the ROC-AUCs for significant univariate metrics that
manifested the reinforced specificity and sensitivity.

Figure 3. The best textural features from ROC curves and discernment of ROIs including significant
tumors or non-tumor regions with AUC value.
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4. Discussion

We used mp-MRI-derived TA in our study to identify tumors and assess tumor
heterogeneity in prostate cancer. Textural parameters were derived from the ROIs of
mp-MRI axial slices using a first-order statistical approach among 18 patients for both
tumor and non-tumor regions. Our results reveal that textural features derived from ADC
maps at specific filter sizes could differentiate non-tumor from significant tumor regions in
the patient population study. When maintaining the false discovery rate at 5% using the
Benjamini–Hochberg correction (Appendix A, Table A1), the p-values for ADC skewness
at a 6 × 6 px filter remained significant (p = 0.001). Our outcomes (ROC-AUC 0.82), with
an ROC-AUC ranging from 0.73 to 0.86 in the prostate, correspond with those in the
literature [15,32,33].

Skewness refers to the histogram asymmetry. Our results indicate that ADC skew-
ness was the highest categorizing textural attribute (ROC-AUC 0.82 on ADC 6 × 6 px
filter image) with a greater ROC-AUC over the textural metrics of ADC skewness with
3 × 3 and 9 × 9 px filter images. Furthermore, the skewness of the ADC image using a
9 × 9 px filter was the second-highest textural feature (ROC-AUC = 0.66) and was not
statistically significant (p = 0.08). We anticipate that textural metrics, dependent on the
relationship between pixels in a specific area of interest instead of actual pixel intensities,
will have greater performance in accurately determining changes across individuals and
scanners [15]. In their work, Donati et al. [34] stated that in cancers densely populated
with tumor tissue, the generated ADC distribution reduces skew and spread. As a result,
the variations between the analyzed ADC metrics may be reduced in these lesions. The
skewness distribution, similar to cancer heterogeneity, is evaluated using the respective
variable from pathologic examination, including a quantifiable measure evaluating the
concentration of cancer tissues instead of the Gleason score [34]. Another outcome was that
skewness is estimated through T1- and T2-weighted images for all filters, under-detecting
the prevalence of prostate cancer in this study.

The histogram kurtosis reflects the peakedness of a histogram, which is associated
with immature vascularity in tumor sites [35]. Entropy is a descriptor parameter that
measures disorder in the distribution of signal intensities. In this group, the kurtosis and
entropy of ADC and T1- and T2-weighted images for all filter scales were not significantly
connected and were therefore able to allow discerning between healthy and lesion regions.
These results are consistent with the literature; Bates et al. also stated that they could not
find significant variations in kurtosis and entropy across regions with or without tumors
using mp-MRI at 3 T [36]. After evaluating kurtosis and entropy for all pixels within the
ROIs, both with and without tumors, the portion of tumor pixels may not have substantially
affected kurtosis and entropy. Nevertheless, Sidhu et al. found significant prostate cancer
using mp-MRI at 1.5 T for transition zone (TZ) tumors considered using template-mapping
biopsy. When the tumor was removed from the slice, kurtosis became insignificant even
though we performed 3 T mp-MRI scans prior to prostatectomy, and we could not detect
any statistically significant variations in kurtosis or entropy between patients with and
without cancer. Sidhu et al. did not use a standardized magnetic resonance imaging
acquisition technique.

Although all patients had their prostate tissue histopathologically examined, every
patient identified with prostate tumor tissue showed significant PSA levels in the TZ or PZ.
Due to the use of 3 T scans before prostatectomy, the probability was minimal that tissue
sampling would provide even limited information about the tumor’s exact position inside
the prostate organ, and no sign of its positioning in any precise prostatic region [36].

A few limitations were identified in this study. First, this study may have been limited
by the population size, since there were only 18 participants. However, these data are
not publicly available, and patient consent must be provided at a sensitive point in their
care. This study was cross-sectional, demonstrating the sensitivity of the textural analysis
to detect pathology depending on the investigated time points. However, it would be
interesting to perform a larger study to determine how early this technique can detect
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pathology. Furthermore, the filtration technique used in this study was a fast Fourier
transform-based bandpass filter analysis, whereas Bates et al. used a Laplacian-of-Gaussian
bandpass filter. Thus, they could not discriminate between the occurrence or absence of a
tumor based on either kurtosis or entropy. Second, the study was limited by the short time
interval from biopsy to mp-MRI. The time interval from biopsy to mp-MRI was a maximum
of one month in this study, relatively shorter than is recommended [37]. Nevertheless,
current guidelines suggest not postponing mp-MRI after biopsy for tumor identification.
However, hemorrhage and inflammation after a biopsy can influence prostate MRI staging.
For staging, a 6-week or longer gap between biopsy and MRI is recommended [37].

This study revealed certain significant aspects. The use of prostatectomy specimens
with tumor mapping is an important distinguishing feature of current histological research.
Histopathological data were used to correlate mp-MRI imaging features and a precise
pathology instead of the relationship being assumed from a representative biopsy. The
outcomes associated with prior studies endorse the use of mp-MRI TA in diagnosing
prostate tumors. Our determinations also corroborate the use of mp-MRI TA by assisting
in the identification of malignant prostate cancer.

5. Conclusions

Our research demonstrates that mp-MRI TA is a non-invasive approach suitable for
appraising tumor heterogeneity. This procedure may help avoid excessive misdiagnosis
and the overtreatment of any clinically negligible disease. Our study suggests that the
skewness of ADC MRI is a significant textural parameter. We differentiated significant
tumor and non-tumor regions despite a small N number and with strict inclusion criteria
based on the time between scans and histology.

Our future plan is to apply these techniques to a larger population dataset and identify
pathology using a machine learning approach. Another prospective application is an mp-
MRI computer-aided detection (CAD) method, for which a textural measure may enhance
prostate tumor classification specifically in situations where radiologists are unsure.
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Appendix A

Table A1. Benjamini–Hochberg approach for false discovery rate (FDR) of p-values for all patients.

Ranking p-Value Adjusted p-Value Rejected

1 0.001 0.001852 1
2 0.08000 0.003704 0
3 0.20000 0.005556 0
4 0.22000 0.007407 0
5 0.29000 0.009259 0
6 0.37000 0.011111 0
7 0.46000 0.012963 0
8 0.48000 0.014815 0
9 0.50000 0.016667 0
10 0.54000 0.018519 0
11 0.54000 0.020370 0
12 0.56000 0.022222 0
13 0.56000 0.024074 0
14 0.60000 0.025926 0
15 0.64000 0.027778 0
16 0.65000 0.029630 0
17 0.68000 0.031481 0
18 0.71000 0.033333 0
19 0.72000 0.035185 0
20 0.75000 0.037037 0
21 0.80000 0.038889 0
22 0.81000 0.040741 0
23 0.82000 0.042593 0
24 0.84000 0.044444 0
25 0.87000 0.046296 0
26 0.89000 0.048148 0
27 0.94000 0.050000 0
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