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Simple Summary: The kinetics of SARS-CoV-2 spike-protein antibodies and the cellular immune
landscape following vaccination in patients with hematologic neoplasms are poorly understood. The
aim of our prospective and longitudinal study, which included 398 adults, was to compare day 35 and
day 120 anti-spike-IgG antibody and day 120 SARS-CoV-2-specific T-cell responses in patients with
hematologic malignancies to a reference cohort. Although day 35 seroconversion in controls (98%)
was higher compared to patients with myeloid (82%) and lymphoid (48%) neoplasms, substantial
increases in day 120 seroconversion were seen in both the myeloid (97%) and lymphoid (66%) cohorts.
Remarkably, spike-specific CD4+- and CD8+-cells in the lymphoid (71%/31%) and control (74%/42%)
cohorts were comparable. We provide strong evidence of vaccine-elicited immunogenicity in most
patients with hematologic malignancies. Both kinetics of seroconversion and cellular responses are
crucial to determine which patients with hematologic malignancies will generate immunity. The
findings have implications on public health policy regarding recommendations for SARS-CoV-2
booster doses.

Abstract: Purpose: To assess humoral responses longitudinally and cellular immunogenicity fol-
lowing SARS-CoV-2-vaccination in patients with hematologic and oncologic malignancies receiving
checkpoint-inhibitors. Methods: This prospective multicenter trial of the East-German-Study-Group-
for-Hematology-and-Oncology, enrolled 398 adults in a two (patients; n = 262) to one (controls;
n = 136) ratio. Pre-vaccination, day 35 (d35), and day 120 (d120) blood samples were analyzed for
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anti-spike antibodies and d120 IL-2+IFNγ+TNFα+-CD4+- and CD8+-cells. Laboratories were blinded
for patients and controls. Results: Patients belonged to the myeloid (n = 131), lymphoid (n = 104),
and checkpoint-inhibitor (n = 17) cohorts. While d35 seroconversion was higher in controls (98%)
compared to patients (68%) (p < 0.001), d120 seroconversion improved across all patient cohorts
[checkpoint-inhibitors (81% to 100%), myeloid (82% to 97%), lymphoid (48% to 66%)]. CD4+- and
CovCD8+-cells in the lymphoid (71%/31%) and control (74%/42%) cohorts were comparable but
fewer in the myeloid cohort (53%, p = 0.003 /24%, p = 0.03). In patients with hematologic malignancies,
no correlation between d120 humoral and cellular responses was found. A sizeable fraction of lym-
phoid patients demonstrated T-cell responses without detectable spike-specific-IgGs. Conclusions:
Evidence of vaccine-elicited humoral and/or cellular immunogenicity in most patients is provided.
Both humoral and cellular responses are crucial to determine which patients will generate/maintain
immunity. The findings have implications on public health policy regarding recommendations for
SARS-CoV-2 booster doses.

Keywords: SARS-CoV-2 vaccination; myeloid neoplasms; lymphoid neoplasms; seroconversion;
anti-spike-IgG; T-cells; CD4+-cells; CD8+-cells

1. Introduction

Published data indicate that mortality from SARS-CoV-2 infections in patients with
cancer is mainly associated with general risk factors such as older age and comorbidi-
ties [1,2]. Patients with hematologic malignancies have a particular high risk of COVID-19
related death with ~40% mortality rate [3,4]. COVID-19 vaccines have been developed
and deployed with remarkable speed [5–8]. However, patients with malignancy were
excluded from pivotal vaccination trials. Recent data indicate that active cancer therapy
receiving patients with solid tumors develop adequate antibody responses to vaccination
(although the magnitude of these responses is diminished relative to control cohorts) [9,10].
Depending on the type and activity of the disease, there is accumulating evidence that
humoral immunity up to 42 days after the second dose of SARS-CoV-2 vaccines is im-
paired in patients with hematologic malignancies, especially if they were treated with
B-cell depleting therapies such as anti-CD20 antibodies [11–26]. These data raised con-
cerns about the efficacy of vaccines in generating humoral immunity in patients with
hematologic malignancies, particularly in those with lymphoid neoplasms. However, little
is known to the durability of vaccine-elicited antibody responses in patients with hema-
tologic neoplasms. Although neutralizing antibodies are important in vaccine-induced
protection as evidenced by the correlations of antibody responses and clinical outcome
of COVID-19 infections [27–29], growing evidence points towards an equally important
role for T-cells [30–33]. Circulating SARS-CoV-2-specific CD8+ and CD4+ T-cells were
identified in ~70% and 100% of COVID-19 convalescent patients, respectively [34]. These
T-cell responses were shown to be associated with improved survival after infections
even in patients with hematologic neoplasms [35,36]. Similarly, early polyfunctional spike
protein-specific T-cell responses were described after COVID-19 vaccination [37–40]. In-
deed, stable and functional CD8+-T-cell responses could be mobilized one week after prime
vaccination with BNT162b2 when circulating CD4+-T-cells and neutralizing antibodies
were still weakly detectable [40]. mRNA-based vaccination generated robust CD4+- and
CD8+-T-cell responses could be generated, despite poor antibody responses, in patients
with multiple sclerosis on anti-CD20 antibody therapy after mRNA-based vaccination [41].
Liebers, et al. detected spike protein-specific T-cells 17 days after the second dose of vaccine
using an IFNγ ELISPOT in 29/50 (58%) lymphoma patients who had received anti-CD20
treatments [24]. Using an intracellular cytokine assay for IFNγ, TNFα and IL2, Harrington,
et al. reported polyfunctional CD8+- and CD4+-T-cells of 35% and 75%, respectively, in
21 patients with BCR-ABL1-negative myeloproliferative neoplasms (MPN) after a median
of 21 days after a single dose of BNT162b2 vaccine [15].
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Despite the relatively small sample sizes, the lack of a predefined sample collection,
and the lack of large reference cohorts, these initial results suggest that patients with
hematologic malignancies with insufficient humoral responses might still benefit from
vaccinations through cellular responses, considering that effective T-cell responses are
essential for SARS-CoV-2 clearance [42]. Indeed, a significant portion of antigen-specific
T-cell responses may be missed if only IFNγ–related readouts are used and IL-2 is not
taken into consideration [43]. Further, little is known about the longevity of vaccine-elicited
cellular immunogenicity in large cohorts of patients with hematologic neoplasms.

In order to investigate the kinetics of IgG responses and relationship to specific T-cell
responses, days 35 and 120 vaccine-induced humoral and day 120 cellular responses in
patients with hematologic and oncologic malignancies receiving checkpoint inhibitors
(PD-L1-inhibitors) were compared to a reference cohort.

2. Materials and Methods
2.1. Study Design

ImV-HOng (OSHO#98) is a longitudinal, prospective, multicenter, non-interventional
study which compared day 35 (d35) and day 120 (d120) vaccine-elicited spike protein-
specific humoral and d120 T-cell responses between patients and controls. The trial was
conducted from 17 March 2021 to 6 December 2021 across seven centers of the East-German-
Study-Group-for-Hematology-and-Oncology (OSHO). The trial was approved by the Eth-
ical Review Boards and registered at the Paul-Ehrlich Institute (NIS-584) and Deutsches
Register Klinischer Studien (DRKS00027372). The study received a grant from the German
Leukemia and Lymphoma Foundation.

2.2. Study Cohorts

The study population comprised adult individuals willing to receive a SARS-CoV-2
vaccination. Participants were enrolled per random sampling after written informed
consent into two cohorts at a 1 (controls) to 2 (patients) ratio. The control group included
individuals without active cancer in the last five years. In addition to patients with myeloid
and lymphoid neoplasms, patients with solid tumors receiving PD-L1 inhibition were also
eligible for enrollment in the patient cohort in order to assess the impact of PD-L1 inhibition
on immune response after vaccination. The inclusion and exclusion criteria are shown in
Table 1.

Table 1. Inclusion and exclusion criteria.

Patients Controls

Inclusion criteria

• Age ≥ 18 years
• Presence of one of the

following diagnoses:

- myeloid neoplasm
- lymphoid neoplasm
- solidtumor under

PD-L1 * inhibition

• Willing to receive a
SARS-CoV-2 vaccination

• Age ≥ 18 years
• No active malignancy in the

last 5 years

• Willing to receive a
SARS-CoV-2 vaccination

Exclusion criteria

• Contraindication to a
SARS-CoV-2 vaccination

• Limited legal capacity to
consent

• Contraindication to a
SARS-CoV-2 vaccination

• Limited legal capacity
to consent

* PD-L1, programmed death ligand 1.
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2.3. Outcomes

The primary outcome was d35 SARS-CoV-2 spike-specific antibody concentrations
in patients compared to controls following the first vaccination dose. The WHO launched
the first International Standard for anti-SARS-CoV-2 immunoglobulin (IgG), wherein the
neat sample was assigned to contain 1000 binding antibody units (BAU)/mL [44,45],
and BAU/mL were subsequently converted to U/mL (U/mL = 0.972 × BAU/mL). Key
secondary outcomes were d120 spike-specific humoral and T-cell responses in patients com-
pared to controls. Baseline patient-, disease-, vaccination-, and laboratory-characteristics
and any potential associations with vaccine-elicited responses were explored.

2.4. Procedures

Blood samples were drawn up to three weeks prior to vaccination, on d35 (±7), and
d120 (±14) after the first vaccination dose. The pseudonymized samples were serially
analyzed for SARS-CoV-2 spike-specific-IgGs in the Central Laboratory of the University
Hospital Halle (Saale). T-cell responses were analyzed at the Special Hematology Lab-
oratory, Rostock University Medical Center. Laboratories were blinded for patient and
control groups.

2.5. Laboratory Measurements
2.5.1. Measurement of SARS-CoV-2 Spike Protein Antibodies

The quantitative determination of IgG antibodies to the SARS-CoV-2 spike protein
was carried out using the Roche Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics
International Ltd., Rotkreuz, Switzerland). The assay is based on a recombinant pro-
tein representing the receptor binding domain of the spike antigen in a double-antigen
sandwich assay format, with a high specificity and sensitivity [46]. Antibody titers were
measured on a Roche Cobas e 801 analyzer integrated in a fully automated Roche Cobas
8000 platform. A concentration of IgG SARS-CoV-2 spike protein antibodies of >0.8 U/mL
is considered positive.

2.5.2. SARS-CoV-2 Spike-Specific T-Cell Response

Heparinized whole blood was either left unstimulated (negative control), stimulated
with 0.5 µg/mL Staphylococcus enterotoxin B (SEB, positive control) or stimulated us-
ing 0.6 nmol of (approximately 1 µg) wild-type spike protein of SARS-CoV2 peptides
(SARS-CoV2 Prot_S Complete, REF: 130-127-953, Miltenyi Biotec [MB], Bergisch Gladbach,
Germany) per ml blood for 4 h at 37 ◦C in the presence of Breveldin A. After incuba-
tion, bulk lysis, surface and intracellular staining were performed according to EuroFlow
guidelines [47].

The panel comprised the following antibodies IL-2:BV421 (clone: MQ1-17H12, Bi-
olegend, San Diego, CA, USA), CD45RA:VioGreen (clone: REA1047), CCR7:FITC (clone:
REA546), IFNγ:PE (clone: 45-15), CD4:PE-Vio615 (clone: REA623), CD8:PE-Vio770 (clone:
REA734), TNFa-APC (clone: REA656), and CD3:APC-Vio770 (clone: REA613) that were
purchased from MB, unless stated otherwise. A median 2,660,024 nucleated cells per sample
were acquired on Becton Dickinsion (FACS Lyric) or MB (MACS Quant) flow cytometers.
Primary data were analyzed in Infinicyt (v2.0.4b, Cytognos SL, Salamanca, Spain). Gating
was in line with recommended standards for ICS assays [48,49].

Raw event numbers and frequencies per population were exported and analyzed
using R (v4.1.1). Normalized percentages of SEB-activated and spike-specific T-cells were
calculated by subtracting the respective frequencies of the negative control measured
for the same sample and expressed as percentage of total CD4+ and CD8+ T-cells of the
sample [37,38]. A cohort of 14 not vaccinated and self-reportedly non-infected controls was
used to calculate the limit of detection as follows: the z-score for each control sample was
calculated per parameter. Samples with a z-score above two were considered as outlier
for that parameter and removed (one outlier per parameter was detected). The limit of
detection (LOD) was calculated as mean +2SD. All samples above the LOD [0.00459% for
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CD4 + IL-2 + IFNγ + TNFα + (CovCD4) and 0.00287% for CD8 + IL-2 + IFNγ + TNFα +
(CovCD8) T-cells] were considered positive.

2.6. Statistical Analysis

Sample size was calculated based on published data to the immune response after
30 µg BNT162b2 (Comirnaty ©Biontech/Pfizer) vaccine [37]. Assuming a standard devi-
ation of 0.9 for the logarithm of geometric mean concentrations, enrollment of 236 and
118 evaluable patients and controls respectively would provide 80% power (alpha error,
5%) to detect a significant difference in d35 seroconversions between patients and controls.

Continuous covariates were summarized as medians and interquartile ranges (IQRs)
and categorical parameters as absolute and relative frequencies. Humoral responses (i.e.,
anti-Spike IgG concentrations > 0.8 U/mL) on d35 and d120 were compared between
patients and controls by evaluating the mean difference in concentrations using t-tests
and reporting the 95% confidence interval (CI). Cellular responses on d120 (i.e., CovCD4+

and CovCD+ above the LOD) were similarly compared and expressed. Vaccine-elicited
seroconversion and cellular response rates in patient cohorts (i.e., type of diagnosis; cancer
therapy vs. none) were evaluated in subgroup analyses. Regression models were used to
test the association of baseline characteristics with vaccine-induced humoral and cellular
responses. Baseline patient-related factors included age [continuous variable, 5- and
10-years frequency-matching], gender, baseline B- and T-cell counts, pre-vaccination anti-
spike-IgGs, and cohort category. Vaccine-related variables were type of vaccine, number of
injections, and interval between injections (continuous variable; interval ≤35 vs. >35 days).

Secondary endpoint analyses were explorative. Statistical tests were two-tailed and
p values < 0.05 were considered significant. Analyses were performed using IBM Corp. Re-
leased 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY, USA: IBM Corp.

3. Results
3.1. Patient Characteristics

A total of 398 adults were enrolled [controls, n = 136; patients, n = 262]. Patients
had myeloid (n = 135) and lymphoid (n = 108) neoplasms, and cancer under checkpoint
inhibition (n = 19). A CONSORT-Flowchart of participants is shown in Figure 1. This
analysis comprises 385 participants who actually received the first vaccination [patients
n = 252 (96.2%); controls n = 133 (97.8%)]. Table 2 illustrates the characteristics of vaccinated
participants. Patients in the myeloid cohort were most frequently diagnosed with BCR-
ABL1-positive (n = 29) and negative myeloproliferative neoplasms (n = 57). Compared to
controls, patients were older (p < 0.001). Prior to vaccination, 186 (76.2%) patients were
on active cancer therapy. An allogeneic hematopoietic-cell-transplantation (HCT) was
documented in 32 participants. The majority of participants (82.6%) received mRNA-
based vaccines. A second dose was given to 230 (91.3%) patients and 107 (80.5%) controls
after a median of 40 days for patients and 33 days for controls (p = 0.2). Reasons for
only one injection were vaccination with the vector-based COVID-19 Vaccine Janssen by
©Johnson&Johnson (n = 21), a history of a SARS-CoV2 infection prior to vaccination (n = 17),
and others (n = 10). Due to health authority guidelines, ~50% of participants received the
second dose 42 days after the first. A history of a SARS-CoV2 infection prior to vaccination
with a median of 7 months and a median pre-vaccination anti-spike-IgG concentration
of 122 U/mL (IQR 23.9-480) was documented in 20 (5.2%) subjects. No antibodies were
detected in one patient and one control. Anti-spike-IgGs prior to vaccination were detected
in 11 participants (9 patients and 2 controls) with no history of a previous infection.
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Table 2. Baseline characteristics of vaccinated study population.

Parameter Total Patient
Cohort

Myeloid
Neoplasms

Lymphoid
Neoplasms

Solid
Tumors Controls

n = 252 n =131 n = 104 n = 17 n = 133
Age (y) median (IQR) 62 (52–71) 61 (52–68) 66 (51–74) 61 (57–68) 54 (42–67)

≥60 years n (%) 146 (57.9) 70 (53.4) 66 (63.5) 10 (58.8) 49 (36.8)
Gender, male n (%) 139 (55.2) 69 (52.7) 60 (57.7) 10 (58.8) 54 (40.6)

Diagnosis N/A
MPN n (%) 91 (69.5) N/A N/A
AML n (%) 10 (7.5) N/A N/A
MDS n (%) 15 (11.5) N/A N/A

Lymphoma n (%) N/A 40 (38.5) N/A
CLL n (%) N/A 32 (30.8) N/A

Multiple myeloma n (%) N/A 22 (21.2) N/A
Others n (%) 15 (11.5) 10 (9.6) 17 (100)

Baseline lab values N/A
WBC < LLN of

3.7 × 109/L n (%) 25/193 (13) 12/105 (11.4) 12/74 (16.2) 1/14 (7.1)

Granulocytes < LLN
of 1.8 × 109/L n (%) 19/177 (10.7) 7/101 (6.9) 12/66 (18.2) 0

Lymphocytes < LLN
of 1.1 × 109/L n (%) 56/180 (31.1) 30/102 (29.4) 21/68 (30.9) 5/10 (50)

B-cells < LLN of
73/µL n (%) 26/109 (23.9) 12/66 (18.2) 12/39 (30.8) 2/4 (50)

T-cells < LLN of
856/µL n (%) 41/109 (37.6) 23/66 (34.8) 15/39 (38.5) 3/4 (75)

CD4+ T-cells < LLN
of 491/µL n (%) 49/108 (45.4) 25/66 (37.9) 21/38 (55.3) 3/4 (75)

CD8+ T-cells < LLN
of 162/µL n (%) 21/108 (19.4) 15/66 (22.7) 4/38 (10.5) 2/4 (50)

LDH > ULN of
4.2 µkat/L n (%) 53/175 (30.3) 35/98 (35.7) 12/64 (18.8) 6/13 (46.2)

Prior COVID-19
infection n (%) 11 (4.4) 5 (3.8) 6 (5.8) 0 (0) 9 (6.8)

Type of vaccine *
mRNA-based n (%) 215 (85.3) 108 (82.5) 91 (87.5) 16 (94.1) 103 (77.4)
Vector-based n (%) 35 (13.9) 21 (16) 13 (12.5) 1 (5.9) 29 (21.8)

Missing n (%) 2 (0.8) 2 (1.5) 0 (0) 1 (0.8)
Interval between 1st
and 2nd vaccination n = 230 n = 118 n = 95 n = 17 n = 107

Median Interval d (IQR) 40 (22–42) 40 (22–42) 42 (21–42) 29 (21–42) 33 (21–42)
≤35 days n (%) 110 (47.8) 55 (46.6) 45 (47.4) 10 (58.8) 58 (54.2)
>35 days n (%) 120 (52.2) 63 (53.4) 50 (52.6) 7 (41.2) 49 (45.8)

Active oncologic
therapy n (%) 171 (67.9) 91 (69.5) 63 (60.6) 17 (100) N/A

Type of active
oncologic therapy

TKI n (%) 44 (48.3) N/A N/A
INF n (%) 9 (9.9) N/A N/A

BTK-inhibitor n (%) N/A 15 (23.8) N/A
B-cell-depleting

therapy n (%) N/A 15 (23.8) N/A

Chemotherapy n (%) 18 (19.8) 6 (9.5) N/A
Checkpoint inhibitor n (%) N/A 1 (1.6) 17 (100)

Others n (%) 20 (22) 26 (41.3) N/A
* mRNA-based vaccines: BNT162b2 Comirnaty ©Biontech/Pfizer or mRNA-1273 vaccine ©Moderna; vector-based
vaccines: Vaxzevria ©AstraZeneca or COVID-19 Vaccine Janssen by ©Johnson&Johnson. Abbreviations: AML,
acute myeloid leukemia; BTK, bruton tyrosine kinase; CLL, chronic lymphatic leukemia; d, days; INF, interferone;
IQR, interquartile range; LDH, lactatdehydrogenase; LLN, lower limit of normal; MDS, myelodysplastic syndrome;
MPN, myeloproliferative neoplasm; N/A, not applicable; TKI, tyrosine kinase inhibitor; ULN, upper limit of
normal; WBC, white blood cell count.
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3.2. SARS-CoV-2 Spike-Specific Humoral Response
3.2.1. Day 35 Spike-Specific Seroconversion

Though no difference in d35 anti-spike-IgG mean values between patients and controls
(95% CI, −1438.5–559.8) were detected, anti-spike-IgGs >0.8 U/mL were measured in 121
(98%) controls and 162 (68%) patients (p < 0.001). Seroconversion rates in both the myeloid
(82%) and lymphoid cohorts (48%) were lower compared to controls (p < 0.001) (Table 3;
Figure 2). The same trends were seen when median titers were considered. Seroconversion
occurred in 13 (81%) patients under checkpoint inhibitor therapy.

3.2.2. Day 120 Spike-Specific Seroconversion

The difference in d120 mean IgG values between patients and controls was not sig-
nificant (95% CI, −639.4–889.1). However, mean values on d120 were significantly higher
across all study participants compared to d35 with a mean difference of 477 U/mL (95% CI,
92.4–861.6). Seroconversion in controls was maintained (98%) and substantial increases in
the myeloid (97%) and checkpoint inhibitor (100%) cohorts were seen. These response rates
were higher compared to those seen in the lymphoid group (66%) (p < 0.001). Similarly,
median IgG levels were highest in controls (1212 U/mL) and lowest in the lymphoid cohort
(88.3 U/mL) (p < 0.001) (Table 3). Overall, 76% of controls and patients maintained humoral
immunogenicity over time (Figure 2). An association between d35 and d120 anti-spike-IgGs
in 333 paired samples [controls (n = 117); patients (n = 216)] was found (R2 = 0.34; p < 0.001).
Seroconversion on d120, despite d35 IgGs < 0.8 U/mL was documented in 18/20 (90%) and
22/49 (45%) patients with myeloid and lymphoid neoplasms respectively. Five of six sub-
jects who lost d35 response belonged to the lymphoid group. Anti-spike-IgGs > 0.8 U/mL
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on d120 were detected in 30/33 (91%) subjects including 14 patients who received only one
vaccine injection.

Table 3. Humoral and T-cell response to vaccination in controls and patient cohorts.

Parameter Controls Myeloid
Neoplasms

Lymphoid
Neoplasms

Solid
Tumors

Anti-spike IgG

day 35 n (%) 121
(98%)

100 *
(82%)

49 *,#

(48%)
13

(81%)
Median

(IQR) [U/mL]
166

(32–1558)
27.9 §

(2.4–466)
0.59 §,&

(0.39–30)
22.4 §

(1.1–462)

day 120 n (%) 120
(98%)

113
(97%)

63 *,#

(66%)
15

(100%)
Median

(IQR) [U/mL]
1212

(506–2854)
874 §

(149–2063)
88.3 §,&

(0.39–535)
130 §

(52–1153)
SARS-CoV2

specific T cells

CovCD4+ n (%) 68
(74%)

46 *
(53%)

30 #

(71%)
−

Median (IQR)
[% of CD4+ T cells]

0.0091
(0.0044–0.0189)

0.0057
(0.0015–0.0178)

0.012 &

(0.0039–0.029)
−

CovCD8+ n (%) 39
(42%)

24 *
(28%)

13
(31%) −

Median (IQR)
[% of CD8+ T cells]

0.0016
(0.0005–0.0064)

0.0031 §

(0.0001–0.0035)
0.0011

(0.0001–0.0039) −

Numbers (and %) of subjects with IgG concentrations >0.8 U/mL, CovCD4+, and CovCD8+ responses above the
limit of detection (LOD) per parameter. Medians and interquartile ranges (IQR) by parameter and cohort. *,§:
significantly different from control; #,&: significantly different from myeloid neoplasms.
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66%), and myeloid neoplasms (82% to 97%). A complete loss of the anti-spike IgG was rarely seen. 

3.2.2. Day 120 Spike-Specific Seroconversion 
The difference in d120 mean IgG values between patients and controls was not sig-

nificant (95%CI, −639.4–889.1). However, mean values on d120 were significantly higher 
across all study participants compared to d35 with a mean difference of 477 U/mL (95%CI, 
92.4–861.6). Seroconversion in controls was maintained (98%) and substantial increases in 
the myeloid (97%) and checkpoint inhibitor (100%) cohorts were seen. These response 
rates were higher compared to those seen in the lymphoid group (66%) (p < 0.001). 

Figure 2. Humoral anti-spike-specific responses in patients and controls on day 35 and day 120 after
vaccination. Specific IgG responses were maintained at high rates in controls (98%) and increased in
patients with oncologic malignancies on checkpoint inhibitors (81% to 100%), lymphoid (48% to 66%),
and myeloid neoplasms (82% to 97%). A complete loss of the anti-spike IgG was rarely seen.

3.3. Day 120 SARS-CoV-2 Spike-Specific T-Cell Response

CovCD4 and/or CovCD8 were detected in 155/223 (69.5%) subjects [controls: 81.5%;
patients 61% (p = 0.02)] with CovCD4 being more frequent than CovCD8 responses
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(p < 0.001) (Table 3, Figure 3). The differences in mean values of CovCD4 (95% CI, −0.00–0.02)
and CovCD8 (95% CI, −0.00–0.02) between patients and controls were not significant.
CovCD4 cells were more frequently detected in the control (74%) and lymphoid (71%)
cohorts compared to the myeloid cohort (53%, p = 0.003 vs. controls), mirrored by a similar
trend for CovCD8 cells (myeloid 28%, controls 42%, p = 0.03, Table 3). For controls, signif-
icant, but relatively weak pair-wise correlations were seen between d120 IgG responses,
CovCD4, and CovCD8 cells (Figure 3). Such a correlation could not be detected in the
myeloid or lymphoid cohorts. A sizeable fraction of patients in the lymphoid cohort
demonstrated CovCD4 and/or CovCD8 responses without detectable spike-specific IgGs
(Figure 3).

3.4. Predictors of Spike-Specific Immune Responses

Both patient- and vaccine-related factors were evaluated for a potential impact on
humoral and cellular immune responses. Patient-related variables included age [continuous
variable, 5- and 10-years frequency-matching], gender, baseline B- and T-cell counts, pre-
vaccination anti-spike-IgGs, cohort category [controls vs. patients], and diagnosis [myeloid
neoplasm vs. lymphoid neoplasm vs. solid tumor receiving PD-L1 inhibition]. Vaccine-
related factors were the type of vaccine, number of injections (one versus two), and interval
between injections [continuous variable; interval ≤35 vs. >35 days].

For the entire study cohort, with the exception of pre-vaccination anti-spike-IgGs
(R2 = 0.2; p < 0.001), no relationship was found between d35 and d120 humoral responses
and patient-related variables, including older age and vaccine-related factors. In the
myeloid group, only pre-vaccination anti-spike-IgGs were associated with higher d35
and d120 humoral responses. The interval between injections had no significant impact
on vaccine-induced humoral or cellular responses. Although statistically not significant
(p = 0.05), an interval >35 days between injections tended to be associated with lower
d35 but not d120 humoral responses in the lymphoid cohort only. In the myeloid and
lymphoid cohorts, CovCD4 and CovCD8-cell responses were not associated with patient-
or vaccine-related variables.

Due to the diversity of cancer therapies, the impact of treatment on vaccine-elicited
responses was explored without regression models. For the myeloid cohort, d35 (83%)
and d120 (97.4%) humoral as well as CovCD4 (53%) and CovCD8 (28%) responses were
comparable in patients receiving tyrosine-kinase-inhibitors for BCR-ABL1-positive CML,
JAK-inhibitors for myeloproliferative neoplasms, and other therapies to those on no treat-
ment (p = 0.3). For the lymphoid group, d35 seroconversion was lowest in the B-cell de-
pleting therapy (13%) or bruton-tyrosine-kinase-inhibitor (BTKi) (21.4%) groups compared
to other (58%) or no (62.5%) treatment groups (p < 0.001). No patient on B-cell depleting
therapy had detectable d120 anti-spike-IgGs compared to positive seroconversions in the
BTKi [7/15; (47%)], other treatment [23/30; (77%)], and no therapy [33/38; (87%)] groups
(p < 0.001). CovCD4 [30/42 (71.4%)] and CovCD8 [13/42 (31%)] were detected across all
treatment categories.

Humoral responses on d35 were documented in 21/30 (70%) subjects with a history
of HCT. On d120, 8/9 subjects with negative d35 antibodies seroconverted including
3/4 patients with a HCT-to-vaccination interval <12 months. CovCD4 (62.5%) and CovCD8
(29%) were measured after HCT.



Cancers 2022, 14, 1544 10 of 16Cancers 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. Correlation between spike-specific CD4 + IL-2 + IFNγ + TNFα + (CovCD4) and CD8 + IL-
2 + IFNγ + TNFα + (CovCD8) cell responses (A) and anti-spike IgG concentrations (B,C) on day 120 
after vaccination. Results are shown for controls as well as for patients with lymphoid and myeloid 
neoplasms. Broken lines represent the limit of detection (LOD). Regression lines, Spearman correla-
tion coefficients, and significance are calculated for double positive patients. 

3.4. Predictors of Spike-Specific Immune Responses 

Figure 3. Correlation between spike-specific CD4 + IL-2 + IFNγ + TNFα + (CovCD4) and CD8 +
IL-2 + IFNγ + TNFα + (CovCD8) cell responses (A) and anti-spike IgG concentrations (B,C) on day
120 after vaccination. Results are shown for controls as well as for patients with lymphoid and
myeloid neoplasms. Broken lines represent the limit of detection (LOD). Regression lines, Spearman
correlation coefficients, and significance are calculated for double positive patients.
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4. Discussion

Despite the older age of patients compared to controls, sustainable and/or improve-
ments in seroconversion rates and anti-splike-IgG concentrations over time were observed
across all cohorts. As expected, d35 seroconversion was higher in controls (98%) com-
pared to patients (68%) (p < 0.001). However, d120 seroconversion improved across all
patient cohorts [oncologic malignancies under PD-L1 inhibitor therapies (81% to 100%),
myeloid neoplasms (82% to 97%), lymphoid neoplasms (48% to 66%)]. Indeed, patients with
myeloid and oncologic malignancies under PD-L1 inhibitor therapies had comparable sero-
conversion rates to the control group. The few cases with pre-vaccination anti-spike-IgGs
without a known history of COVID-19 infection might represent asymptomatic infections
or cross-reactive antibodies generated during previous infections with other coronaviral
strains [50].

Another key finding was the remarkable and largely seroconversion-independent d120
SARS-CoV-2–specific CD4+TNFa+IFNγ+IL-2+- and CD8+TNFa+IFNγ+IL-2+-cells across all
cohorts, particularly in the lymphoid group with the lowest seroconversion rate. Indeed,
the cellular response in patients with lymphoid neoplasms with detectable CovCD4+- in
71% and CovCD8+-cells in 31% of cases was comparable to that measured in the control
group (CovCD4+- 74% and CovCD8+-cells 42%). A sizeable fraction of lymphoid patients
demonstrated T-cell responses without detectable spike-specific-IgGs. Overall, CD4+ T-cell
responses outnumbered CD8+ responses in our study. This is in line with what has been
observed in immunocompetent individuals [34,51].

To our knowledge, this work is the first to describe the kinetics of SARS-CoV-2 vaccine-
induced humoral and cellular responses over time. The impaired early (d35) seroconversion
in patients with hematologic malignancies is in line with previous publications [11–26].
However, the majority of patients demonstrate sustained and/or improved humoral and/or
cellular responses if measured later (d120). These immune responses were seen irrespective
of the type of vaccine or interval between injections. In a recent longitudinal study, antibod-
ies against the SARS-CoV-2 spike antigen and specific memory cell responses were detected
in 96% and 63% of health care workers four- and eight-months post infection [52,53].

In line with the literature, our data imply that the previously reported “early“ T-cell
responses [15,24,34–41] are likely to persist for several months in patients with hematologic
malignancies after vaccination similar to what has been observed in immunocompetent
individuals after COVID-19 infections [30–32,53].

Taken together, our results underscore the need for large-scale follow-up data to
establish standardized post-vaccination time-windows for humoral and cellular response
assessments to identify “true vaccination failures” in cancer patients.

However, the routine applicability of tests to measure humoral and cellular immune
responses remains challenging. Although several assays for anti-SARS-CoV-2-IgG are com-
mercially available, current assays generate discrepant results. In fact, we are still far from
the identification of optimal thresholds for IgG-positivity as a surrogate for neutralization
capacity and neutralizing antibodies (NAbs) which confer protection [29,54–57]. Further,
correlations between NAbs and clinical efficacy against infections are weak and likely rely
on the population tested [58,59].

The issue is even more complicated regarding cellular response assays. Generally,
they are not readily available and mainly used for research purpose. There is often a
preponderance of using IFNγ–related readouts to assess T-cell responses [24,60]. However,
data suggest that polyfunctional T-cells have higher protective efficacy after vaccination
compared to IFNγ monofunctional T-cells [61]. The true percentages of patients developing
polyfunctional vaccine-induced CD4+TNFa+IFNγ+IL-2+- and CD8+TNFa+IFNγ+IL-2+-cells
might be incorrectly assessed if IL-2 is not considered [43].

Although cellular responses are promising indicators of immunity, our data do not
suggest that those with a response compared to those without such a response are more
likely to be protected. Yet, even if infections cannot be prevented, it is still possible
that T-cell responses are sufficient to ensure mild courses of COVID-19 disease. Thus,
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studies are necessary to evaluate the degree of cellular-induced clinical protection. Further,
SARS-CoV-2 variants such as Omicron (B.1.1.529) with their antibody escape highlight the
importance of addressing whether T-cell recognition is also affected.

One limitation is that we did not measure NAbs with virus neutralization assays
which are considered to be the gold standard. Yet, we used an anti-SARS-CoV-2 IgG
assay with cutoffs for reasonable prediction of NAb [62]. After enrollment started, health
authorities in some federal states in Germany changed the interval between injections from
21 to 42 days. The potential impact on d35 response evaluation was discussed with the
statistician and accounted for by including the interval as a vaccine-related variable in the
regression model. As ~50% of participants across all cohorts received the second injection
42 days later, comparison between groups was feasible. Finally, despite the relatively large
number of participants, data of secondary outcomes remain explorative and need to be
confirmed in larger trials.

In summary, our longitudinal study describes the nature of SARS-CoV-2 vaccine-
induced humoral and cellular immune landscape in patients with hematologic on oncologic
malignancies under PD-L1 inhibition.

5. Conclusions

We provide strong empirical evidence of early and late SARS-CoV-2 vaccine-elicited
immunogenicity in patients with hematologic neoplasms and oncologic patients receiving
checkpoint inhibitors. Even with blunted and heterogeneous antibody responses, T-cell
priming seems to be largely intact. This study provides key information and fills knowledge
gaps with respect to T-cell responses in vulnerable persons. Both the kinetics of anti-SARS-
CoV-2 antibodies over time and cellular responses are crucial to determine which patients
will generate and maintain immunity after vaccination.

The findings have implications on clinical decision-making for designing vaccine
strategies given the current timing and recommendations for SARS-CoV-2 booster doses. It
will be important in the future to determine whether the residual humoral immunity and
sustained T-cell responses, retain the ability to respond to emerging SARS-CoV-2 variants.
Larger studies with clinical outcomes are needed.
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