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Simple Summary: Glioblastomas carry a poor prognosis and usually presents with heterogeneous
regions in the brain tumor. Multi-parametric MR images can show morphological characteristics.
Radiomics features refer to the extraction of a large number of quantitative measurements that de-
scribe the geometry, intensity, and texture which were extracted from contrast-enhanced T1-weighted
images from anatomical MRI and metabolic features from PET. It also provides a qualitative image
interpretation as well as cellular, molecular, and tumor properties. Thus, it derives additional infor-
mation about the entire tumor volume which is generally of irregular shape and size from routinely
evaluated “non-invasive” imaging biomarkers techniques. We demonstrated volumetric habitats and
signatures in necrosis, solid tumor, peritumoral tissue, and edema with key biological processes and
phenotype features. This provides physicians with key information on how the disease is progressing
in the brain and can also give an indication of how well treatment is working.

Abstract: Glioblastoma (GBM) is a fast-growing and aggressive brain tumor of the central nervous
system. It encroaches on brain tissue with heterogeneous regions of a necrotic core, solid part, peritu-
moral tissue, and edema. This study provided qualitative image interpretation in GBM subregions
and radiomics features in quantitative usage of image analysis, as well as ratios of these tumor
components. The aim of this study was to assess the potential of multi-parametric MR fingerprinting
with volumetric tumor phenotype and radiomic features to underlie biological process and prognostic
status of patients with cerebral gliomas. Based on efficiently classified and retrieved cerebral multi-
parametric MRI, all data were analyzed to derive volume-based data of the entire tumor from local
cohorts and The Cancer Imaging Archive (TCIA) cohorts with GBM. Edema was mainly enriched
for homeostasis whereas necrosis was associated with texture features. The proportional volume
size of the edema was about 1.5 times larger than the size of the solid part tumor. The volume size
of the solid part was approximately 0.7 times in the necrosis area. Therefore, the multi-parametric
MRI-based radiomics model reveals efficiently classified tumor subregions of GBM and suggests that
prognostic radiomic features from routine MRI examination may also be significantly associated with
key biological processes as a practical imaging biomarker.

Keywords: annotation; glioblastoma; multi-parametric; machine learning; non-invasive; precision
medicine; quantitative imaging; radiomics feature
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1. Introduction

Glioblastoma multiforme (GBM) is the most lethal and aggressive primary brain tumor
in adults; with a poor prognosis despite surgical resection combined with radiotherapy
and temozolomide administration, the two years survival rate remains at 27% [1]. The 2016
World Health Organization (WHO) began to integrate molecular and genetic profiling to
assist in diagnosis [2] and predictive prognosis.

Recently, radiomics has been increasingly exploited to extract and analyze quantitative
imaging features. The novel technique becomes more popular in data mining, especially in
radiomics features. It can approach tumor phenotypes using thousands of image features
that result in the basis for cluster shape, pixel intensity histogram, texture, and diffusion
kurtosis analysis covering the entire tumor volume [3]. Several explorative studies have
shown the high molecular heterogeneity of gliomas such as the isocitrate dehydrogenase
1 (IDH1) gene, and O-6-methylguanine-DNA-methyltransferase (MGMT) promoter sta-
tuses also provide important prognostic information in GBM to advance personalized
treatment and translational medicine. From bench to bedside, translational imaging re-
search can advance to personalized medicine. Clinical implementation of radiomics studies
workflow in neuro-oncology includes the following steps: (1) multimodal imaging and
biological data labelling; (2) radiomics feature extraction and clinical information integrated
model; (3) statistical correlation and machine learning model training; (4) bioinformatics
for guiding personalized disease diagnosis, treatment evaluation, and prognostic predic-
tion in precision medicine (Figure 1). Several imaging modalities can help diagnosis and
metabolite identification such as magnetic resonance imaging (MRI) and positron emission
tomography (PET) for anatomical and functional imaging to analyze radiomics features
in the classification of the imaging biomarker. GBM tumors illustrate phenotypic features
such as necrosis, solid-enhanced tumor, peritumoral tissue, and peritumoral edema. The
random forest in machine learning is based on a previous study for model training that
analyzed the radiomics features and multiclassification in semantic features [4]. As the
underlying drivers of these phenotypes are biological and molecular attributes in nature,
this indicated underlying imaging features.

This study implemented semiautomatic annotation from T1-CE MR images for indi-
vidual measurement in specific necrosis, solid part tumor, peritumoral tissue, and edema
regions to extract 1316 features on the raw MR images. We represented radiomic features
based on imaging signatures of the heterogeneous GBM tumor tissue parts (Figure 2) and
created a radiomic-based model for the semiautomatic annotation of GBM using MRI,
ground truth, and machine learning. The features showed the tumor shape elongation
of the peritumoral edema region for high-risk groups from T1-CE MR images [4]. Conse-
quently, it derived additional information about the entire tumor volume, which is generally
of irregular shape and size, from routinely evaluated “non-invasive” imaging biomarkers
techniques and provided qualitative and quantitative information. The novelty of this study
is that it showed that classification of multi-parametric image interpretation, radiomics
features in quantitative usage of image analysis, and volumetric feature ratios, i.e., tumor
bulk volume (TBV) and abnormal bulk volume (ABV) of GBM subregions components
are different from other literatures. It will be able to encompass more features concerning
intra-tumor heterogeneity in relation to molecular markers and predicting prognosis.

In addition, we presented multi-parametric MRI-based radiomics analysis to identify
entirely volumetric habitats as well as ratios of these tumor components, focused on local
GBM cohort and the publicly available GBM dataset from The Cancer Imaging Archive
(TCIA). To investigate which biological processes derive volumetric tumor phenotype
features in this study, we performed a quantitative analysis in two cohorts based on
semantic feature in ground truth images using a data analysis. The ratios of volumetric
features were significantly associated with various sets. Thus, the feature-based quantitative
value in subregions has shown its potential biomarker as an additional source of diagnostic
and therapeutic information, and information from routinely acquired MRI exams can also
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be notably associated with key biological processes that affect the response to chemotherapy
in GBM.

Figure 1. From bench to bedside, translational imaging research can advance to personalized
medicine. Clinical implementation of radiomics studies workflow in neuro-oncology includes the
following steps: (1) multimodal imaging and biological data labelling; (2) radiomics feature extraction
and clinical information integrated model; (3) statistical correlation and machine learning model
training; (4) bioinformatics for guiding personalized disease diagnosis, treatment evaluation, and
prognostic prediction in precision medicine.
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Figure 2. GBM derived from T1-CE MR images for individual measurement in specific necrosis, solid
part tumor, peritumoral tissue, and edema regions of right-side frontal lobe volume in a subject. TBV
represents the addition of these tumor features. The ABV is represented by hyperintensity extracted
from T2-FLAIR images. Edema is the difference of tumor bulk from abnormal bulk volume.
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2. Materials and Methods
2.1. Cohort Selection

This study recruited a cohort of 54 patients diagnosed with primary (de novo) con-
firmed GBM. Two datasets were collected, with 23 patients with GBM from local hospitals
as the training data cohort and 31 TCIA datasets as our validation cohort after receiving
the institutional review board of Hualien Tzu Chi Hospital approval (IRB110-007-B).

All local patients suspected of having cerebral GBM based on conventional radio-
logic findings were enlisted in this prospective study before any treatment (10 women,
13 men; age range, 42–83 years; average age, 62.60 years), and imaging was performed
between October 2014 and February 2019. The inclusion criteria were as follows: (1) neu-
ropathological evaluation following surgery or stereotactic biopsy, with all lesions being
histopathologically confirmed grade IV glioma; (2) available preoperative MRI consist-
ing of gadolinium-based contrast-enhanced T1-weighted images (T1-CE), T2-weighted
images (T2-WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) images, and
apparent diffusion coefficient (ADC) images. We retrieved 31 patients with GBM from the
publicly available TCIA database as the validation cohort (15 women, 16 men; age range,
18–84 years; average age, 55.13 years). This dataset was released by the BraTS challenge, in
which the MRIs were also used to segment GBM patients [5,6].

2.2. Imaging Processing & Semantic Annotations

All patients underwent routine MRI scans. The segmentation is performed slice-wise,
where the input data include the T1-CE, T2-WI, T2-FLAIR, and ADC MR images of each
patient. All methods were applied to the T1 post-contrast images using default param-
eters, except for machine learning models that have no tunable parameters. This study
implemented semiautomatic annotation for extraction radiomics features as described.
Consequently, we made ground truth segmentation masks from tumor subregions delin-
eation and semantic features which were manually generated using the multi-parametric
MR images following a specific given annotation protocol. Four subregions were delineated
on the tumor imaging, namely, the complete tumor extent also referred to as: (1) the core
area (necrotic tumor region), (2) solid-enhanced tumor, (3) peritumoral tissue, and (4) peri-
tumoral edema. Additionally, TBV and ABV represented these tumor features (illustrated
in Figure 2). The protocol used for annotating the tumor structures was represented in
detail in those two BraTS literatures.

2.3. Extraction of Radiomics Features

Radiomics features were extracted as described previously [4]. A total of 1316 features
on the raw MR images were selected for each annotated area, including 32 geometry
features (size- and shape-based features), 128 intensity histograms (64 first-order and
64 histogram features of local binary pattern (LBP)), 132 texture features (44 gray-level run-
length matrix (GLRLM) features and 88 gray-level co-occurrence matrix (GLCM) features),
and 1024 scale-invariant feature transform features.

The manually corrected segmentation features were extracted from four subregions:
necrosis, solid part, peritumoral tissue, and peritumoral edema. The feature dataset was
divided into three groups: (1) geometry: the three-dimensional morphological characteris-
tics of the tumor, (2) histogram: the first-order statistics computed from pixels and voxel
intensities, and (3) texture: second- and high-order spatial distributions of the intensities in
the image. The texture features were extracted using several methods, including features
based on the GLCM and GLRLM. We adopted the LBP histogram for texture; this summa-
rizes the texture characteristics and patterns of a surface into a histogram, which can be
used as input for pattern classification. All the features were combined and used as the
input radiomic features for the machine learning model. The workflow of the proposed
method presented in this study for non-invasive practical imaging biomarkers in precision
medicine is demonstrated in Figure 1.
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2.4. Training and Validation in Machine Learning Algorithms

According to previous interpretation [4], using random forest achieves the best accu-
racy 95.8%, precision 97.3%, recall 97.3%, and F1-score 0.898 in peritumoral tissue. The
area under the curve (AUC) is the best classification (greater than 95%) in all subregions on
which to stratify the training data to improve machine-learning-based brain tumor region
classification. For random forest, we used the number of features ranging from 100 to 2000
(step size = 100), and maximum depth values ranging from zero to 110 (step size = 10).
In consequence of the limited data, leave-one-out cross-validation was used to validate
the overall performance. The accuracy of classification was evaluated with majority vote
(i.e., a threshold cutoff of 50%) [7].

2.5. Statistical Analysis

All the statistical data analysis in this study was performed with SPSS software with
implemented statistics analysis (IBM Corp, Armonk, NY, USA). The differences in patient
cohort, tumor size, volume, and training and validation datasets were evaluated using an
ANOVA test for differences in average volume, mean distribution, and 95% confidence
interval mean. A p value < 0.05 was considered to be statistically significant. All differences
were significant by repeated-measures analysis of variance with Bonferroni correction.

3. Results
3.1. Ground Truth Segmentation and Identification of Tumor Habitats on MRI

To investigate which biological processes and morphological characteristics on multi-
parametric MR images drive volumetric tumor phenotype features in GBM, we performed
the qualitative and quantitative interpretation based on semantic features in GBM sub-
regions. It displays tumor habitats which are color-coded and overlaid on T2-FLAIR
annotated images for the ground truth from GBM. Different GBM regions were accurately
labeled into four regions of interest and joint intensity color maps on T2-FLAIR: necro-
sis (red), solid part tumor (brown), peritumoral tissue (green), and peritumoral edema
(turquoise) as shown in Figure 2 and correspondingly in Table 1.

Table 1. Statistical abnormal bulk volume (ABV) comparisons between local patients with GBM and
TCIA database as our validation cohort to carry out a pilot study.

1. Local Patients with GBM 2. TCIA Database with GBM

Parameter Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)

Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)

Necrosis/ABV 0.23 ± 0.12 (0.05–0.55) 0.18–0.28 ** 0.17 ± 0.83 (0.05–0.33) 0.14–0.20 **
Solid/ABV 0.31 ± 0.16 (0.10–0.62) 0.24–0.38 ** 0.43 ± 0.15 (0.18–0.84) 0.37–0.49 **
Peritumoral
tissue/ABV 0.08 ± 0.02 (0.05–0.11) 0.07–0.08 0.09 ± 0.03 (0.05–0.16) 0.08–0.10

Edema/ABV 0.39 ± 0.21 (0.02–0.74) 0.30–0.48 ** 0.31 ± 0.19 (0.02–0.60) 0.24–0.38 **

All differences were significant by repeated-measures analysis of variance with Bonferroni correction. Differ-
ences compared with peritumoral tissue/ABV ratio at p ≤ 0.005 (**). SD, standard deviation; Min, minimum;
Max, maximum.

3.2. Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures

We quantified the following volumetric features in GBM based on multi-parametric
MR images: necrosis, solid part tumor, peritumoral tissue, and peritumoral edema. We also
quantified TBV and ABV for comparison in tumor subregions. In addition, we calculated
the following ratios mainly to explore combined T1-CE and T2-FLAIR signals: (1) four
subregions (necrosis, solid part tumor, peritumoral tissue, and peritumoral edema) to TBV
ratio (Figure 3). (2) Necrosis, peritumoral tissue, and peritumoral edema to solid tumor
ratio (Figure 4A,B). (3) Necrosis, solid part tumor, and peritumoral edema to peritumoral
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tissue ratio (Figure 4C,D). (4) Four subregions to ABV ratio (Figure 4E,F). The areas of the
tumor subregions that these features correspond to are highlighted in Figure 2 as well.
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Figure 3. Stacked column chart reveals the size distribution of volumetric tumor features across
subregions of GBM in (A) local and (B) TCIA cohort. Compared to the tumor bulk volume, edema
had the largest median size across all subregions. Solid part tumor and peritumoral tissue showed
more consistent areas than other regions. Size variation of volumetric feature areas other than edema
was generally low across subregions.

3.3. Biological Processes Underlying Volumetric Features

Volumetric features were significantly associated with various sets of tumor phenotype
features and biological processes in local (Figure 4A,C,E) and TCIA (Figure 4B,D,F) cohort
studies. Edema was mainly enriched for homeostasis. The proportional volume size of the
edema was about 1.5 times larger than the size of the solid part tumor. The volume size of
the solid part was approximately 0.7 times in the necrosis area (Table 2 and Figure 4A,B).
The peritumoral tissue is a small region in GBM; for comparison, see other subregions
(Table 3 and Figure 4C,D). However, these features were enriched for biological processes
in immune response and apoptosis [8]. Figure 4C,D show the volumetric prototype plot
which is underlain by the original tumor habitat that contains the tumor subregions. The
outlier area shows the data point that differs significantly from other observations. The
ABV was associated with a larger number of biological processes than the original features
(Table 1 and Figure 4E,F). The quantitative image analysis collected GBM identification,
volumetric values, and texture features to validate the capability of multi-parametric MR
imaging (Figure 5). The heatmap shows that solid tumor, peritumor tissue, and necrosis
could be clustered together with features of skewness, uniformity, and textural features
possessing linkage.
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for two cohorts in local (A,C,E), and TCIA (B,D,F) on multi-parametric MR images. (A–F) show
representative different subregions to solid tumor, peritumoral tissue, and abnormal bulk volume
ratio, respectively. Repeated-measures ANOVA with Bonferroni correction. Statistically significant
difference between each group p < 0.05 (*), p ≤ 0.005 (**), and p < 0.001 (†).
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Table 2. Statistical solid tumor comparisons between local patients with GBM and TCIA database as
our validation cohort to carry out a pilot study.

1. Local Patients with GBM 2. TCIA Database with GBM

Parameter Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)

Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)

Necrosis/Solid 0.97 ± 0.91 (0.24–3.64) 0.57–1.36 * 0.44 ± 0.21 (0.05–0.98) 0.36–0.51 †
Peritumoral
tissue/Solid 0.31 ± 0.19 (0.10–1.00) 0.23–0.39 † 0.22 ± 0.10 (0.11–0.64) 0.18–0.26 †

Edema/Solid 1.98 ± 1.80 (0.05–7.17) 1.20–2.76 0.96 ± 0.82 (0.02–3.22) 0.66–1.27

All differences were significant by repeated-measures analysis of variance with Bonferroni correction. Differ-
ences compared with edema/solid ratio at p < 0.05 (*), p < 0.001 (†). SD, standard deviation; Min, minimum;
Max, maximum.

Table 3. Statistical peritumoral tissue comparisons between local patients with GBM and TCIA
database as our validation cohort to carry out a pilot study.

1. Local Patients with GBM 2. TCIA Database with GBM

Parameter Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)
Mean ± SD
(Min.–Max.)

95% Confidence
Interval-Mean

(Lower–Upper Bound)

Necrosis/Peritumoral tissue 2.94 ± 1.42 (1.09–7.88) 2.33–3.56 2.20 ± 1.18 (0.50–4.32) 1.76–2.63
Solid/Peritumoral tissue 4.12 ± 2.03 (1.00–9.85) 3.25–5.00 5.16 ± 1.49 (1.57–9.17) 4.61–5.70 †

Edema/Peritumoral tissue 5.89 ± 4.34 (0.21–15.15) 4.01–7.76 * 4.25 ± 3.31 (0.21–11.55) 3.04–5.46 †

All differences were significant by repeated-measures analysis of variance with Bonferroni correction. Differences
compared with necrosis/ peritumoral tissue ratio at p < 0.05 (*), p < 0.001 (†). Note: SD, standard deviation; Min,
minimum; Max, maximum.

3.4. Statistical Results

Four subregions (i.e., necrosis, solid part tumor, peritumoral tissue, and peritumoral
edema) and ratio compared (i.e., TBV and ABV) were all significantly different in value of
volumetric features. Analysis of variance was used to account for repeated measurements
within different tumor subregions. A p value < 0.05 was considered to be statistically signif-
icant after correction for multiple comparisons using Bonferroni correction (Tables 1–3 and
Figure 4). Notably, statistical ABV ratio comparisons were strong, significantly (** p ≤ 0.005)
in agreement with local patients and TCIA database as our validation cohort to carry out a
pilot study in Figure 4E,F.



Cancers 2022, 14, 1475 9 of 16

Cancers 2022, 14, x FOR PEER REVIEW  9  of  16 
 

 

 

Figure 5. The heatmap manifests the absolute quantification radiomics feature values with high to 

low feature values in red to blue. The data showing hierarchical cluster analyzed using MR radi‐

omics features and cluster distance implied the order in which clusters were associated. 

3.4. Statistical Results 

Four subregions (i.e., necrosis, solid part tumor, peritumoral tissue, and peritumoral 

edema) and ratio compared (i.e., TBV and ABV) were all significantly different in value of 

volumetric features. Analysis of variance was used to account for repeated measurements 

within different tumor subregions. A p value < 0.05 was considered to be statistically signifi‐

cant after correction for multiple comparisons using Bonferroni correction (Tables 1–3 and 

Figure 4). Notably, statistical ABV ratio comparisons were strong, significantly (** p ≤ 0.005) in 

agreement with local patients and TCIA database as our validation cohort to carry out a 

pilot study in Figure 4E,F. 

4. Discussion 

Medical imaging can be considered a practical novelty in technology and science. It 

is used in clinical practice to aid decision making for diagnosis and treatment in disease. 

This novel technique has become more popular in data mining, especially in radiomics 

feature which is an emerging field that transforms imaging raw data into a high‐dimen‐

sional mineable feature space using a large number of automatically extracted data‐based 

Figure 5. The heatmap manifests the absolute quantification radiomics feature values with high to
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4. Discussion

Medical imaging can be considered a practical novelty in technology and science. It is
used in clinical practice to aid decision making for diagnosis and treatment in disease. This
novel technique has become more popular in data mining, especially in radiomics feature
which is an emerging field that transforms imaging raw data into a high-dimensional
mineable feature space using a large number of automatically extracted data-based fea-
tures algorithms [4,9–17]. It can approach tumor phenotypes using thousands of image
features that result in the basis for pixel intensity histogram, cluster prominence, cluster
shade, inertia, geometry, texture, and diffusion kurtosis analysis covering the entire tumor
volume [3]. This usage provides the extraction of quantitative features from medical im-
ages such as CT, MRI, or PET. Hence, it provides supplementary, potentially applicable
diagnostic and therapeutic guidelines for clinical decision making. Moreover, the radiomics
features can be used alone or combined with other clinical or histomolecular parameters
to generate predictive or prognostic mathematical or machine learning models which
can then be applied for various significant diagnostic indications in neuro-oncology [18].
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Non-invasive biomarkers can reflect the underlying tumor’s habitats and signatures to
differentiate between treatment-related changes and local brain tumor recurrence, and
can offer quantitative information to guide therapy for personalized disease diagnosis,
treatment evaluation, and prognostic prediction in precision medicine.

Several literatures have proposed to evaluate the feature-based different modality in
patients with GBM. The feature findings were compared with MRI and PET/MRI based
on radiomics analysis (Table 4) [4,9–14,18–21]. The multi-parametric MR images analy-
sis and the use of artificial-intelligence–based approaches for image-based analysis and
construction of expectation algorithms manifest a new epoch for noninvasive biomarker
discovery. Additionally, PET/MRI provides the structural information obtained from con-
ventional MRI and tumor metabolism from PET. A variety of radiotracers are obtainable for
patients with brain tumors. Particularly, there is diagnostic value in amino acid PET tracers;
(O-(2-[18F]fluoroethyl)-L-tyrosine, 18F-FET) is a promising tracer that has manifested con-
vincing results, especially in the diagnostics of brain tumors [22–26]. The combination of
radiomics and metabolic feature will raise significant signatures in prediction of molecular
markers, differentiation of treatment-related changes, and radiation necrosis from tumor
recurrence in brain metastases that are necessary for essential diagnostic information in
neuro-oncology (Table 4).

Semiautomatic segmentation represents the classification for response assessment
using volumetric measurements that may capture tumor shape and geometry more accu-
rately; this is particularly useful for GBMs, which are often irregularly shaped. In addition,
large-scale studies have proven the benefits of using volumetric-based radiomics features
for tumor segmentation compared with intricate verification approaches [4,8]. To ensure
the reliability of quantitative imaging features, tumor contouring by manual delineation is
used to separate four different regions of tissues, individually. This article shows differ-
ent ways to compare MRI and PET/MRI based on radiomics analysis, feature types, and
performance in different classified methods in Table 4, accordingly.

First, different GBM regions were accurately labeled into four ROIs and joint intensity
color-maps on T2-FLAIR in heterogeneous tumor regions (Figure 2); on the contrary,
several literatures only showed segmentation in three regions (i.e., enhancing tumor, non-
enhancing tumor, edema) for reproducible clustering points to three distinct imaging
subtypes (Table 4).

Second, our investigation provided qualitative image interpretation in GBM subre-
gions and radiomics features in quantitative usage of image analysis, as well as volumetric
feature ratios (i.e., ABV and TBV) of these tumor components. The proportional volume
size of the edema was about 1.5 times larger than the size of the solid part tumor, which
means the edema was mainly enriched for homeostasis. Whereas the solid part was ap-
proximately 0.7 times in the necrosis area. Consequently, the multi-parametric MRI-based
radiomics model revealed quantitative and qualitative information in four subregions of
GBM. The novelty of this study was that we could mine images to discover patterns that
predict biological characteristics of the radiomics features from these points of views.

Third, computational features were extracted using annotated imaging, particularly
those that quantify shape and margin sharpness. Both color-coded semantics and features
were derived from multimodal MR radiomics to analyze GBM texture features and compare
tumor characteristics such as entropy and homogeneity and correlate them with spatial-
habitat imaging. All features were combined and fed into the machine learning algorithms
for accessing and interoperating with the semantic content in medical imaging. The AUC
is the best classification in all subregions on which to stratify the training data to improve
machine-learning-based brain tumor region classification in comparison to other studies.
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Table 4. The comparison of feature findings with MRI and PET/MRI based on radiomics analysis.

Study Theme MRI Sequences
PET Tracer Feature Type Classification

Method
Performance

(Training)

MRI

Chiu et al.
(2021) [4]

Efficiently classify
tumor subregions

of GBM for
prognostication

with key biological
processes

T1-CE, T2-WI,
T2-FLAIR, ADC

Morphological
features, Intensity
features, Texture

features,
Histogram features

Random forest 0.96 (AUC)

Park et al.
(2020) [9]

Prognostication
subtypes model of

GBM

T1-CE, T2-FLAIR,
DWI, dynamic
susceptibility

contrast (DSC).

Morphological
features, Intensity
features, Texture

features

Cox regression and
LASSO 0.74 (C-index)

Chaddad et al.
(2019) [10]

Predicts Survival
of IDH1

Wild-Type
Glioblastoma

T1-CE, T2-FLAIR

Morphological
features, Intensity
features, Texture

features

Random forest 0.78 (AUC)

Rathore et al.
(2018) [11]

Tumor subtypes of
GBM with

different clinical
and molecular
characteristics

offering prognostic
value

T1-WI, T1-CE,
T2-WI, T2-FLAIR,

DSC-MRI, DTI

Morphological
features, Intensity
features, Texture

features,
Histogram features

K-means clustering 0.75 (C-index)

PET/MRI

Haubold et al.
(2020) [12]

Tumor decoding
and phenotyping:

prediction of
1p/19q co-deletion

T1-CE, ADC,
3D-FLAIR

(SPACE)/18F-FET

Morphological
features, Intensity

features, Metabolic
features

(1) 1p/19q co-deletion:
Random forest

(2) MGMT promoter
methylation status:

SVM

(1) 0.98 (AUC)
(2) 0.76 (C-index)

Wang et al.
(2020) [13]

Differentiation of
radiation necrosis

from tumor
recurrence

T1-CE,
FLAIR/18F-FDG &

11C-MET PET

Morphological
features, Texture

features, Metabolic
features

LASSO binary logistic
regression 0.99/0.91 (AUC)

Lohmann et al.
(2018) [14]

Radiomics
differentiates

radiation injury
from

recurrent brain
metastasis

T1-CE, T2-WI,
T2-FLAIR/

18F-FET

Morphological
features, Texture

features,
Histogram

features, Metabolic
features

Logistic regression 0.96 (AUC)

To investigate which biological processes derive volumetric tumor phenotype features
in this study, we performed a quantitative analysis in two cohorts based on semantic
features in ground truth images using a data analysis. We compared these results to
radiomics features; in our analysis, the ratios of volumetric features were significantly
associated with various sets. The results of this study outline issues of major concern:

(1) Edema was mainly enriched for homeostasis. The proportional volume size of the
edema was about 1.5 times larger than the size of the solid part tumor. The volume
size of the solid part was approximately 0.7 times in the necrosis area. Therefore, the
multi-parametric MRI-based radiomics model efficiently classified tumor subregions
of GBM, and there are implications that prognostic radiomic features from routine
MRI examination may also be significantly associated with key biological processes
that affect response to chemotherapy in GBM as a practical imaging biomarker.
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(2) The volumetric prototype plot is underlain by original tumor habitat that contains
the tumor subregions. Generally, many more biological processes were significantly
associated with the feature ratios, usually showing a trend towards a mix of pathways
associated with the individual features [8]. In our investigation, volumetric feature
ratios (i.e., ABV and TBV) were associated with a larger number of biological processes
than the original features. Hierarchical cluster analysis using a subset of features
has identified five distinct clusters according to the different volumetric habitats
and features. The different types of cluster in entropy (textural feature), long run
emphasis, skewness, uniformity, and LBP are correlated with classification among
tumor subregions in solid part, peritumoral, necrosis, and edema, respectively.

(3) Contrast enhancement was enriched for signal transduction and protein-folding pro-
cesses. The peritumoral tissue is a small region in GBM in comparison with other
subregions. However, these features were enriched for biological processes in im-
mune response and apoptosis from spatial immunoprofiling while the abundance
and phenotype of tumor infiltration lymphocytes are closely linked with clinical sur-
vival [8,27]. That reflected the regulation of gene expression such as autophagy gene
in necrosis [28], vascular endothelial growth factor gene in peritumoral tissue [29],
and angiogenesis gene in edema [30,31] with pathological and molecular features of
GBM [32]. Moreover, aquaporin 4 (AQP4) contributes to extended tumor cell migra-
tion, possibly passing through increasing water permeability and implication of AQP4
in tumor edema [33,34].

(4) Biological features correlate with corresponding MR imaging sequences because differ-
ent MR imaging sequences come with diverse clinical imaging protocols. Quantitative
features provide tumor microenvironment, spatial characteristics, distinguishing of
molecular subtypes, survival predictor corresponding to LBP and histogram of ori-
ented gradients, scale-invariant feature transform, histogram of contrast-enhanced
tumor MRI, and contrast information between co-occurring subregions, respectively.
Consequently, selection of MR imaging sequences can directly affect image feature
definition and the corresponding biological interpretation [35]. Particularly, more
biologically significant MRI sequences such as diffusion- and perfusion-weighted MRI
have been shown to outperform radiomics models based on conventional MRI [4,9].
These approaches should be taken into account in future research as they will be able
to encompass more features concerning intratumor heterogeneity and have shown im-
proved performance in relation to molecular markers and predicting prognosis [9,36].

(5) We illustrated radiomic features based on imaging signatures of the heterogeneous
GBM tumor tissue parts (Figure 2) and created a radiomic-based model for the semi-
automatic annotation of GBM using MRI, ground truth, and machine learning [4]. The
performance of radiomics has been demonstrated when features are extracted from
distinct tumor areas such as active tumor, necrosis, and edema, separately. It will be
much better for specific tumor areas in clinical applicability [36–38].

Several aspects have crucial challenges for accurate features. This plays a pivotal role
when it comes to extraction of radiomics-based imaging signature and the large number of
quantitative measurements in two cohorts.

The first challenge is variability in tumoral extraction: tumor heterogeneity causes
and consequences. In 2010, Marusyk et al. [39] proposed that the greater number of human
tumors illustrate heterogeneity in many morphological and physiological features, such
as expression of cell surface receptors and proliferative and angiogenic potential. To a
substantial extent, this heterogeneity might be attributed to morphological and epigenetic
plasticity, but there is also strong evidence for the coexistence of genetically divergent tumor
cell clones within tumors. We have to address this point; it would be advantageous when
using semiautomatic segmentation to decide GBM shape and geometry more accurately.
Furthermore, GBMs are characterized by heterogeneous angiogenesis, cellular proliferation,
cellular invasion, and apoptosis, which translate into diversifying grades of necrosis, solid
enhancing tumor, peritumoral tissue, and peritumoral edema. In particular, irregular
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rim enhancement surrounding the necrosis is the most complicated form for imaging
annotation. It was found to be prominently associated with unmethylated MGMT promoter
status, which is known to be a biomarker for response to temozolomide and survival. By
contrast, semiautomatic segmentation would be advantageous to determine GBM shape in
each patient. In this perspective, this needs to be compared with different neuroimaging
biomarkers for quantitative and qualitative image interpretation of tumoral heterogeneity
surrogates as a reference [40,41].

The second challenge is generalizability: The multi-parametric radiomics-based ap-
proach provides extraordinary potential and possibility to contribute to an improved
diagnosis and treatment guideline in neuro-oncology. However, a few barriers must be
overcome before this method can be successfully integrated into clinical routine. The
reproducibility and transferability of the developed models and the underlying radiomics
features should also be improved [18]. These parameters often depend on many different
factors, such as the image quality and the pre- and post-processing steps. Similarly, the
independent evaluation of the developed model to validate the dataset test is important.
Moreover, it needs to be compared with different neuroimaging biomarkers for quantitative
and qualitative image interpretation of tumoral heterogeneity surrogates as a reference.
Furthermore, for a successful translation of radiomics into clinical routine, model validation
in large-scale cross-institutional datasets is of prominent significance. This hindrance could
be conquered by multi-center cooperation and large-scale datasets from phase II or III
clinical trials [18,42].

The third challenge is the small sample size of limitation. Our study focused on
semantic and volumetric phenotype features such as the radiomics-based definitions of
imaging phenotypes that are available. However, we attempted to compare our results
with real-world clinical experience and across different types of study for correlation with
radiomics feature accuracy and efficiency related to specific regions of GBM. We expect
that in future studies the prognostic performances will increase cohorts with even larger
numbers of samples and generalizability image processing will become available for GBM.

The development of bioinformatics technology has expedited the identification of
neoantigens as shown in Figure 1. Neoantigen vaccine is an emerging tumor immunother-
apy which is derived from tumor-specific protein-coding mutations. It can generate tumor-
specific antigens and highly expressed immunogenic agents as they are not expressed in
normal tissues which are exempt from central tolerance. They can activate cell surface
proteins CD4+ (helper) and CD8+ (killer) T cells to generate immune response and have
the potential to become new targets of tumor immunotherapy [43–45]. Zhang et al. [46]
show that the neoantigen quality fitness model stratifies GBM patients with more profitable
clinical outcome and, together with CD8+ T lymphocytes tumor infiltration, identifies a
GBM subgroup with the longest survival, which shows discriminate transcriptomic and
genomic features. From this point of view, neoantigen vaccine will be helpful in target
therapy for treatment evaluation in precision medicine.

5. Conclusions

The present study leveraged radiomic features based on imaging habitats and signa-
tures of the heterogeneous GBM tumor tissue parts and created a volumetric radiomic-based
model for the semiautomatic annotation of GBM using MRI, ground truth, and machine
learning. Volumetric features were significantly associated with various sets of tumor
phenotype features and biological processes. In this perspective, non-invasive biomarkers
can reflect underlying tumors’ habitats and signatures to provide quantitative information
to lead therapy for guiding personalized disease diagnosis, treatment evaluation, and
prognostic prediction in precision medicine.
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