
����������
�������

Citation: Wan, Q.; Zeng, Z.; Qi, J.;

Zhao, Y.; Liu, X.; Chen, Z.; Zhou, H.;

Zu, Y. Aptamer Targets

Triple-Negative Breast Cancer

through Specific Binding to Surface

CD49c. Cancers 2022, 14, 1570.

https://doi.org/10.3390/

cancers14061570

Academic Editors: Maurizio Di

Bonito, Michelino De Laurentiis and

Monica Cantile

Received: 27 January 2022

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Aptamer Targets Triple-Negative Breast Cancer through Specific
Binding to Surface CD49c
Quanyuan Wan 1, Zihua Zeng 1, Jianjun Qi 1, Yingxin Zhao 2, Xiaohui Liu 1, Zhenghu Chen 1 , Haijun Zhou 1

and Youli Zu 1,*

1 Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
qyuanwan@gmail.com (Q.W.); zzeng@houstonmethodist.org (Z.Z.); jqi@houstonmethodist.org (J.Q.);
lcswyh@126.com (X.L.); zchen2@houstonmethodist.org (Z.C.); hzhou@houstonmethodist.org (H.Z.)

2 Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
yizhao@utmb.edu

* Correspondence: yzu@houstonmethodist.org

Simple Summary: Targeted therapy directed against many biomarkers has not shown significant
improvement in outcome in TNBC, and therefore it is urgent to discover more biomarker candidates.
Here, we found a DNA aptamer that bound to TNBC cells and identified CD49c as a specific surface
marker for TNBC cells using the aptamer-facilitated biomarker discovery technology. The findings
suggest that this DNA aptamer can be a drug delivery vehicle and CD49c is a potential target of
targeted therapy for TNBC.

Abstract: Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer
side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells
limits the development of targeted therapies by antibody technology. Therefore, we investigated an
alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly
differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We
found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively
targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells,
we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid
chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly
conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target
validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c
antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both
aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T
aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted
TNBC therapy using the PDGC21T aptamer as a targeting ligand.

Keywords: aptamer ligand; biomarker identification; integrin α3/CD49c; triple-negative breast
cancer (TNBC); targeted cancer therapy

1. Introduction

Breast cancer is the most common cancer among women worldwide, and is the fifth
leading cause of cancer mortality, with an estimated 2.3 million new cases representing
11.7% of all cancer cases in 2020 [1]. Breast cancers are categorized into six subtypes based on
the expression of cell surface molecular markers. For therapeutic purposes, breast cancers
are categorized into three subtypes: estrogen and progesterone receptor (ER, PR)-positive,
human epidermal growth factor receptor 2 (HER2)-positive, and triple (ER, PR, and HER2)-
negative [2]. The triple-negative breast cancer (TNBC) subtype accounts for 15–20% of all
breast cancers. Clinically, TNBC grows and spreads faster than other breast cancer subtypes
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and therefore tends to be more aggressive, with a higher potential for disease metastasis
and recurrence. Pathologically, TNBC tumor cells are poorly differentiated and do not
express ER, PR, or HER2. Therefore, TNBC does not respond to ER/PR-based hormonal
therapy or HER2-targeting therapies, which are used clinically to treat other types of
breast cancers. The lack of specific biomarkers on TNBC cells impedes the development of
targeted therapeutic approaches. Currently, a combination of surgery and chemotherapy
is the standard of care to treat TNBC. However, none of these are specific for TNBC, and
chemotherapy may have severe off-target toxicity in normal tissues [2,3].

Nucleic acid aptamers are small-molecule ligands comprising short, single-strand
DNA (ssDNA) or ssRNA. Target-specific aptamers can be developed from ssRNA/ssDNA
libraries via a defined experimental process called the systematic evolution of ligands by
exponential enrichment (SELEX). Aptamers can be developed via the SELEX approach
by using cells as the targets, namely cell-based SELEX (cSELEX). Importantly, the cSELEX
allows researchers to develop aptamers specific for cells of interest without knowledge of
target molecules on cell surface or no known targetable biomarkers available [4–6]. Such
aptamers developed by cSELEX have been studied for in vivo tumor imaging, including
B-cell lymphoma [7], colorectal cancer [8], and lung cancer [9]. In addition, the aptamers
can function as a vehicle for targeted delivery of miRNA/siRNA or anticarcinogens [10],
and act as an anti-cancer agent [11,12]. Moreover, the aptamers developed by the cSELEX
approach are valuable tools to identify new specific biomarkers on cells of interest via the
aptamer-facilitated biomarker discovery (AptaBiD) technology [13]. A recent study using
the cSELEX approach identified the ssDNA aptamer (PDGC21T), which recognizes and
selectively binds to poorly differentiated gastric cancer tissue in patient specimens, even
though the identity of the target molecule(s) was unknown [14]. Because TNBC is also
poorly differentiated, we explored whether the aptamer could target TNBC cells. Both
in vitro and in vivo studies demonstrated that the synthetic PDGC21T aptamer could bind
TNBC cells with high affinity and target TNBC cell-xenograft tumors. To identify the target
of the PDGC21T aptamer, we conducted an aptamer-mediated co-precipitation study and
subsequent mass spectrometry-based proteomics assays. Peptide identification analysis
revealed that the target of PDGC21T is CD49c (integrin alpha 3) on TNBC cells. These
findings provide a foundation for the development of an aptamer-guided approach for
imaging detection and targeted therapy in TNBC tumors.

2. Materials and Methods
2.1. Cell Culture

The TNBC cell lines were kind gifts from Dr. Jenny C. Chang’s lab at the Houston
Methodist Academic Institute. The other cells were purchased from American Type Culture
Collection (ATCC, Manassas, VI, USA), cultured, and stored in our laboratory. Cell lines
were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium (Corning, Corning,
NY, USA) supplemented with 10% FBS (Corning), 100 units/mL penicillin (Gibco, Waltham,
MA, USA), and 100 µg/mL streptomycin (Gibco). For cell passage, 0.25% trypsin with
ethylenediaminetetraacetic acid (Corning) and non-enzymatic cell dissociation solution
(Corning) were used. All cells were grown at 37 ◦C in 95% air/5% CO2. All experiments
were performed with mycoplasma-free cells as tested with e-Myco™ plus mycoplasma
PCR detection kit (iNtRON Biotechnology, Seoul, South Korea).

2.2. Aptamer Binding Assay

All aptamers, including 5’-dye-labeled or 5’-biotinylated aptamers, were purchased
from Integrated DNA Technologies (IDT Inc., Coralville, IA, USA). Dry DNA oligos were
dissolved to a storage concentration of 100 µM with PM buffer (1 × PBS (Corning) supple-
mented with 5 mM MgCl2 (Sigma-Aldrich, St. Louis, MO, USA)) and stored at−20 ◦C until
further use. Before use, aptamers were thawed and diluted to 10 µM with PM buffer, heated
to 95 ◦C, and immediately cooled in ice for at least 10 min. Before cell-binding assays, the
biotinylated aptamer used for the binding test was incubated with streptavidin-conjugated
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Cy3 (Invitrogen, Carlsbad, CA, USA) at 37 ◦C for 30 min to link the aptamer with the
Cy3 dye.

Cells were harvested using non-enzymatic cell dissociation solution and then washed
once with PBS. Then, cells were distributed into Falcon® 5 mL round-bottomed polystyrene
test tubes (Corning) and incubated with varying concentrations of dye-labeled aptamers,
random ssDNA sequences, antibodies, or IgG control in 100 µL of binding buffer (1 × PBS
supplemented with 0.1 g/L yeast tRNA (Invitrogen, Waltham, MA, USA), 4.5 g/L glucose
(Gibco), 1.0 g/L bovine serum albumin (Thermo Scientific, Waltham, MA, USA), and 5 mM
MgCl2 (Sigma-Aldrich)). After incubation at room temperature (RT) for 15–30 min, cells
were collected by means of centrifugation at 400× g for 5 min. Then, cells were resuspended
with 1 mL of washing buffer (1× PBS supplemented with 4.5 g/L glucose and 5 mM MgCl2)
and washed once. Subsequently, cells were collected by means of centrifugation and re-
suspended in flow cytometer running buffer (1 × PBS supplemented with 2% FBS and
5 mM MgCl2). Flow cytometry was then performed using a BD LSR II Flow Cytometer
(BD Biosciences, San Jose, CA, USA) to measure the fluorescence signal from cell-bound
aptamers or antibodies. The fluorescence was observed through fluorescent microscopic
imaging (Olympus IX81, Olympus America, Melville, NY, USA). Flow cytometry data were
analyzed using FlowJo software (version: X 10.0.7r2, FlowJo, Ashland, OR, USA).

2.3. Aptamer-Antibody Competition Binding Assay

To determine whether PDGC21T affects anti-CD49c binding, a final concentration
of 1 µM Cy3-labeled PDGC21T or a random ssDNA library (negative control) was pre-
incubated with MDA-MB-231 or HCC38 cells at RT for 15 min. Then, 1 µL of PE-labeled
anti-CD49c (Clone C3 II.1, BD Pharmingen™, San Diego, CA, USA) was added to cells
and incubation continued for 15 min. As controls, PE-labeled anti-CD49c or IgG isotype (κ
Isotype control, Clone MOPC-21, BD Pharmingen™) were incubated with MDA-MB-231 or
HCC38 cells at RT for 15 min. To determine whether anti-CD49c affects PDGC21T binding,
5 µL of PE-labeled anti-CD49c or IgG isotype were pre-incubated with MDA-MB-231 or
HCC38 cells at RT for 15 min. Then, fluorescein amidite (FAM)-labeled PDGC21T was
added to cells at a final concentration of 200 nM and incubation continued for 15 min. As a
blank control, FAM-labeled PDGC21T or a random library was incubated with MDA-MB-
231 or HCC38 cells at RT for 15 min. After incubation, cells were washed once with wash
buffer and re-suspended in running buffer for flow cytometry.

2.4. PDGC21T Pull-Down Assay

Aptamer-based pull-down and high-performance liquid chromatography mass spec-
trum (HPLC-MS) were used to identify PDGC21T targets. The pull-down assay was per-
formed according to a previously published procedure using a biotinylated aptamer [15].
To measure the binding ability of the biotinylated PDGC21T, two approaches were used.
One approach is to link the biotinylated PDGC21T with the streptavidin-Cy3, as described
previously. Another approach is to perform the competitive assay. Briefly, a final con-
centration of 1 µM biotinylated PDGC21T was pre-incubated with MDA-MB-231 cells at
RT for 15 min. Then, Cy3-labeled PDGC21T was added to cells at a final concentration
of 200 nM and incubation continued for 15 min. Binding ability was measured using
flow cytometry. Pull-down was performed after confirming the binding ability of the
biotinylated PDGC21T.

Ten million cells were harvested using trypsin and washed once with PBS. After wash-
ing, cells were re-suspended and lysed in 1.8 mL of 50 mM Tris-Cl buffer (pH 7.4) (Sigma-
Aldrich) supplemented with phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich) and
proteinase inhibitor cocktail (Sigma-Aldrich) for 30 min at 4 ◦C. After incubation, cell
debris was collected by means of centrifugation at 12,000× g for 3 min at 4 ◦C and washed
three times with 50 mM Tris-Cl buffer (pH 7.4) supplemented with PMSF. The pellet was
resuspended and further lysed with 600 µL of lysis buffer (1 × PBS, supplemented with
5 mM MgCl2, 1% Triton X-100 (Sigma-Aldrich), PMSF, and proteinase inhibitor cocktail)
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for 30 min at 4 ◦C. After lysing, the supernatant was collected by means of centrifugation
at 12,000× g for 5 min at 4 ◦C. The supernatant was aliquoted into three clean 2 mL tubes
and pre-heated biotin-labeled PDGC21T aptamer or a random ssDNA library was added
(final aptamer concentration, 2 µM). Rotated incubation was performed at 4 ◦C overnight.
The next day, pre-washed streptavidin-sepharose (GE Healthcare, Marlborough, MA, USA)
(200 µL of original volume/tube) was added and tubes were incubated with rotation for 1 h
at 4 ◦C. After incubation, agarose beads were collected and washed three times with lysis
buffer by centrifugation at 12,000× g for 5 min at 4 ◦C. Finally, 10 µL of 5× SDS sample load-
ing buffer was added into each tube containing the collected agarose beads, and samples
were heated at 85 ◦C for 10 min. Supernatant was collected by centrifugation at 12,000× g
for 5 min at RT. A 15 µL aliquot of supernatant was loaded into the corresponding wells
of a 4–15% Mini-PROTEAN® TGX™ precast protein gel (Bio-Rad, Hercules, CA, USA)
and electrophoresed at 90 V for 2 h. The silver stain procedure for the gel was conducted
according to the manufacturer’s instructions (PierceTM Silver Stain kit; Thermo Scientific).
Protein bands of interest were excised for further liquid chromatography tandem mass
spectrometry (LC-MS/MS) analysis (Supplemental Materials and Methods) [16–19].

2.5. PDGC21T PEGylation

PDGC21T PEGylation was performed as described previously with minor modi-
fications [20]. Briefly, 120 µg of IRD800CWPDGC21T was dissolved in 800 µL of 0.1 M
NaHCO3/CH3CN (v/v = 1:1, pH 9.0) (Sigma-Aldrich), and 20 mg of mPEG-NHS (Nanocs,
New York, NY, USA) was added to this solution. The mixture was incubated overnight
at RT with gentle shaking. The reaction was monitored by reversed-phase HPLC (RP-
HPLC) using a PRP-1 analytic column (4.1 mm × 150 mm, 10 µm, HAMILTON Corpo-
ration, Reno, NV, USA) at a flow rate of 1 mL/min. A 15 min linear gradient from 0%
solvent A [100 mM triethylammonium acetate (Sigma-Aldrich) in water, pH 7] to 100%
solvent B [5% solvent A in CH3CN (Sigma-Aldrich)] was used for each HPLC run. The
resulting IRD800CWPDGC21TPEG5000 was purified using a PRP-1 semi-preparative column
(10 mm × 250 mm, 10 µm, HAMILTON Corporation) at a flow rate of 3 mL/min. An 18 min
linear gradient from 0% solvent A (100 mM triethylammonium acetate in water, pH 7) to
85% solvent B was used for each HPLC run. The fractions of IRD800CWPDGC21TPEG5000
were collected and solvents were removed with SpeedVac concentrator (SPD131DDA,
Thermo Scientific). The purified IRD800CWPDGC21TPEG5000 was confirmed with a sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) assay.

2.6. Tumor Xenograft and In Vivo and Ex Vivo PDGC21T Targeting

For PDGC21T targeting, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice from the Jackson
Laboratory were subcutaneously injected with 3 × 106 of either HCC1937, SUM159PT,
MDA-MB-231, HCC38, Hs578T, or MCF7 breast cancer cells in the lower back. Tumor
size was measured using a vernier caliper and tumor volume was calculated using the
following formula:

tumor volume = tumor length × tumor width2 × 0.52 (1)

Two months after tumor inoculation or when tumor volume reached 0.5 cm3, tumor-
bearing mice were injected intravenously with a 0.067 nmol/dose (1.33 µg/dose) of
IRD800CWPDGC21T or IRD800CWPDGC21TPEG5000. Before injection, aptamers were heated at
95 ◦C for 5 min followed by an ice bath for at least 10 min. In vivo imaging was performed
using an in vivo imaging system (Xenogen IVIS-200, Caliper Life Sciences, Hopkinton, MA,
USA) at 30 min, 4 h, and 24 h post-aptamer injection. IRDye800CW-conjugated aptamers
were observed under fluorescent settings at excitation and emission wavelengths of 745
and 820 nm, respectively. After in vivo imaging at 24 h post-aptamer injection, mice were
euthanized. The heart, lung, kidney, liver, spleen, and tumor were removed and imaged.
All images were analyzed using Living Image Software (version 4.7.4, Caliper Life Sciences,
Waltham, MA, USA).
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2.7. Xenograft Tumor Cells Isolation

Tumors were mechanically fragmented by cutting with sterile scissors in a DMEM
cell culture medium. The cell-containing DMEM medium was filtered through 40 µm
cell strainers. After harvesting by means of centrifugation at 300× g for 3 min, cells were
incubated in the non-enzymatic cell dissociation solution (Corning) at 37 ◦C for 10 min.
Then, cells were harvested and re-suspended in the binding buffer for the aptamer or
antibody binding assay as described above.

3. Results
3.1. Synthetic PDGC21T Aptamer Specifically Binds to TNBC Cells

The PDGC21T aptamer was synthesized and labeled with fluorescent reporters: 5′-
ACACCAAAATCGTCCGTTTCGTTTTAGTCCGTCTCTTTAGGGTGT-3′ [14]. For cell bind-
ing assays, cultured TNBC cells, including HCC1937, MDA-MB-231, HCC38, and Hs578T
cell lines, and non-TNBC cell lines, including T47D and MCF7, were treated with synthetic
aptamers for 30 min at RT. Resultant binding of FAM-labeled and Cy3-labeled aptamers
to suspended and adherent tumor cells was examined by fluorescent microscopy and
flow cytometry, respectively. The PDGC21T aptamer selectively bound to suspended and
adherent TNBC cells but did not react with non-TNBC cells under the same conditions
(Figure 1). No cell binding was observed in control experiments with the same length of
ssDNA probe containing random sequences.

Figure 1. Specific binding of the PDGC21T aptamer to cultured triple-negative breast cancer (TNBC)
cells. (A) Flow cytometry analysis demonstrates that PDGC21T aptamer binds to suspended TNBC
cells but does not react with non-TNBC cells. (B) Fluorescent microscopy confirmed that PDGC21T
binds to adherent TNBC cells but does not react with non-TNBC cells. Red font indicates non-TNBC
cell line. BF; bright field, FITC; fluorescein isothiocyanate. Scale bars = 100 µm. The final incubation
concentration of aptamers or random ssDNA was 200 nM.
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3.2. PDGC21T Aptamer Targets Xenograft TNBC Tumors

In an in vivo targeting study, mouse models with xenograft tumors derived from
TNBC cells were developed. Aptamers were labeled with the near-infrared dye IRD800CW
at the 5′-end to formulate IRD800CWPDGC21T. Because the polyethylene glycol (PEG) mod-
ification can increase the stability and prolong the blood circulation half-life of oligonu-
cleotides [21], IRD800CWPDGC21T aptamers were conjugated with 5 kDa PEG at the 3′-end
(Figure 2A), and resultant IRD800CWPDGC21TPEG5000 aptamers were purified using RP-
HPLC (Figures S1 and S2). IRD800CWPDGC21TPEG5000 aptamer cell binding was initially
tested in vitro as earlier described. Flow cytometry analysis revealed that
IRD800CWPDGC21TPEG5000 aptamers bound TNBC cells (MDA-MB-231 and HCC38) but did
not react with MCF7 cells (Figure 2B).

Figure 2. Preparation and validation of IRD800CWPDGC21TPEG5000 aptamers. (A) Schematic
showing IRD800CWPDGC21TPEG5000 aptamer production. (B) Flow cytometry analysis of
IRD800CWPDGC21TPEG5000 aptamer binding to TNBC cells. The final incubation concentration of
aptamer or random ssDNA was 200 nM.

In an in vivo targeting study, mouse models of TNBC were developed using HCC1937,
HCC38, MDA-MB-231, SUM159PT, and Hs578T xenograft tumors. In a control group,
xenograft tumors derived from non-TNBC cells (MCF7) were used. Once xenograft tu-
mors reached ≥0.5 cm3, IRD800CWPDGC21TPEG5000 aptamers were administered via the
tail vein (Figure 3A). In an in vivo biostability study, IRD800CWPDGC21T aptamers were
analyzed. Mice underwent optical imaging scans at 30 min, 4 h, and 24 h post-aptamer
administration. Both aptamer probes specifically targeted MDA-MB-231 tumors with
detectable imaging signals (Figure 3B). Notably, relative to IRD800CWPDGC21T aptamers,
IRD800CWPDGC21TPEG5000 aptamers showed superior enhancement in MDA-MB-231 tu-
mors and imaging signals lasted longer, up to 24 h post-aptamer administration. Specific
TNBC tumor targeting by IRD800CWPDGC21TPEG5000 aptamers was also confirmed in mice
bearing xenograft tumors derived from HCC1937, HCC38, SUM159PT, or Hs578T cells
(Figure S3A–C). To rule out non-specific imaging, IRD800CWPDGC21TPEG5000 aptamers were
administered to mice with non-TNBC xenograft tumors derived from MCF7 cells, and a
whole-body imaging scan was performed as earlier described. Though weak signals were
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detected peripherally in MCF7 tumor sides at 30 min post-aptamer administration, they
faded rapidly and became undetectable (Figure 3C).

Figure 3. The IRD800CWPDGC21TPEG5000 aptamer specifically targets TNBC xenograft tumors and has
an extended in vivo half-life. (A) Flow diagram of the in vivo tumor targeting study using aptamer
probes. The red sphere indicates the xenograft tumor site. s.c., subcutaneous; i.v., intravenous.
(B) Relative to IRD800CWPDGC21T aptamers, the signal enhancement from IRD800CWPDGC21TPEG5000

aptamers was stronger and persisted longer in MDA-MB-231 tumors (up to 24 h post-aptamer admin-
istration). (C) In contrast, weak signals were observed peripherally in MCF7 tumor sites at 30 min
post IRD800CWPDGC21TPEG5000 aptamer administration but faded rapidly and became undetectable
under the same imaging conditions. (D,E) Ex vivo imaging of resected MDA-MB-231 xenograft
tumors, hearts, lungs, kidneys, livers, and spleens from mice treated with IRD800CWPDGC21T
aptamers (D), or IRD800CWPDGC21TPEG5000 aptamers (E) post-whole-body imaging. (F) Ex vivo
imaging of resected MCF7 xenograft tumors and major organs from mice treated with the
IRD800CWPDGC21TPEG5000 aptamers.

To confirm the in vivo imaging results, xenograft tumors and major organs were
collected after whole-body imaging. Ex vivo imaging demonstrated that mice treated
with IRD800CWPDGC21TPEG5000 aptamers showed stronger signal enhancement in TNBC
tumors relative to those treated with IRD800CWPDGC21T aptamers (Figure 3D,E, and Figure
S3D–F). In contrast, no signals were detected in non-TNBC tumors in mice treated with
IRD800CWPDGC21TPEG5000 aptamers (Figure 3F), though a similar pattern of the background
signal was present. Taken together, these findings indicate that PDGC21T aptamers selec-
tively target TNBC xenograft tumors and PEGylation significantly improves the circulation
half-life of PDGC21T aptamers.

3.3. PDGC21T Targets Human CD49c

Because the PDGC21T aptamer can selectively bind intact TNBC cells and xenograft
tumors, its target is considered a cell surface molecule or membrane protein. To discover
the identity of the PDGC21T aptamer target on tumor cells, biotinylated PDGC21T was
synthesized. First, the cell-binding capacity of the biotinylated aptamer was confirmed
in MDA-MB-231 cells using a Cy3-labeled aptamer probe as a control (Figure 4A). Subse-
quently, the membrane protein fraction derived from TNBC cells (MDA-MB-231, HCC38,
and Hs578T mixtures) was prepared, and target co-precipitation by biotinylated aptamer
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was performed. As a background control, biotinylated ssDNA containing a random se-
quence of the same length as the PDGC21T aptamer was used. The resultant co-precipitated
complexes were pulled down with streptavidin-conjugated agarose beads, separated by
SDS-PAGE, and developed with silver staining. A protein band with a relative molecular
weight of ~118 kDa was detected in a co-precipitated complex of PDGC21T aptamer, but
not the random ssDNA control or blank sample (Figures 4B and S4). The same set of
co-precipitation assays were carried out using membrane fractions of non-TNBC cells (mix-
ture of MCF7, T47D, and Jurkat cells), and this protein band was not detected in samples
incubated with PDGC21T aptamer or the random ssDNA control (Figure 4B).

Figure 4. Identification of the PDGC21T aptamer target molecule. (A) Biotinylated PDGC21T aptamer
targeted MDA-MB-231 cells with a similar binding capacity to that of Cy3-labeled PGC21T aptamers.
In contrast, random ssDNA controls did not bind MDA-MB-231 cells. Biotin-PDGC21T→Cy3-
PDGC21T indicates MDA-MB-231 cells that were first incubated with biotinylated PDGC21T and
then incubated with Cy3-labeled PDGC21T. The final incubation concentration of aptamers or random
ssDNA was 200 nM. (B) Aptamer-mediated immunoprecipitation assays. Membrane proteins derived
from TNBC cells (MDA-MB-231, HCC38, and Hs578T mixtures) and non-TNBC cells (MCF7, T47D,
and Jurkat mixture) were prepared and used for co-precipitation with biotinylated PDGC21T aptamer,
biotinylated random ssDNA, or vehicle alone as a blank control. Resultant aptamer and target
complexes were pulled down by streptavidin-immobilized agarose beads and separated on sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by silver staining. The
red-dotted box shows the protein band of interest, which was collected for liquid chromatography
tandem mass spectrometry (LC-MS/MS) identity analysis. The uncropped figures are shown in Figure
S4. (C,D) LC-MS/MS identification of the target of PDGC21T. The proteins detected in PDGC21T
aptamer and random sequence pull-down experiments were identified and quantified with label-free
LC-MS. (C) Volcano plot of identified proteins. Each dot represents one protein. Proteins above the
cutoff curves are statistically significant (Student’s t-test with 1% permutation-based FDR below 0.01).
(D) Annotated MS/MS spectra of CD49c (ITGA3) peptide, STEVLTCATGR.

The protein band was collected for label-free LC-MS/MS analysis. A total of 64 pro-
teins with <1% false-positive rate (FDR) were detected and quantified (Tables S1 and S2).
Student’s t-test with permutation-based FDR correction was used to identify proteins whose
abundance varied significantly between the two samples (PDGC21T aptamer vs. random
ssDNA). Integrin α3 (CD49c, encoded by ITGA3) was the only protein significantly (fold
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change = 1143, p = 1.3× 10−18) enriched in the PDGC21T aptamer co-precipitation complex,
indicating a specific interaction between the PDGC21T aptamer and CD49c (Figure 4C). Six
unique CD49c peptides were identified in this experiment. The annotated MS/MS spectra
of one of the identified CD49c peptides with the sequence STEVLTCATGR are shown in
Figure 4D.

To confirm that PDGC21T aptamer targeted TNBC cells through cell surface CD49c,
a CD49c antibody (anti-CD49c) was used as a cell-binding control. Ten TNBC and eight
non-TNBC cell lines were treated with the PDGC21T aptamer or anti-CD49c under identical
conditions, and resultant cell staining patterns were compared. Flow cytometry analysis
revealed that PDGC21T selectively targeted TNBC cells with high binding affinity. A nearly
identical staining pattern to that obtained with anti-CD49c was observed (Figure 5A). In
contrast, both the aptamer and antibody had little/no binding to non-TNBC cells, which
express almost no CD49c (Figure 5B). The resultant mean fluorescent intensity of cell
binding was quantified and graphed for the comparison of both the aptamer and antibody
(Figure 5C,D, and Table S3).

Figure 5. PDGC21T aptamer selectively targets CD49c-expressing TNBC cells. (A) Both PDGC21T
aptamer and anti-CD49c targeted TNBC cells with high binding capacity but had (B) little or no
binding to non-TNBC cells. Resultant mean fluorescent intensities of cell binding by aptamer (C) and
antibody (D) were quantified by flow cytometry and graphed for comparison. The final incubation
concentration of aptamer was 200 nM.

Finally, to determine whether the aptamer and antibody were targeting the same site
on CD49c, competition binding assays were performed. To evaluate whether anti-CD49c
competes with PDGC21T aptamer for cell binding, TNBC cells were pre-incubated with
anti-CD49c or IgG isotype control and treated with FAM-labeled PDGC21T aptamer. Flow
cytometry analysis showed that PDGC21T aptamer binding to MDA-MB-231 (Figure 6A)
and HCC38 cells (Figure 6B) was not affected by pre-incubation with anti-CD49c. In
contrast, when TNBC cells were pre-incubated with PDGC21T aptamer, PE-labeled anti-
CD49c binding to MDA-MB-231 (Figure 6C) and HCC38 cells (Figure 6D) was significantly
reduced, indicating that the binding of PDGC21T aptamers to cells impedes the interaction
of the anti-CD49c antibody with cell-surface CD49c, indicating that the PDGC21T aptamer
targets CD49c.
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Figure 6. PDGC21T aptamer and anti-CD49c share an overlapping binding site on CD49c. Pre-
treatment with anti-CD49c did not affect FAM-labeled PDGC21T aptamer binding to MDA-MB-231
(A) or HCC38 cells (B). IgG isotype and a random ssDNA were used as controls. Pre-treatment with
PDGC21T aptamer inhibited PE-labeled anti-CD49c binding to MDA-MB-231 (C) and HCC38 cells
(D). Arrows indicate incubation sequence of antibodies and aptamers.

To further confirm that the targeting of PDGC21T to TNBC cell-xenograft tumors
was associated with the expression of CD49c, these xenograft tumors were collected and
dissociated into single-cell suspensions, followed by being incubated with the Cy3-labeled
PDGC21T or the PE-labeled anti-CD49c antibody (Figure S5A). The binding of the aptamer
or the antibody was measured using flow cytometry. The results reveal that both the
PDGC21T and the anti-CD49c antibody could bind to MDA-MB-231 xenograft-tumor
cells (Figure S5B) but not MCF7 xenograft-tumor cells (Figure S5C), suggesting that the
PDGC21T aptamer can target those TNBC-xenograft tumor cells with high expression
of CD49c.

4. Discussion

Targeted anti-tumor agent delivery is a promising precision therapy for cancer treat-
ment, as it allows the accumulation of anti-tumor agent in tumors via the enhanced perme-
ability and retention effect and active cellular uptake, which reduces adverse side effects
while improving therapeutic efficacy [22]. A targeted anti-tumor agent delivery system is
principally composed of a targeting ligand that binds a specific surface marker on cancer
cells, a spacer and linker, and an optimal anti-tumor agent [23]. Targeting ligands can be
nucleic acid aptamers or antibodies. For tumors with known specific cell surface markers,
antibodies can serve as excellent targeting ligands [24]. Several clinical trials are inves-
tigating antibody-drug conjugates for TNBC therapy [25]. However, for tumors lacking
targetable cell surface markers, nucleic acid aptamers may act as ligands for targeted cancer
therapy [26]. Indeed, cell-specific aptamers can be readily developed using the cell-SELEX
procedure [27].

To detect poorly differentiated gastric cancer cells lacking a targetable molecular
marker, Li et al. used the cell-SELEX procedure to develop a 45-nt DNA aptamer (PDGC21T)
that selectively targeted poorly differentiated gastric cancer cells [14]. We demonstrated
that this aptamer could also target TNBC cell lines in both PBS-based binding buffer and
complete DMEM cell culture medium, which suggested that the structure of PDGC21T
aptamer was stable in physiological environments. Next, we tested whether the PDGC21T
aptamer could target TNBC tumor xenografts in mice. Because PDGC21T binding to MDA-
MB-231 cells was stronger relative to other cells (Figure 1), MDA-MB-231 tumor xenografts
were used to test the targeting ability of IRDye800CW-labeled PDGC21T [28]. PDGC21T
targeted MDA-MB-231 tumor xenografts, but dramatic signal attenuation occurred within
24 h, indicating a short retention time in vivo. As unmodified aptamers are susceptible to
nuclease-mediated degradation [29], PDGC21T requires chemical modification to extend
the circulation time. PEGylation is an eminent aptamer modification used clinically and in
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research [21,30]. For therapeutic study, PEGylated PDGC21T aptamer was produced [20],
and a validation study revealed that the PEGylated PDGC21T aptamer specifically bound
to TNBC cells (MDA-MB-231 and HCC38) and did not react with off-target non-TNBC
cells (MCF7). In vivo targeting tests revealed that retention of PEGylated PDGC21T in
the liver and spleen exceeded that of non-PEGylated PDGC21T. Furthermore, tumors
accumulated more PEGylated PDGC21T and retained the modified aptamers for longer
durations relative to non-PEGylated PDGC21T. Further in vivo and ex vivo targeting tests
revealed that PEGylated PDGC21T targeted and remained in TNBC xenograft tumors
more efficiently than in non-TNBC xenograft tumors. Together, these findings indicate that
PEGylated PDGC21T is a promising targeting ligand to facilitate the delivery of anti-TNBC
tumor agents.

In addition to their roles as targeting ligands, aptamers are effective agents for cancer
biomarker discovery [31,32]. We found that CD49c was the exclusive molecular target of
PDGC21T. Cell-binding assays confirmed that PDGC21T exhibited cell-binding patterns
mirroring those obtained with a CD49c-specific antibody. A competition assay revealed that
while PDGC21T hindered anti-CD49c binding, anti-CD49c did not affect PDGC21T binding,
indicating that the PDGC21T-binding region on CD49c overlaps with the antibody-binding
region of CD49c. These data verified that CD49c is the target of PDGC21T. CD49c was previ-
ously identified as a highly expressed cell surface protein in some TNBC cell lines, including
MDA-MB-231, MDA-MB-436, MDA-MB-157, HCC1143, HCC1937, and SUM149PT [33,34].
Furthermore, ITAG3, which encodes CD49c, was characterized as a highly expressed gene
in pancreatic cancer patients [35]. We found that CD49c was expressed to a lesser degree on
the surface of AsPC-1 and MDA-Panc-28 pancreatic adenocarcinoma cell lines (Figure 5B).
Although we identified the high expression of CD49c on the surface of TNBC cell lines,
CD49c expression in clinical TNBC samples should be further examined.

CD49c is also known as integrin α3 and interacts with integrin β1 (CD29) to form
the VLA3 integrin receptor that regulates cell adhesion [36,37]. CD49c is considered as
a strong contributing factor to tumor invasion. Robust expression levels of VLA3 are
related to highly migratory and invasive phenotypes in melanoma [38], head and neck
cancer [39], pancreatic cancer [40], intrahepatic cholangiocarcinoma [41], TNBC [42], glioma
stem-like cells [43], skin tumor formation, and TNBC and oral squamous cell carcinoma
metastases [42,44,45]. Clinical analysis revealed that abundant CD49c was associated
with poor prognosis in patients with non-small cell lung cancer [46]. CD49c was also
identified as a biomarker of cells undergoing an epithelial-mesenchymal transition in breast
cancer [47,48]. Because CD49c promotes tumor progression, reducing CD49c levels using
targeted siRNA delivery or blocking CD49c using antibodies or aptamers is a feasible
approach to prevent cancer metastasis and progression. In a preclinical study, a monoclonal
antibody against aberrantly glycosylated integrin α3β1 was used to block integrin signaling
transduction, leading to bladder cancer cell-cycle arrest [49]. Another study used the
antibody against activated laminin, the ligand of integrin α3β1, to block the activation
of integrin α3β1 signaling to prevent dormant cancer cell awakening [50]. The study
suggested that CD49c blockade may help to prevent breast cancer cell awakening.

During PDGC21T target identification in this study, we found that PDGC21T hinders
antibody binding to CD49c, but antibody pre-treatment did not influence the binding of
PDGC21T aptamer to CD49c. These findings suggest two possible interaction mechanisms
of aptamer and antibody to bind CD49c. One possibility is that the aptamer may have
multiple binding sites on CD49c protein and one of the sites is shared with the CD49c
antibody. Another possibility is that because integrins are well known as conformation
changing molecules when interacting with their ligands [51–53], the aptamer binding may
trigger a change in the conformation of CD49c protein and thus may have an adverse
impact on antibody binding. To testify the first model, CD49c proteins should be gradually
truncated to test the binding ability to the PDGC21T aptamer, whereas to verify the second
model, X-ray crystal structure of the CD49c-PDGC21T complex should be resolved [54].
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The results of the competition assay implies that PDGC21T may inhibit CD49c and laminin
interactions to control cancer cell growth, which will be further investigated.

Because CD49c is internalized after binding, it is a promising target for anti-tumor
agent delivery [55,56]. Targeting CD49c for chemotherapy and gene therapy has two
benefits for cancer control: blocking CD49c to prevent cancer cell metastasis and growth
and delivering anti-tumor agents to induce cancer cell death.

5. Conclusions

Here, we identify a TNBC-bound aptamer that may act as a targeting ligand. Further-
more, we identified CD49c as a potential target for antibody or aptamer-guided therapy.
Future in vitro and in vivo studies evaluating the therapeutic efficacy of PDGC21T-guided
and CD49c-targeted therapies are warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14061570/s1, Supplemental Material and Methods, Figure
S1: PEGylation process for PDGC21T aptamer, Figure S2: Uncropped SDS-PAGE electrophoresis
image from Figure S1F, Figure S3: The PEGylated PDGC21T aptamer targeted and remained within
HCC1937, HCC38, SUM159PT, and Hs578T xenograft tumors, Figure S4: Uncropped silver-staining
images from Figure 4B, Figure S5: Ex vivo binding test of the PDGC21T aptamer and anti-CD49c
to xenograft-tumor cells. Table S1: Identification of differential proteins between the PDGC21T
aptamer and random ssDNA co-precipitates using LC-MS/MS analysis, Table S2: Quantification
analysis for the differential proteins, Table S3: Figure 5-related median fluorescence intensity data.
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