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Simple Summary: Uterine leiomyosarcoma is an aggressive and rare cancer that is difficult to treat.
There are a number of mutations that are common to uterine leiomyosarcoma that are currently not
routinely targeted therapeutically in this cancer type. In this review, we summarise the studies being
undertaken to investigate the effectiveness of targeting these mutations either pre-clinically in models
of uterine leiomyosarcoma or in other cancers in the clinic. We hope this review will encourage the
inclusion of uterine leiomyosarcoma in clinical trial design, which in turn will lead to improved
survival outcomes for patients.

Abstract: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy.
Surgical removal and chemotherapy are commonly used to treat uLMS, but recurrence rates are high.
Over the last few decades, clarification of the genomic landscape of uLMS has revealed a number of
recurring mutations, including TP53, RB1, ATRX, PTEN, and MED12. Such genomic aberrations are
difficult to target therapeutically or are actively targeted in other malignancies, and their potential as
targets for the treatment of uLMS remains largely unexplored. Recent identification of deficiencies in
homologous recombination in a minority of these tumours, however, has provided a rationale for
investigation of PARP inhibitors in this sub-set. Here, we review these mutations and the evidence for
therapeutic avenues that may be applied in uLMS. We also provide a comprehensive background on
diagnosis and current therapeutic strategies as well as reviewing preclinical models of uLMS, which
may be employed not only in testing emerging therapies but also in understanding this challenging
and deadly disease.

Keywords: uterine leiomyosarcoma; sarcoma; rare cancer; gynaecological cancer; targeted therapy;
clinical trials; preclinical models

1. Introduction

Uterine leiomyosarcoma (uLMS) is a rare gynaecological malignancy arising in the
smooth muscle layer of the uterus. It accounts for less that 2% of uterine malignancy [1],
affecting approximately 0.6–0.8/100,000 women each year [2,3], but the uterus is the most
common primary site of leiomyosarcoma in women, and uLMS accounts for more than
10% of all soft tissue sarcomas [4], so that is usually well represented as a distinct subgroup
in clinical trials of metastatic soft tissue sarcoma. The 5-year survival rate of uLMS is
42–76% [5,6], yet uLMS accounts for 70% of uterine sarcoma deaths [7]. This is due to
initial diagnosis often being made when the disease is already advanced, and metasta-
sis has occurred. Recurrence following optimal surgical de-bulking is also common [8].
Moreover, due to the rare nature of this disease, there are few large cohort trials testing
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emerging therapies, and thus, advances in therapeutic management of uLMS have been
slow to evolve.

2. Disease Characteristics and Epidemiology

uLMS are generally large tumours, often presenting at greater than 5 cm in diam-
eter [9]. uLMS is typically diagnosed in the 6th decade of life, with an average age of
53 reported at diagnosis [6,10,11]. Carriers of inherited TP53 and RB1 mutations carry an
increased risk of uLMS [12,13], and occasional cases have been reported with tamoxifen
use [14,15], but in the majority of cases, no risk factors have been identified. Age at diagno-
sis, tumour size, and disease stage all impact survival outcome, with increases in each of
these prognostic categories leading to poorer outcomes for women with uLMS [6,10,11]. In
addition, African-American patients have lower survival rates than their White counter-
parts irrespective of treatment modalities [6,10,16]. As a tumour of the uterus, hormone
receptor expression is often recorded at diagnosis, with both oestrogen receptor (ER) and
progesterone receptor (PR) levels expressed at similar rates (35−87% and 17−80%, respec-
tively) [17–22]. PR expression has been associated with improved PFS (20.8 months in
PR positive cases compared to 8.1 months in PR negative) irrespective of tumour grade,
whilst an improvement in PFS has only been observed in ER positive cases when ad-
justing for tumour grade [19]. Histopathological assessment is the standard method of
diagnosis, as currently there is no test or imaging technique that allows for preoperative
diagnosis. uLMS is classified into three subtypes: spindle-cell type and the less common
myxoid and epithelioid types [23]. Spindle-cell-type uLMS contains spindle cells with
nuclear pleomorphism and show tumour type coagulative necrosis and >10 mitoses per
10 high-power fields [9]. Myxoid tumours contain an abundance of myxoid stroma [24],
whilst epithelioid tumours are comprised of round or polygonal cells with eosinophilic
cytoplasm [23]. As some of these features are not unique to uLMS, differential diagnosis
includes benign smooth muscle tumours, such as symplastic leiomyomas, leiomyomas with
intravenous extension, mitotically active leiomyomas, smooth muscle tumour of uncertain
malignant potential (STUMPs), and other uterine sarcomas, such as high-grade endome-
trial stromal sarcoma (HGESS), undifferentiated uterine sarcoma, perivascular epithelioid
cell tumour (PEComa), and inflammatory myofibroblastic tumour (IMT) [25]. Diagnosis
requires assessment of morphology and specific immunohistochemical stains to support
the morphological diagnosis. Both benign and malignant smooth muscle tumours express
smooth muscle markers, such as smooth muscle actin (SMA), Desmin, and Caldesmon [7].
uLMS tend to have greater expression of Ki−67, mutation type p53 staining, and stronger
and more diffuse p16 expression compared with benign smooth muscle tumours [26–28].
STUMPs demonstrate positivity for smooth muscle markers similar to leiomyosarcoma
and leiomyomas. Immunohistochemistry markers, such as p16, p53, Ki-67, p21, BCL2, ER,
and PR, have been used to enhance the diagnosis and prognosis in these tumours without
success [29]. Generally, STUMPs should have one of the criteria (diffuse moderate for
severe cytological atypia, coagulative tumour necrosis, and increase mitotic activity) used
for the diagnosis of leiomyosarcoma, but the histological abnormalities seen in a STUMP
fall short of a diagnosis of leiomyosarcoma. Low-grade endometrial stromal sarcomas
(LGESS) may show some positivity for smooth muscle markers and will also show diffuse
positivity for CD10, ER, and PR, making them very difficult to differentiate from uLMS [30].
HGESS, however, show positivity for Cyclin-D1 and BCOR and will lack expression of
CD10, ER, and PR [31]. HGESS also harbour YWHAE::NUTM2A/B gene fusions and BCOR
rearrangements, which are diagnostic and not associated with uLMS [32], whilst the gene
fusion JAZF1::SUZ12 is most common in LGESS [33]. Beta-catenin may also be used to dis-
tinguish ESS from uLMS [34]. PEComas are composed of epithelioid and/or spindle cells
and express at least one smooth muscle marker but differ from uLMS in their expression
of HMB45 or Melan-A [35]. Detection of TFE3 rearrangement or fusion is helpful for the
diagnosis of PEComa as distinct from uLMS [36]. Like uLMS, IMTs frequently express the
smooth muscle markers SMA, Desmin, and Caldesmon [37]. ALK expression is also highly
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sensitive and specific for diagnosis of IMT; however, the degree of positivity varies, with
some tumours showing only focal positivity [38]. Undifferentiated uterine sarcoma is a
malignant mesenchymal tumour lacking evidence of specific lines of differentiation and
therefore is a diagnosis of exclusion [39].

3. Treatment

Surgical removal of uLMS via hysterectomy is typically recommended based on data
showing surgical removal with negative surgical margins leads to an increase in sur-
vival [6,10]. Importantly, resection of uLMS using power morcellation is associated with
reduced survival (FDA warning April 2014; [40]) and thus should be avoided. The addition
of bilateral salpingo-oophorectomy (BSO) is considered only if the patient is over the age
of 50 years, as BSO is not associated with increased survival in patients with early-stage
disease [6,10]. There has been little evidence to support adjuvant therapy following surgical
removal of primary disease confined to the uterus. In a recent meta-analysis of 545 patients
across nine studies, there was no survival advantage of adjuvant chemotherapy or radiation
for patients with early stage, completely resected uLMS compared to observation alone [41].
Another recent analysis performed on 1030 cases collected by the National Cancer Database
again showed no increase in survival for patients who received adjuvant chemotherapy
(33% of cases), radiation (7.7%), or a combination of the two (6.2%) compared to observation
alone following surgical removal of their primary tumour (53.1% of patients, suggesting
that selection of patients for adjuvant therapy had taken place) [11]. In the metastatic set-
ting, surgery is still considered beneficial. In a cohort of 96 patients with metastatic uLMS
at presentation, treated at Memorial Sloan-Kettering Cancer Centre, the median overall sur-
vival (OS) of patients who received surgery with no residual disease was 31.9 months [42].
This is compared to just 5 months in those patients with inoperable disease.

For women with advanced or inoperable uLMS, the principles of management of
other soft tissue sarcomas are followed. Chemotherapeutic agents with efficacy include
doxorubicin, combination gemcitabine and docetaxel, or trabectedin [43] and to a lesser
extent dacarbazine or eribulin [44]. Doxorubicin remains the reference first-line agent
following the GeDDiS trial that showed similar efficacy and better tolerance than gemc-
itabine/docetaxel [45]. The combination of gemcitabine/docetaxel is favoured over single-
agent gemcitabine following a study of 122 women who received either combination
therapy or gemcitabine alone, with a doubling of progression-free survival (PFS) reported
in the combination arm (6.0 vs 3.2 months in the combination arm and single-agent arm,
respectively) [46]. Gemcitabine/docetaxel combinations have been trialled in fixed-dose
single-arm studies as both a first-line and second-line therapy in advanced uLMS, with
PFS reported as 4.4 months and 5.6 months, respectively [47,48]. Ifosfamide, whilst having
an important role in the management of other soft tissue sarcomas, has a limited role in
LMS due to modest single-agent activity combined with the logistics of administration
and its toxicity profile [49,50]. Trabectidin has demonstrated modest efficacy in uLMS,
with one trial of 134 unresectable, locally advanced uLMS cases that had received prior
chemotherapy, reporting a higher PFS in the trabectedin arm (4.0 months vs 1.5 months for
the dacarbazine arm) [51]. A trial of 20 chemotherapy-naïve women with uLMS reported
a PFS of 5.8 months, with mean OS of 26.1 months, for trabectedin treatment alone [52].
Similar results were recently observed in a Spanish cohort of patients [53]. For trabecte-
din in combination with doxorubicin as a first-line therapy in advanced uLMS, 28 out of
47 women achieved partial response, with a further 13 achieving stable disease [54]. Due to
the PFS advantage demonstrated in unselected soft tissue sarcomas in the PALETTE trial,
pazopanib may also be provided as a second-line therapy although this was not targeted to
a specific biomarker [55].

Hormonal therapies have also been explored in uLMS given the high frequency of
ER/PR expression in tumours, albeit in small cohorts. In a study involving 16 patients
with ER/PR-positive advanced uLMS (12 of which were chemotherapy naïve) treated
with an aromatase inhibitor, the authors reported a mean PFS of 14 months [56]. In
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another small study of newly diagnosed uLMS patients, all four patients receiving letrozole
were progression free at both 12 and 24 months, whilst in the observational arm the
proportion of individuals progression free at 12 and 24 months had reduced to 80% and
40%, respectively [57]. It was not required that patients be chemotherapy naïve in this
study, but the inclusion criteria stipulated a disease-free period of at least five years from
any other cancer. In the phase II PARAGON trial of anastrozole in a cohort of 32 patients
with ER-positive uLMS, the PFS was 2.8 months, with one patient achieving stable disease
for five years [58].

Targeted therapy, in the form of poly (ADP-ribose) polymerase (PARP) inhibitors
(PARPi), has shown synthetic lethality in ovarian cancers bearing BRCA1/2 mutations (as
will be discussed later). With respect to uLMS, Seligson and colleagues recently found that
mutations in BRCA1/2 were enriched within the uterine subtype in a cohort of 170 LMS
patients [59]. They and others have subsequently shown that such patients respond very
well to PARPi [59,60]. Specifically, Seligson et al. reported durable stable disease in three
out of four patients with BRCA2-mutated uLMS treated with olaparib, lasting for 15 months
or more, and one partial response [59]. Hensley and colleagues also reported radiographic
regression in five patients with BRCA2-mutated uLMS treated with PARPi, with one patient
achieving a complete response [60].

Immunotherapies, such as the PD-1 blocking antibodies pembrolizumab and nivolumab,
have been explored in relatively small cohorts over the last decade, as they have become
increasingly popular in other solid tumours. PD-L1 expression, widely used as a biomarker
to indicate immunotherapy response, has been reported as being positive in up to 70%
of uLMS cases [61]. Two case studies involving patients with metastatic uLMS reported
dramatic reductions in tumour burden and symptomatic disease with immune checkpoint
inhibitor therapy [62,63], yet clinical trials on small patient cohorts have as yet failed to
show any response to anti PD-1 therapy in uLMS [64,65]. However, in a basket study of
doublet immunotherapy involving nivolumab and ipilimumab for four cycles followed by
maintenance nivolumab [66], two patients had complete response and a third showed a
partial response out of the five uLMS patients enrolled. This observation requires further
investigation.

Fifty-six clinical trials are currently listed on the ClinicalTrial.org website testing
various combinations of chemotherapy, hormonal therapy, immunotherapy, and targeted
agents in uLMS. The few clinical trials involving targeted agents are listed in Table 1
although many of these do not appear to specifically study uLMS. Hence, in keeping with
the fact that most targeted therapy trials including uLMS patients are relatively non-specific,
meaningful advances in treatment are lacking, and the survival of women with advanced
uLMS remains dismal. Whilst there does not appear to be a single driver of this lethal
tumour type, there are a number of genomic aberrations frequently observed in uLMS
that have been successfully targeted in other more common cancer types. These will be
explored in this review.

Table 1. List of clinical trials including uLMS patients.

Identifier Target Interventions Notes, References

NCT01637961 AURKA Alisertib Phase II; uLMS;
completed, no response

NCT00378911
VEGFR1/2/3,

PDGFRa/b, c-KIT,
RET, GCSFR, FLT-3

Sunitinib malate
Phase II; uLMS;

completed, but no
results reported

NCT02428192 CTLA4, PD-1 Ipilimumab and
Nivolumab

Phase II; uLMS; active, no
response [67]

NCT03880019 PARP Olaparib and
Temozolomide

Phase II; uLMS; active, no
results [67]
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Table 1. Cont.

Identifier Target Interventions Notes, References

NCT01012297 VEGF Bevacizumab Phase III; no response [68]

NCT02203760 VEGFR1/2/3,
PDGFRa/b, c-KIT

Pazopanib +
Gemcitabine

Phase II; metastatic uLMS
or UCS; recruiting

NCT02601209
VEGFR1/2/3,

PDGFRa/b, c-KIT,
mTORC1/mTORC2

Pazopanib or
Sapanisertib

Phase I/II; unresectable
LMS and STS; slight

benefit with
pazopanib [69]

NCT04200443 VEGFR2, c-Met, AXL,
RET Cabozantinib Phase II; unresectable LMS

and STS; recruiting

NCT00659360
Src, Lck, Fyn, Lyn,

c-Yes, Blk, Abl
EGFRmut

Saracatinib
Phase II; LMS, STS, and

uterine sarcoma (US);
no response

NCT00245102

VEGFR1/2/3,
PDGFRb, RAF-1,

BRAF (wt and mut),
c-KIT, FLT-3

Sorafenib tosylate Phase II; LMS, STS, and
US; no response

NCT00390234 VEGF-Trap Ziv-Aflibercept Phase II; uLMS, UCS, and
US; no response

NCT01442662 VEGFR1/2/3,
PDGFRa/b, c-KIT

Pazopanib +
Gemcitabine

Phase II; second-line LMS;
no response [70]

NCT00474994
VEGFR1/2/3,

PDGFRa/b, c-KIT,
FLT-3, CSF1R, RET

Sunitinib malate

Phase II;
metastatic/recurrent

sarcomas; SD best
response [71]

NCT00526149 PLK1/2/3, BRD4 BI-2536
Phase II;

metastatic/recurrent solid
tumours; no response [72]

NCT00006357 PDGFR, c-KIT, Abl Imatinib mesylate
Phase I/II;

recurrent/refractor STS;
no response [73]

NCT00053794 AKT Perifosine Phase II; metastatic STS;
no response [74]

4. Genomic Landscape

As uLMS is such a rare tumour type, molecular analysis has been limited. With
so few samples collected at different sites throughout the world, large-scale analyses
have often required input from multiple cohorts as shown in Table 2. To date, 23 and
158 uLMS tumours have undergone whole-genome sequencing (WGS) and whole-exome
sequencing (WES), respectively, and been reported in the literature. An additional 434 uLMS
samples have received a variation of exon capture, SNP array, or targeted panel sequencing.
Collectively, the data show that TP53 is the most frequently mutated gene (frequency
of 26–92%), followed by RB1 (27–88%), ATRX (24–34%), PTEN (19–75%), and MED12
(12–21%). Mutations in the homologous recombination (HR) pathway have also been
reported in uLMS, with mutations in BRCA2 showing the highest frequency (7–60%).
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Table 2. Summary of published uLMS patient cohorts for genomic/genetic analysis.

Cohort n Sequencing (How Many, What Type, Who Analysed/Reported)

MSKCC 128 n = 80 exon capture [60,75]
n = 121 exon capture [76]

Cuppens 62 n = 2 WGS [77]
n = 62 SNP array [77]

Yale 55 n = 11 WGS [78]
n = 55 WES, RNA-Seq [78]

MSK/Genie 51 n = 51 exon-targeted seq [75]

Dana-Faber 39 n = 39 exon-targeted seq [75]

OSU 34 n = 35 FoundationOne panel test [59]

TCGA 31
n = 10 WGS [78,79]

n = 27 WES, RNA-Seq [59,78,79]
n = 31 exon-targeted seq [75]

Helsinki 19 n = 19 WES [80]

Chudasama 10 n = 10 WES [81]

U Mich 8 n = 8 exon-targeted seq [75]

Vanderbilt 7 n = 7 exon-targeted seq [75]

Spain 44 n = 44 WES, RNA-Seq [82]
WGS, whole-genome sequencing; SNP, single nucleotide polymorphism; WES, whole-exome sequencing.

uLMS tumours typically exhibit a tumour mutational burden (TMB) that is <10 mut/Mb,
indicating they may not be strong candidates for immunotherapy given the findings
from the recent KEYNOTE-158 study [83]. As with other trials, which defined high TMB
as ≥10 mut/Mb [84,85], an objective response rate to pembrolizumab was observed in
29% of patients with a high TMB compared to just 6% of patients in the non-TMB-high
group [83]. However, TMB is not indicative of response across all cancer types [86], and
“TMB high” cut-offs vary widely [87]. Moreover, as mentioned previously, some success
with immunotherapy in uLMS has been observed [62,63,66].

Large structural re-arrangements are common in uLMS. Choi and associates reported
21 cases of uLMS with complex structural rearrangements, 16 of which harboured chromo-
plexy or chromothripsis [78]. In their cohort of 10 uLMS cases, Chudsama et al. reported
four had chromothripsis, one of which was a case that had received no treatment prior to
analysis and yet had three affected chromosomes [81]. Structural rearrangements were also
detected by Machado-Lopez et al., which resulted in gene fusions in 61.8% of cases, with
ATRX the most common fusion partner [82].

The largest study to date on sarcomas, conducted by The Cancer Genome Atlas
(TCGA) Program, compared uLMS to other sarcomas, confirming that uLMS is its own
distinct tumour type even from its closest relative, soft-tissue LMS (ST-LMS). Compared to
ST-LMS, uLMS had different methylation and mRNA expression signatures, with higher
DNA-damage response scores and hypomethylation of ESR1 target genes [79]. ESR1
encodes the ER and therefore may explain why some uLMS patients are responsive to
anti-endocrine therapies.

Below, we discuss the most frequently mutated genes in uLMS and the emerging
therapies targeting these aberrations, which could be potential future treatment options for
uLMS patients.

5. TP53

Given their high frequency in all cancers, it is unsurprising that TP53 mutations are
the most common genomic aberration observed in uLMS. As with other tumour types [88],
mutations in TP53 in uLMS are typically missense mutations occurring in the DNA-binding
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domain (DBD). In a study assessing the genomic landscape of the largest cohort of uLMS
patients (n = 215), 51% of TP53 mutations were missense and found predominantly in the
DBD [75]. Of the 40 TP53 mutations reported by Choi and associates in their assessment
of the Yale and TCGA uLMS cohorts, 23 (57.5%) were missense, with all except six such
mutations located in the DBD [78]. Many of these missense mutations result in changes at
critical residues within the DBD reducing proper protein–DNA interactions. Much research
focus has therefore been aimed at restoring the conformational changes to the mutant
protein enabling activation of key downstream genes. An example of this is APR-246, a
methylated analogue of proline-rich membrane anchor 1, or PRIMA-1, which is converted
to methylene quinuclidinone (MQ) once in the cell [89]. MQ then binds cysteine residues
124 and 277, which reactivates the stable confirmation of mutant p53 and thus DNA-
binding capability [90]. APR-246 has recently shown some promise in a phase Ib/II clinical
trial, wherein patients with TP53-mutant myelodysplastic syndromes or acute myeloid
leukaemia were treated with a combination of APR-246 (eprenetapopt) and azacytidine [91].
The overall response rate in the 55-patient cohort was 71%, with 44% of patients achieving
complete response. Several other clinical trials of APR-246 are underway or have recently
been completed: notably two trials combining APR-246 with carboplatin and pegylated
doxorubicin in recurrent high grade serous ovarian cancer (HGSOC) (NCT02098343) or
pegylated doxorubicin alone in platinum-resistant HGSOC (NCT03268382). Fransson
and colleagues have previously demonstrated synergy between APR-246 and carboplatin,
cisplatin, and doxorubicin in primary TP53-mutant HGSOC [92], and thus, the results of
the aforementioned clinical trials are keenly awaited.

Another exciting avenue of therapeutically targeting mutant p53 is through the inhibi-
tion of WEE-1. In TP53-mutant cells the G1/S cell-cycle checkpoint is typically bypassed
due to the absence of functional p53 protein; thus, cells become more reliant on the G2/M
checkpoint [93]. Transition through this checkpoint and into mitosis is triggered by active
cyclin dependent kinase 1 (CDK1). WEE-1 is a tyrosine kinase that inactivates CDK1 via
phosphorylation, thereby halting the cell cycle at the G2/M checkpoint [94]. Inhibition
of WEE-1 therefore removes the halt on mitosis, and cells already exhibiting a significant
amount of DNA damage due to mutation of p53 incur further replication stress, result-
ing in mitotic catastrophe and cell death. It is thus predicted that just as PARPi show
synthetic lethality in tumours bearing a BRCA1/2 mutation, WEE-1 inhibition will be
synthetically lethal in p53-mutant cancers. This has certainly been demonstrated both pre-
clinically and clinically. In 2011, Rajeshkumar and associates reported that 25/49 pancreatic
xenograft tumours with mutant p53 showed a 50% reduction in initial tumour mass when
the WEE-1 inhibitor (WEE-1i) MK-1775 was added to gemcitabine treatment compared
to just 7/55 treated with gemcitabine alone [95]. Pancreatic xenograft tumours that were
wild type for p53 did not respond to either gemcitabine alone or the combination with
MK-1775. Similar findings were observed in pancreatic xenograft tumours treated with a
combination of MK-1775 and irinotecan or capecitabine, where effective tumour reductions
were only observed in the mutant p53 models [96]. Due to its ability to induce replication
stress, MK-1775 has also been shown to increase the cytotoxic capabilities of standard
therapeutics in preclinical cancer models of the breast [97,98], cervix [99], oesophagus [100],
ovary [101], and even in models of sarcoma [102]. In a clinical trial involving 121 TP53-
mutant platinum-sensitive ovarian cancer patients, the addition of adavosertib (MK-1775)
to carboplatin and paclitaxel improved progression-free survival by 1.9 months compared
to placebo plus the combination chemotherapy. A clinical trial combining adavosertib with
carboplatin in TP53-mutated ovarian cancer showed that this WEE-1i had the ability to
resensitise tumours that were previously platinum resistant [103]. There are currently 14 ac-
tive and 13 completed clinical trials involving a WEE-1i on the NIH Clinical Trials website,
indicating the significant interest in the potential of this molecule for treating p53-mutant
cancers. It should be noted, however, that p53 status cannot always predict response to
WEE-1 inhibition. In a panel of eight sarcoma cell lines, Kreahling and associates showed
sensitivity to MK-1775 in the nanomolar range irrespective of p53 status [102]. They then
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went on to show significant synergy when MK-1775 was added to gemcitabine therapy in
four sarcoma cell lines, U2O5 (osteosarcoma), MG63 (osteosarcoma), A673 (Ewing sarcoma),
and HT-1080 (fibrosarcoma), despite two being p53 wild type (U2O5 and HT-1080) [104].
Similar findings have also been reported in ovarian cancer cell lines [105] and lung and
colorectal cancer cell lines [106]. In a clinical trial of 35 patients receiving daily adavosertib,
TP53-mutant tumours were observed in both the responder and non-responder groups,
noting that some responders were wild type for p53 [107].

6. RB1

RB1, the gene that encodes retinoblastoma protein (Rb), is a tumour suppressor with
critical roles in many cellular processes, the most well characterised being a cell cycle
regulator. In the resting cell state, Rb is hypophosphorylated and binds to E2F factors,
restricting their ability to activate the transcription of genes required for S-phase entry,
effectively halting the cell cycle at G1 [108]. In response to mitotic cues, Cyclins C, D, and
E and their associated CDKs phosphorylate Rb, releasing E2F and allowing progression
through G1 into S phase [108]. Often the second most commonly affected gene after TP53
in uLMS, RB1 is prone to homozygous deletion [75,77,78]. Deletion or inactivating events
are classically hard to target therapeutically; however, again, synthetic lethality may be
the key. Aurora kinase inhibitors have recently been shown to have selective sensitivity in
Rb-null cell lines compared to Rb wild-type cells [109,110]. Aurora kinase A is involved
in centrosome formation and mitotic spindle assembly, whilst Aurora kinase B assists
with coordinating sister-chromatid cohesion during metaphase [111]. As Rb has also
been proposed to contribute to mitotic fidelity through its association with E2F and E2F-
independent mechanisms [112], the loss of Rb and the Aurora kinases A and B is thought
to be too catastrophic for the cell. Clinical trials of Aurora kinase A inhibitor MLN8237
(Alisertib) have shown promise in ovarian cancer [113] as well as breast cancer, lung cancer,
head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma [114].
Following encouraging preclinical evidence of sensitivity to MLN8237 in the vulval LMS
cell line SK-LMS-1 both in vitro and in vivo [115], a phase II clinical trial of Alisertib
as a monotherapy was conducted in recurrent uLMS patients [116]. Of the 23 patients
enrolled there, just one patient was progression-free at six months, with no partial or
complete responses recorded. The authors also reported significant toxicity. In another
multi-centre phase I/II trial of Alisertib as a single agent, 10 LMS (non-uterine) patients
were included [117]. PFS at 12 weeks was 44% with OS reported as 72 weeks for this cohort.
The exact molecular profile of these LMS tumours from the aforementioned trials were not
disclosed, so patient responses were not stratified according to Rb status. In addition, both
trials tested Alisertib as a single-agent. Aurora kinase inhibitors in combination with other
agents are yet to be explored clinically in uLMS.

Targeting the proteins that are up-regulated in response to Rb loss may be another
mechanism of effective therapeutic control. As discussed, Rb is responsible for binding
to and restricting the function of E2Fs. A pan-E2F inhibitor, HLM006474, was developed
in 2008 showing efficacy in melanoma and triple-negative breast cancer cell lines [118].
More recently, HLM006474 has been shown to be effective at reducing cell viability in
small-cell and non-small-cell lung cancer and synergises with paclitaxel [119]. Additionally,
HLM006474 has been shown to inhibit growth of melanoma cells lines and synergises
with BRAF-inhibitors [120]. Interestingly, the inhibition of tumour cell growth in this last
study was observed only in p53 wild-type cells. This may predict reduced effectiveness of
HLM006474 in uLMS, as TP53 and RB1 are frequently co-mutated, and may suggest why
no clinical trials for HLM006474 have been initiated.

7. ATRX and Alternative Lengthening of Telomeres (ALT)

Alpha-thalassemia/mental retardation syndrome X-linked (ATRX) is a chromatin-
remodelling factor that exists in a complex with death domain-associated protein (DAXX)
and is essential for incorporating Histone 3.3 (H3.3) into telomeres [121–124]. Loss of ATRX
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or DAXX results in telomere instability and alternative lengthening of telomeres (ALT) [123].
Whilst frequent loss of ATRX has been observed in uLMS (39–52%), mutations in DAXX
have been observed but are very rare (0–2%) [80,125]. Many aggressive tumours, such as
glioblastoma multiforme [126] and diffuse intrinsic pontine gliomas [127], as well as those
of mesenchymal origin [128], such as uLMS, display features of ALT. Indeed, ALT is the
predominant telomere maintenance mechanism found in uLMS, with up to 71% of cases
being ALT positive (ALT+) [80,125].

In normal cells, telomere maintenance mechanisms are constrained to prevent the
formation of cancer. These mechanisms are either disrupted during the process of tumorige-
nesis or hijacked by cancer cells to enable them to avoid replicative senescence and acquire
immortality [129]. Telomere maintenance in most cancer cells occurs due to reactivation
of telomerase [130]. However, in 10–15% of cancers, some having a particularly poor
prognosis [131,132], telomerase is suppressed, and telomere length is maintained through
the ALT mechanism [133]. Cells that possess ALT extend their telomeres by copying other
telomeres or extrachromosomal TTAGGG DNA fragments derived from telomeres through
HR [134]. ALT telomeres display elevated replicative stress and DNA damage most likely
associated with telomeric chromatin changes occurring as a result of mutations in genes that
encode H3.3, ATRX, or DAXX [126,135,136]. It has been proposed that when the function
of ATRX is lost, DAXX can no longer direct H3.3 to telomeres, leading to the formation of
G-quadruplex structures that can give rise to replication stress [137,138]. HR at telomeres
then occurs through the MRE11-RAD50-NBS1 complex, leading to ALT [138,139].

Almost all ATRX-mutant tumours are ALT+, but ATRX is not mutated in ~50% of
ALT+ tumours, indicating alternative mechanisms driving this phenotype [125]. During
DNA recombination, protein kinase ATR is recruited to telomeres by replication protein A,
a protein persistently associated with telomeres in ALT+ cells. Therefore, it is hypothesised
that ALT+ cancers may display sensitivity to ATR inhibitors. Studies investigating the use of
ATR inhibitors (ATRi) to treat ALT+ cancers have produced conflicting results [140,141], so
this warrants further assessment but may be a potential avenue to explore for the treatment
of uLMS perhaps in combination with other relevant DNA-repair inhibitor therapies. The
specialised DNA recombination thought to occur in ALT+ cells may also render them
sensitive to inhibitors of DNA synthesis, such as PCNA and BLM inhibitors [142,143].
Furthermore, Liang et al. carried out a CRISPR screen in ATRX-knockout cells and identified
components of the cell-cycle checkpoint as being important for cell survival. In particular,
inhibition of WEE-1, which as discussed earlier is an important regulator of the G1/S
and G2/M cell-cycle checkpoints, was found to be synthetically lethal in ATRX-deficient
cells [144,145]. Not only does the presence of TP53 mutations but also the presence of
ATRX mutations suggests a subset of patients may benefit from WEE-1i. These have not
yet specifically been tested in uLMS although women with uLMS should be encouraged to
take part in basket trials of WEE-1i, such as NCT04158336 or NCT0476886.

ATRX is also involved in transcriptional regulation but when recruited to promye-
locytic leukaemia nuclear bodies by DAXX, this regulation of gene expression is inhib-
ited [146]. Therefore, ATRX and DAXX function in a wide range of cellular processes both
independently as chromatin remodellers as well as in complexes with H3.3 or PML. For
example, ATRX associates with H3K9me at repetitive regions (other than telomeres), and
reduced H3K9me levels as a result of loss of functional ATRX can give rise to stalled repli-
cation forks and genomic instability [139]. This may lead to activation of PARP and ATM,
suggesting that ATRX-mutant cells may be responsive to PARPi [147]. ATRX has also been
found to regulate the expression of Polycomb responsive genes through interacting with
EZH2, indicating that ATRX-mutant cells may be sensitive to EZH2 inhibition [139,148,149].

8. PTEN

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumour
suppressor whose expression is often lost in tumours [150–152]. PTEN is lost or deleted in
about 66% of all uterine cancers and in 19% of uLMS specifically [75,153]. As a lipid phos-
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phatase PTEN dephosphorylates phosphatidylinositol-3,4,5-phosphate (PIP3), a critical sec-
ond messenger in the phosphatidylinositol-3-kinase (PI3K)/AKT signalling pathway [154].
PI3K phosphorylates PIP2 to give rise to PIP3, which is required to recruit AKT to the
plasma membrane where it can be phosphorylated and activated by two kinases, PDK1
and mTORC2 [155]. Therefore, PTEN inhibits the PI3K pathway through converting PIP3
back to PIP2, thus regulating cell growth and survival. PTEN can also function as a protein
phosphatase, where it has been found to dephosphorylate various proteins involved in
cell proliferation and migration, including Cyclin D1, focal adhesion kinase (FAK), and
Shc [156–158].

Apart from its phosphatase functions, PTEN also has phosphatase-independent func-
tions in the nucleus, where it can regulate chromosome stability (through interacting with
various chromosome factors, such as Centromere-Specific Binding Protein and anaphase-
promoting complex or cyclosome), DNA repair (through directly interacting with p53, as
well as regulating the expression of RAD51), and apoptosis (reviewed in [159,160]). There-
fore, PTEN inhibits tumour development through multiple mechanisms and exploiting
PTEN loss is the aim of many therapeutic strategies.

PTEN function is not only lost through mutation or genomic deletion of the PTEN
gene but also through epigenetic and transcriptional silencing, post-transcriptional and
post-translational regulation, and protein–protein interactions [161]. Therefore, the pro-
portion of uLMS harbouring loss-of-function of PTEN could potentially be higher than
19%. Nevertheless, as previously described for loss of p53 and Rb, there are many chal-
lenges in therapeutically targeting loss of a protein. The PI3K/AKT/mTOR pathway is
one obvious target in PTEN-deficient tumours. Cell lines with PTEN genetic alterations
have displayed sensitivity to PI3K inhibitors (AZD6482), AKT inhibitors (MK-2206), and
mTORC1 inhibitors (Temsirolimus) [162]. On the other hand, these cells are generally
resistant to inhibitors of upstream mediators of PI3K pathway activity, such as receptor ty-
rosine kinases [162]. Many PI3K/AKT/mTOR inhibitors have been investigated in clinical
trials for the treatment of PTEN-deficient tumours with mixed results depending on the
molecular background (reviewed in [163,164]). Overall, mTORC1 inhibitors appear to have
the greatest efficacy in these trials [163]. For example, mTOR inhibitors have demonstrated
some efficacy in clinical trials in STS patients (no uLMS included in these trials) [165,166].
Combination of PI3Ki and the new TORC1/TORC2 inhibitors will likely have greater
efficacy given that elevated PI3K/AKT signalling is a known feature of uLMS (due to
PTEN loss and up-regulation of other genes in the pathway, such as PIK3CA, AKT1/2/3,
and RICTOR) [79].

The interaction between PTEN and FAK may also be exploited therapeutically. Pre-
clinical studies have indicated that PTEN-deficient models of uterine cancer were sensitive
to the FAK inhibitor GSK2256098 in vitro and in vivo [167]. The link between PTEN and
FAK has been studied in multiple different tumour types, and although many PTEN-
deficient tumours display FAK activation, this is not always the case [164]. Whether this
correlation is present in uLMS and therefore FAK inhibitors should be considered and
needs to be explored. Furthermore, combining FAK and PI3K inhibitors may have greater
efficacy, and preclinical studies involving this combination are also worth considering [168].
FAK is also a substrate of Src kinase and along with other Src substrates, such as c-KIT,
EGFR, and PDGFR, has been found to be (over)expressed in uLMS [169,170]. Interestingly,
the Src inhibitor dasatanib has been found to synergise with gemcitabine and docetaxel
independently in uLMS cell lines [171].

Loss of nuclear PTEN function can also be exploited therapeutically. The role of
PTEN in the DNA repair process of HR, through regulating RAD51 expression, may render
deficient tumours sensitive to PARPi [172]. PARPi have previously demonstrated efficacy
in PTEN-deficient endometrial cancers and warrants investigation in uLMS [173,174].
As has been mentioned previously and will become more apparent later in this review,
many common aberrations in uLMS may indicate PARPi sensitivity, and this class of drug
warrants further investigation in uLMS.
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9. MED12

The MED12 gene on Xq13.1 encodes Mediator complex subunit 12 (MED12). The
Mediator complex is composed of 25–30 proteins and plays a role in both activating and
repressing gene transcription through mediating interactions between RNA Polymerase II
(Pol II) at gene promoters and transcription factors at specific enhancers [175–177]. MED12
is a subunit of the Kinase module of Mediator, which consists of four proteins (CDK8, Cyclin
C, MED12, and MED13) and is required for the kinase activity of the module [178,179]. Up
to 86% of uterine leiomyomas have a mutation in MED12 [180]; however, only about 20%
of uLMS harbour a mutation in this gene [75,80,181,182], indicating alternative origins for
this rare tumour. Most mutations occur in exons 1 and 2, the region required for Cyclin C
interaction; however, mutations can also occur in other regions of the protein where they
may result in “gain-of-function” of MED12, driving genomic instability [183].

Due to its role in essential developmental and cell fate determination processes, it is
not surprising that MED12 deregulation can lead to cancer. Various molecular pathways
relevant to tumour development, such as TGF-β signalling [184], Wnt signalling [185], and
the p53 network [186], are affected in MED12-mutant cells. Importantly, MED12 inhibition
has been found to confer resistance to a number of anti-cancer drugs in the context of
specific mutations that are normally targetable [187,188]. Specifically, MEK/ERK activation
has been found to remain high following treatment with ALK or EGFR inhibitors when
MED12 is lost [189]. A similar effect has been seen in response to BRAF and MEK inhibitors,
implicating MED12 in RAS-MEK-ERK signalling [184]. Resistance to the chemotherapeutic
agents cisplatin and 5-FU has also been observed [184]. Further investigation found that
cytoplasmic MED12 is able to interact with intracellular TGF-βR2, preventing it from
being expressed on the cell surface. This leads to increased TGF-β signalling in MED12-
mutant cells, resulting in activation of MEK and ERK (even in the presence of specific
inhibitors), induction of EMT, and resistance to chemotherapeutic agents [184]. Small-
molecule drugs that inhibit TGF-β signalling have been found to overcome drug resistance
in MED12-deficient cells [184], indicating TGF-β inhibitors may be viable treatment options
for uLMS patients harbouring mutations in MED12. On the other hand, methylation of
MED12 has been found to render breast cancer cells sensitive to chemotherapeutic agents,
indicating that MED12 has cancer type-specific functions [189]. Whether MED12-mutation
confers drug resistance in uLMS that can be overcome by combination treatment strategies
involving TGF-β inhibitors requires further investigation.

The action of MED12 in TGF-βR2 regulation is independent of its role in the Kinase
module of Mediator. In the Kinase module, MED12 is able to stimulate kinase activity
through its interaction with Cyclin C [190]. Recently, it was found that loss of Cyclin C
conferred resistance to the ATRi ceralasertib in mouse embryonic cells [191]. Whether this
finding will translate to tumour cells is yet to be investigated; however, it suggests that using
ATRi to target ALT in uLMS, as proposed earlier, may not be effective in tumours that also
harbour MED12 mutations. This is because most of the mutations in MED12 cluster in Exon
1 and 2 [190], the region required for Cyclin C binding [75,80,181,182], and so may result
in a similar lack of response to ATRi. Finally, Mediator and the Bromodomain-containing
protein 4 (BRD4) have been found to have similar epigenetic functions at super-enhancers
in acute myeloid leukaemia (AML) cells [192,193]. Although it is unknown whether BRD4
functionally compensates for loss of MED12, inhibition of BRD4 may also be a treatment
strategy for uLMS harbouring a MED12 mutation.

It is intriguing that MED12 mutations are more frequent in uterine leiomyoma (up to
86%) than in uLMS (up to 22%). Furthermore, as MED12 is located on the X-chromosome,
the mutation could lie on the inactive X chromosome and thus be irrelevant. Both of
these factors suggest MED12 mutations may not function as driver mutations in uLMS,
and so, therapeutics that are effective in the context of MED12-deficiency need to be
carefully investigated.
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10. Homologous Recombination Deficiency

HR and classic non-homologous end joining are the primary repair pathways of DNA
double-stranded breaks (reviewed by [194]). Of the two, HR is less error-prone, as it
requires the template of a sister chromatid upon which accurate repair can occur. HR
deficiency (HRD) is therefore the loss of this high-fidelity system of repair and leads to
increases in mutation events that lead to loss of heterozygosity (LOH) and widespread
genomic instability. Many proteins are involved in the HR process, including BRCA1,
BRCA2, RAD51, and PALB2. Early studies reported modest frequencies of mutations in the
HR pathway in uLMS tumours, particularly in BRCA2, but interest in the contribution of
HR mutations in this cancer type has recently come under the spotlight due to promising
clinical data for drugs targeting these aberrations as mentioned earlier [59,60]. As described
above, Seligson and colleagues found that mutations in BRCA1/2 were enriched within the
uterine subtype in a cohort of 170 LMS patients [59]. Rosenbaum et al. supported this work
in 2020, reporting a frequency of mutations in BRCA2 of 9% in uLMS (n = 121) compared to
2% in ST-LMS (n = 90) [76]. Responsiveness to PARPi has been demonstrated preclinically
in uLMS, with Choi et al. showing a favourable response to olaparib in a patient-derived
xenograft of HRD uLMS [78]. HRD tumours are also typically sensitive to platinum therapy.
Whilst cisplatin was trialled as a therapy for uLMS in the 1980s and 1990s, the findings did
not indicate any patient benefit [195,196]. However, these studies were performed on small
numbers of women and did not screen uLMS for mutations in the HR pathway; therefore,
the full utility of cisplatin in HRD uLMS patients has not yet been thoroughly explored.

Current methods for screening for mutations in the HR pathway in solid tumours
involve panel tests, such as the QIAseq Targeted DNA BRCA1 and BRCA2 Panel and
FoundationOne Panel, with more challenging options such as WES or WGS typically
reserved for more complex or advanced cases in the research setting. Given that BRCA1/2
mutations (predominantly BRCA2) only account for ~10% (but can be as frequent as
60% [81]) of uLMS cases, panel tests appear to be a reasonable alternative. However,
hallmarks of genomic instability, such as LOH and telomeric allelic imbalance, are more
reliably detected through WGS. The Myriad myChoice CDx test aims to cover these two
aspects by calculating a genomic instability score based on the aforementioned measures
of genomic instability as well as large-scale state transitions and mutations in BRCA1 and
BRCA2; however, at USD 4000, this test may not be much less expensive than WGS but
may be more easily available.

11. Other Genomic Characteristics

Epigenomic data on 27 uLMS cases published by TCGA indicated that a unique
methylation pattern was observed despite hypomethylation of ESR1 target genes. Overall,
uLMS appeared to be hypermethylated compared to ST-LMS [79]. This suggests uLMS
may be sensitive to epigenetic modulators, such as DNA Methyltransferase inhibitors
(DNMTi). In a preclinical study, the uLMS cell line SK-UT-1 was found to be sensitive to
the DNMTi guadecitabine in vitro and in vivo. In vitro efficacy appeared to be correlated
with methylation status, as the comparatively hypomethylated cell line SK-LMS-1, which
interestingly is a non-uterine LMS cell line, was less responsive [197]. SHARPIN, a protein
coding gene involved in TNF signalling, was recently shown to be amplified in uLMS via
WES [198]. Investigations of SHARPIN mutations in the TCGA dataset revealed amplifica-
tion of SHARPIN leads to decreased overall survival. Knockdown of SHARPIN in uLMS
cell lines lead to decreased cell proliferation and colony-forming ability [198].

12. Preclinical Models of uLMS

In this review, we detail the frequent genomic aberrations observed in uLMS and
the possible targeted agents that are worth investigating further in the context of uLMS
(Figure 1, Table 3). In line with this, the field requires well-characterised and validated
models of uLMS that represent the heterogeneity observed in patients. The immortalised
cell lines SK-UT-1 and SK-UT-1B have been well annotated [81] and are utilized often in
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uLMS research. In 2008, Press and colleagues reported the generation of a uLMS PDX
that reached three generations [199]. Ten uLMS patient-derived xenograft (PDX) models
were successfully generated by Cuppens and associates more recently [200], five of which
were used in a subsequent study to show the benefit of inhibiting mTOR and PI3K sig-
nalling in uLMS (4/5 PDX models showed reduction/stabilisation of tumour growth) [201].
Two uLMS PDX models reported recently with mutations in the HR pathway were treated
with single-agent olaparib, pan-PI3K inhibitor, or a BET bromodomain inhibitor, with all
three therapeutics reducing tumour growth [78]. The HR status of the other PDX models
reported by Cuppens or Press was not included.
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Table 3. Summary of the potential therapeutic targets that arise due to genetic aberrations frequently
occurring in uLMS.

Aberration Frequency Therapeutic Target Potential Drugs

TP53 26–92% Mutant p53 [90] APR-246 [91]

WEE-1 [95] AZD1775/MK-1775 [103,107]

RB1 27–88% AURKA [109,110] MLN8237/Alisertib [113,114,117]

E2F [108] HLM006474 [118,119]

ATRX 24–34% ATR VE-821 [141], VX-970, AZD6738

EZH2 [139,148,149]
BLM

PCNA
PARP

WEE-1

Tazemetostat, GSK-126
ML216 [142]
T2AA [143]
PJ34 [147]

AZD1775 [144,145]
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Table 3. Cont.

Aberration Frequency Therapeutic Target Potential Drugs

PTEN 19–75% PI3K [163,164] AZD6482 [162], Buparlisib

AKT [163,164] MK-2206 [162], AZD5363

mTORC1 [163,164]
SRC
FAK

Temsirolimus [162,166], Everolimus,
Ridaforolimus [165]

Dasatinib [172]
VS-4718, VS-6063, PF-573228,
PF-562271, GSK2256098 [168]

PARP KU0058948 [174], Olaparib [175]

MED12 12–21% TGF-βR LY2157299 [185]

BET [193] JQI

HRD 7–60% PARP [78,81,202] Olaparib [59,60]

Genetically-engineered mouse models (GEMMs) of uLMS have also been attempted.
Conditional inactivation of p53 in the mouse reproductive tract through expression of Cre
recombinase under the control of the anti-Mullerian hormone type II receptor (Amhr2)
gave rise to uLMS in about 50% of mice, with frequency increasing to 82% when BRCA1
was also inactivated [203]. Transgenic mice expressing a growth factor called Cripto-1
(CR-1) under control of the MMTV promoter to activate the Wnt pathway also activated the
Src/AKT pathway and gave rise to uLMS in 20% of mice [204]. uLMS GEMMs have also
been generated by crossing mice with the T antigens of the SV40 region (SVER) transgene
(which encodes the three T antigens of SV40–SV Large T (SVLT), small t, and 17kT) targeted
to the mouse Beta-actin locus with mice containing a Cre transgene downstream of the
Hsp70-1 heat-shock promoter [205]. Despite almost ubiquitous expression of SVLT, tumour
development was restricted to the uterus (with tumours showing uLMS morphology) in
female pups and seminal vesicles in male pups. The potential of these GEMMs to drive
forward our understanding of uLMS is clear; however, recent advances in this space are
lacking, and treatment studies have to date not been reported.

13. Conclusions and Future Perspectives

The high rate of genetic aberrations in uLMS and the increasing advances in targeted
therapies provide many possibilities for the future treatment of uLMS. PARPi are one
of the most significant advances in the uLMS space, with striking favourable responses
akin to what is observed in other HRD gynaecological malignancies. In addition, despite
HRD only accounting for a small proportion of cases, PARPi may also be beneficial in HR
proficient but PTEN and/or ATRX deficient tumours as discussed above, thus potentially
providing benefit to a greater subset of patients. Similarly, PI3K, mTORC1/2, and WEE-1
inhibitors are likely to impact a larger subset of women with uLMS, as they target a number
of specific aberrations commonly observed in uLMS and may also provide an opportunity
for advantageous combinatorial therapy with PARPi.

As observed for other cancer types, it is unlikely that one therapeutic approach will be
of use for all women with uLMS. The large variability in mutation frequencies indicates that
a personalised approach may be more beneficial. Whilst this review explores the different
mutations and the therapies that can target them in isolation, we have not yet accounted for
the complex interactions between concurrent mutations or the ripple effects in downstream
signalling pathways that arise as a result of small molecule inhibition. It should also be
noted that the molecular profiling of uLMS is still in its infancy compared with other tumour
types. With less than 200 reported cases of WGS and WES, researchers have not yet been
able to perform the deep sequencing on large data sets that is likely required to understand
this clinically elusive, rare tumour type and the molecular subsets within uLMS. In light of
this, clinicians should consider WGS or WES in their diagnostic approach to management
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of women with uLMS not only to discover the potentially actionable mutations described
in this review but also to contribute to the global effort in uncovering the multifaceted
biology that underpins uLMS.
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