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Simple Summary: Epigenetics encompasses all the modifications that occur within cells that are
independent of gene mutations. The environment is the main influencer of these alterations. It
is well known that a proinflammatory environment can promote and sustain the carcinogenic
process and that this environment induces epigenetic alterations. In this review, we will report
how a proinflammatory microenvironment that encircles the tumor core can be responsible for the
induction of epigenetic drift.

Abstract: Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that
occur within cells that are independent of gene mutations. These alterations are highly influenced
by the environment, from the environment that surrounds the human being to the internal microen-
vironments located within tissues and cells. The ways that pigenetic modifications promote the
initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that
carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review,
we introduce our report of a proinflammatory microenvironment that encircles the tumor core but
can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their
epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore,
an in-depth understanding of the epigenetic networks between the tumor microenvironment and
cancer cells might highlight new targetable mechanisms that could prevent tumor progression.

Keywords: epigenetics; carcinogenesis; inflammation; tumor microenvironment

1. Introduction: The Complexity of Carcinogenesis

Carcinogenesis is a complex multistep process that leads to the onset of tumors in
normal tissue in vivo. Indeed, normal cells can become transformed by accumulating
several gene mutations. This carcinogenic process can be divided into three different
parts: initiation, promotion, and progression. Carcinogenesis is usually initiated by the
progressive accumulation of sporadic mutations that normally accumulate during the
lifespan of a cell. Most of these mutations are supposed to have no relevant role in tumor
illness and can also be found in normal tissues. However, a limited number of mutations,
called “driver” mutations, confer a growth advantage to the cell, which in turn, through a
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modest but significant increase in the replication rate, can further prompt the appearance
of other driver mutations, leading to cancer promotion. This process can require years, or
decades, to originate a primitive tumor. Generally, mutations in the metastatic cancer are not
particularly different from those of the primitive tumor, raising the problem of which genetic
alteration can support the metastatic phenotype. In addition, somatic driver mutations
affect a very limited number of genes and intracellular pathways [1]. These findings,
together with the increasing consciousness that DNA expression and cellular phenotype
are regulated by other factors in addition to gene sequence, prompted the exploration
of other mechanisms that could induce cancer onset, such as epigenetic regulation. In
contrast to gene mutation, most epigenetic regulation modifies gene expression without
permanent changes in the genomic sequence. More importantly, epigenetic modulation is
reversible and faster regulated than the establishment of gene mutation, namely genomic
evolution [2]. Substantially, epigenetics controls the interactions among DNA, RNA, and
the nucleosome with modifying proteins and without inducing gene mutations. One
of the possible epigenetic controls is the modulation of transcription factors by limiting
their accessibility to the DNA filament and determining which genes will be expressed.
The other main epigenetic events are DNA and RNA methylation–demethylation and
chromatin remodeling by histone acetylation–deacetylation. Because epigenetic modulation
is centered on reversible interactions with different structures, it is also modifiable by
environmental influences, aging, and drugs. This aspect is of particular interest because,
although DNA alterations are not amenable to pharmacotherapy, there is a growing number
of small molecules that can be used as epigenomic drugs for anticancer purposes and
that are less toxic than traditional chemotherapy [3,4]. In fact, promising results have
been recently reported on the combined use of DNA methylation inhibitors and histone
deacetylase inhibitors in clinical trials [5]. The influence of the surrounding environment
in determining the epigenome of a cancer cell once more highlights the importance of the
tumor microenvironment (TME) in defining the initiation and progression of tumor growth.
The TME consists of a supporting structure and cells that surround the tumor foci, creating
a niche that can either foster or suppress tumor growth. In the TME, inflammatory cells
play a pivotal role by releasing different stromal factors, such as chemokines and cytokines,
which modulate carcinogenesis. Therefore, it is not surprising that the crosstalk between
the TME and cancer cells is strictly mediated by epigenetic modifications [6]. In this review,
we will focus on describing how epigenetic modifications regulating inflammation are able
to influence cancer onset and progression.

2. Overview of Epigenetic Modifications

The mechanisms determining epigenetic modifications can be divided into four groups:
DNA methylation, RNA methylation, histone posttranslational modifications, and the
broad family of epigenetic regulators constituted by noncoding RNAs (ncRNAs) (Figure 1).

2.1. DNA Methylation

Epigenetic regulation can act at different levels in the flux of information from DNA to
the cellular periphery. At the first level of transcriptional control, we find DNA methylation.
DNA methylation occurs directly at the DNA level and allows a reduction in DNA tran-
scription without affecting its gene sequence [7]. DNA methylation implies the covalent
modification of a nucleotide and, in mammals, typically but not exclusively involves the
methylation of cytosine at position 5 of the pyrimidine ring (5mC) [8]. Interestingly, 5mC is
preferentially located in CpG dinucleotides, and is normally concentrated in large clusters
named CpG islands, of which there are reported to be approximately 29 million in the
human genome, 70–80% of which are methylated in somatic cells [9]. Non-CpG methyla-
tion occurs more frequently in human embryonic or induced pluripotent stem cells [10].
As a general rule, DNA methylation behaves as a negative regulator, reducing promoter
accessibility and, consequently, the transcription of downstream genes [11]. DNA hy-
pomethylation shows a clear, positive correlation with higher transcriptional activity. While
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the methylation of a promoter correlates with transcriptional repression, it has been shown
that methylation on the coding gene body is related to an increase in gene expression [12].
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Figure 1. Overview of epigenetic modifications. Schematic representation of the four major epige-
netic modifications, DNA methylation, histone modifications, RNA methylation, and miRNAs, as 
part of the broad family of noncoding RNAs (ncRNAs). Me: methylation; Ac: acetylation, Lct: lac-
tylation. Created with BioRender.com. 
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Figure 1. Overview of epigenetic modifications. Schematic representation of the four major epigenetic
modifications, DNA methylation, histone modifications, RNA methylation, and miRNAs, as part of
the broad family of noncoding RNAs (ncRNAs). Me: methylation; Ac: acetylation, Lct: lactylation.
Created with BioRender.com.

The proteins involved in DNA methylation can be grouped into three main categories,
which cover and ensure all the aspects of this regulatory process. These groups involve
(i) DNA methyl transferases (DNMTs), often called the “writers”, which ensure de novo
methylation (such as DNMT3A and DNMT3B) or its maintenance over time and during
DNA replication (such as DNMT1); (ii) a broad set of proteins involved in 5mC recognition
termed the “readers” (such as methyl-CpG binding protein 2 (MECP 2), methyl-CpG bind-
ing domain protein (MBD) 1–6, the Kaiso family, and ubiquitin-like proteins (UHRF1 and
UHRF2)), which can recognize the methylation mark and can be recruited at the chromatin
level mediating the silencing of the target gene; and (iii) several DNA demethylases (such
as ten-eleven translocation (TET) enzymes) that are involved in the process of the removal
of the methyl group, called the “erasers” [13]. As far as tumorigenesis is concerned, there
are two types of changes in DNA methylation that can occur: first, the demethylation of
oncogene promoters, and second, the de novo methylation of selected CpG islands [14].
Accordingly, several types of cancer present wide demethylation zones, while others, such
as gliomas, cholangiocarcinomas and lymphomas, are characterized by mutations in the
isocitrate dehydrogenase (IDH) genes, which induce hypermethylation [15]. Interestingly,
de novo methylation of CpG islands is a widespread programmed process mediated by
polycomb-targeting complexes, a group of epigenetic repressors that operates by recruiting
the de novo methylases DNMT3A and DNMT3B in tumors [16–18]. Notably, the DNA
methylation pattern is continuously reformed throughout human life based on the crosstalk
between DNMT and TET. This indicates that DNA methylation is a dynamic activity and is
therefore susceptible to environmental influences, such as nutrient availability, physical
effort, illnesses, and interactions with drugs. Moreover, during aging, this fine-tuned
mechanism becomes progressively unbalanced, suggesting that aging cells could represent
a favorable environment, which, if hit by protumoral mutations, can more easily move
toward carcinogenesis [19]. For example, abnormal hypermethylation of the MutL homo-
logus 1 (MLH1) promoter, a gene involved in hereditary nonpolyposis colorectal cancer
has been related to gene silencing and microsatellite instability, which in turn could initiate
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genetic instability in colorectal and endometrial cancers [20–23]. Interestingly, most large
bowel adenocarcinomas with MLH1 methylation display widespread methylation of the
promoter of several genes, the so-called CIMP phenotype, and the BRAF-V600E mutation.
The CIMP phenotype has been described in several tumor types; however, its molecular
bases are poorly defined [24].

2.2. RNA Methylation

In addition to DNA, RNA also represents an effective target for epigenetic regu-
lation via both methylation and ncRNA interference. RNA methylation occurs at N6-
methyladenosine (m6A) and has been reported to affect the complexity of cancer progres-
sion by regulating RNA processing, nuclear export, and RNA translation. Moreover, m6A
modification also occurs on ncRNAs, indicating that it controls RNA functions both directly
and indirectly [25]. For DNA methylation, m6A modifications are also reversible and
dynamic. Correspondingly, the major players can be categorized into (i) writers, such as
different methyltransferase-like proteins (METTL3, METTL 14, METTL16), RNA binding
motif protein (RMB) 15/15B, and others; (ii) readers, such as YT521-B homology (YTH)
domain-containing proteins, eukaryotic initiation factor 3 (eIF3), and heterogenous nuclear
ribonucleoprotein (HNRNP) protein family members; and (iii) erasers, such as alkylation
repair homolog 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) [6,26–28].
An increasing number of studies have shown that aberrant m6A modifications are closely
associated with different types of cancer, such as glioblastoma, cervical and endometrial
cancer, hepatocellular carcinoma, acute myeloid leukemia, breast cancer, pancreatic cancer,
and prostate cancer (fully reviewed in [29]).

2.3. Histone Posttranslational Modifications

As previously described, DNA methylation acts directly on DNA, while histone
modification implies the chemical variation of the proteins that form the nucleosome,
determining whether and when specific genes will be transcribed or silenced.

Histone proteins are the targets of a broad set of chemical modifications, including
acetylation, methylation, phosphorylation, ubiquitination, ADP-ribosylation, citrullination,
SUMOylation, and others. All these modifications are reversible and, together with the
presence of different histone isoforms, permit the existence of a broad and only partially
clarified panel of different spatial chromatin rearrangements [30]. As a whole, these histone
modifications constitute a truly complex chromatin-based signaling system, often referred
to as histone code. This is based on changes in the charge, density, and hydrophobicity of
the strands, which induce a conformational shift in the protein structure and permit the
docking of specific regulatory proteins [31].

Among these modifications, the most studied is histone acetylation, which acts on the
charge of the lysine residues. On the one hand, histones typically have a cumulative posi-
tive charge, which allows a strong interaction with the negatively charged DNA strand. On
the other hand, acetylation occurs at the N-terminal extremity of the proteins, neutralizes
the lysine charge, and reduces the histone-DNA interaction. Acetylation represents a steady
state between the action of histone acetyltransferases (HATs), which transfer an acetyl
group from acetyl-CoA onto lysine to form ε-N-acetyl lysine and histone deacetylases
(HDACs), which remove this acetyl group. HATs are represented by many proteins, often
presenting a bromodomain, which display their activity directly on histones packaged into
the nucleosomes or previously in the cytoplasm on unassembled histones. Primarily, HATs
target histones H3 and H4; however, H2A and B can also be acetylated on several lysine
residues [32]. The classic HAT p300 has been found to be mutated in several cancers [33],
and in a similar way, PCAF, a p300/CREB binding protein (CBP)-associated factor, is nega-
tively associated with lung or gastric cancer [34,35]. Consistently, general hypoacetylation
occurs during carcinogenesis, together with altered acetylation patterns, such as for histone
H4K16 or other residues [36–38]. Consequently, many HDAC inhibitors (HDACis), also
defined as epidrugs, have been used in cancer therapy, as reviewed elsewhere [39].
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Another important histone modification is methylation, which can occur on all histone
proteins on the nitrogen atoms of different lysine (K) or arginine (R) residues. In addition,
each residue, be it methylated, trimethylated, acetylated, or modified in a different way,
admits the docking of several reader proteins involved in the packaging or unpackaging of
chromatin. These processes can involve different portions of the DNA filament, influencing
the accessibility of the gene sequence and of gene promoters or enhancers [40]. This activity,
together with proper DNA methylation, contributes to determining cell identity and tissue
enrollment [41] and their maintenance over time. Moreover, the DNA sequence and its
methylation status act as factors regulating nucleosome occupancy. In fact, repetitive DNA
regions enriched in methylated CpG islands have been reported to strongly affect inter-
action with the octamer, while unmethylated CpG islands or unmethylated transcription
binding sites show the lowest occupancy levels [42]. Inactivated regions appear to be
characterized by polycomb protein attachment [43,44]. In particular, enhancer of Zeste ho-
molog 2 (EZH2) is a histone methyltransferase member of polycomb repressive complex 2
(PRC2), which normally methylates lysine 27 of histone H3 (H3K27) [45]. For this reason,
its activity keeps the chromatin in a repressed state throughout the cell cycle and, together
with the methylation of lysine 9 of histone 3 (H3K9) and of other laminin-associated factors,
helps to transmit cell identity and tissue commitment to daughter cells. Therefore, it is not
surprising that mutations in this enzyme are frequent in cancer [45]. Consistently, EZH2
is frequently mutated in B cell lymphoma and melanoma [46]. EZH2 somatic mutations
induce hypermethylation activity on H3K27, followed by the depletion of other critical
genes, leading B cells to remain in a permanent proliferative state [47].

Last, the ATP-dependent remodeling of nucleosome position is led by switch–sucrose
non-fermentable (SWI–SNF) complexes, which are a large protein family of ATP-dependent
chromatin remodeling complexes. This family has been regarded as having tumor suppres-
sor activity and was found to be frequently mutated in several malignancies, including
chronic and acute leukemia, lymphomas, rhabdoid tumors, and ovarian cancers [48]. In
particular, AT-rich interactive domain-containing protein 1A (ARID1A), a member of the
SWI-SNF family, was found to be mutated in gastric and pancreatic cancers and is related
to breast cancer metastasis and indicative of trastuzumab resistance [49,50].

Histone lactylation is a recently studied posttranslational modification [51]. Zhang et al.
found that lactic acid, already known to promote gene expression and histone acetyla-
tion [52], can directly tag lysine residues on H3, H4, H2A, and H2B histones. Histone
lactylation also occurs in lung tumors and melanoma cells. Moreover, exogenous lactate
decreases the HDAC content in the nucleus, HDAC activity, and chromatin methyla-
tion [52,53]. HDAC inhibition occurs at IC50 values which are not only lower than those
of other pharmacological inhibitors, but also higher than reported intracellular physio-
logical lactate concentrations. Collectively, these data suggest that lactate can potentially
transduce the modifications induced by hypoxia and glucose fermentative metabolism that
normally occur in the tumoral environment at the chromatin level. Further studies are
needed to precisely define the exact role of lactate as an epigenetic factor in cancer onset
and progression.

Altogether, the acquisition of a permissive chromatin arrangement not only predis-
poses cells to carcinogenesis, but also transmits them after replication to the succeeding
generations, creating a cell clone with higher replication potential. Thus, inside the tumor
mass, epigenetic plasticity can contribute to creating intratumor heterogeneity, which rep-
resents a valuable tool to address the variability of environmental conditions due to tumor
spreading among different tissues in distant organs or during the selective conditions
imposed by medical treatments.

2.4. Noncoding RNA: Focus on microRNA

Another level of epigenetic regulation acts directly on transcriptional activity and
involves a different category of molecules, i.e., the broad class of ncRNAs. It has been
estimated that only 1–2% of RNA is messenger RNA and can codify for proteins, while the
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remaining part consists of ncRNA. The class of ncRNA gathers several different types of
RNA, such as housekeeping RNA with structural and well-characterized functions. For
example, ribosomal or transfer RNA, and many different ncRNAs, present to a minor extent
with a not completely clarified regulatory role. This latter group could be further divided
according to size into small ncRNAs (sncRNAs, <200 nt) and long ncRNAs (lncRNAs,
>200 nt) [54]. The best characterized sncRNA is miRNA, a highly conserved single-stranded
RNA with ~20 nucleotides.

miRNAs play a relevant role in cancer pathogenesis through two outstanding aspects
of their activity: on the one hand, the ability to control the synthesis of almost all cellular
proteins, and on the other hand, the deep interdependence with the other epigenetic control
mechanisms. These aspects, together with their numerosity, create a complicated network
of reciprocal influences, where all the components regulate each other, and the perturbation
of one or more elements often leads to some strongly dysregulated patterns. For instance,
miR-15/16 are interesting examples of these interrelationships. In fact, they are listed
among tumor suppressive miRNAs and are downregulated in several tumors, including
chronic lymphocytic leukemia (CLL); multiple myeloma; prostate, colon, lung, and ovarian
cancers; and other tumors. In CLL, miR-15/16 downregulation is due to miRNA deletion
at 13q14, which occurs with high incidence in this cancer [55]. miR-15/16 deletion leads
to the overexpression of several target genes depending on the specific tissue, including
the anti-apoptotic factor B cell lymphoma 2 (BCL2) in CLL [56]; the cyclooxygenase-2
(COX-2) gene in colon cancer [57]; cyclin D1, the proto-oncogene protein WNT3, in prostate
cancer [58]; VEGFa in multiple myeloma; and genes, such as C-MYC and ALK in other
tumors [59,60]. The activity of miR-15/16 can mediate the action of P53, which in turn
can both transcriptionally and posttranscriptionally control miRNAs, such as miR-34 and
miR-200 [61]. Accordingly, P53 mutations, which are highly represented in a wide variety
of cancers, lead to the downregulation of several miRNA families followed by an increase
in the expression and activity of their target oncogenes. In particular, miR-34 controls BCL2,
NOTCH, and the high mobility group AT-Hook 2 (HMGA2) in gastric cancer and MYC and
MET in ovarian cancer [62,63], while miR-200 controls zinc finger E-box binding homeobox
(ZEB)1, BM1, CNNB1, FN1, LEPR, and NTRK2, and inhibits cellular growth and metastasis
in several cancers, including nasopharyngeal, pancreatic, and breast cancer [64,65].

Similar to mutated P53, several other oncogenes exert part of their action, dysregu-
lating the balance of the miRNA network, by downregulating tumor suppressive miRNA.
As an example, MYC is a well-known transcription factor with oncogenic activity that
regulates the transcription of a broad number of miRNAs, downregulating miR-15a/16-1,
miR-26a, miR-34, and let-7 family members, and consequently reducing their proapoptotic
and antiproliferative effects [66]. Interestingly, the miRNA let-7 family is responsible for the
ablation of MYC in Burkitt lymphoma, thus inhibiting cancer cell progression, while it tar-
gets interleukin (IL)-6 in breast cancer, the transcription factor E2F2 in prostate cancer, and
the anti-apoptotic BCL, namely, BCL-XL in the liver [67]. Similarly, in Kirsten rat sarcoma
(RAS) mutant pancreatic cancers, the RAS oncogene binds, through its RAS-responsive
element-binding (RREB1), the promoter of the miR-143/145 family, which normally act as
repressors of the same RAS and RREB1 transcription factors. Therefore, by inhibiting its
inhibitors, mutated RAS strongly potentiates its own oncogenic activities [68]. The same
mechanism of reciprocal inhibition occurs between the ZEB1 and miR-200 family; thus, by
blocking miRNA translation, the ZEB1 and ZEB2 proteins can upregulate their expression
in several cancers [69].

In addition to mutated transcription factors, several epigenetic mechanisms can alter
the normal balance of miRNA in cancer. First, variation in DNA methylation strongly
affects the miRNA network. For example, the loci of the miR-34, miR-124, and miR200
families are hypermethylated and epigenetically silenced in a vast number of different
tumors [70–72]. According to the positive feedback model already seen in other dysregu-
lated scenarios, many miRNAs include among their targets the mRNA for methylases or
demethylases. This scenario can change the methylation status of numerous different gene
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loci, leading to the repression of tumor suppressors, the enhancement of oncogenes, and
disequilibria in miRNA production, with a strong multiplicative effect on the dysregulation
of cell activities.

3. Inflammation-Mediated Epigenetic Modifications: A Focus on Cancer Cells

The association between inflammation and cancer was first established in 1863, when
Virchow postulated the tendency of cancers to develop at sites of chronic inflammation [73].
Over the years, several studies have supported the relationship between inflammation and
cancer initiation and progression [74–76]. It is important to emphasize that, in tumorigenic
processes, inflammation is a double-edged sword. Initially, inflammation is fundamental
to suppress carcinogenesis, since immune cells recognize and eliminate abnormal cells;
however, in the case of chronic stimuli, such as pathogen infections, inflammation can
become detrimental, increasing the chance of developing carcinogenic, genetic, and epige-
netic modifications within normal cells. Moreover, sustained inflammation promotes tumor
progression. In fact, cancer cells activate positive loops with immune cells to maintain their
inflammatory niche. In chronic inflammation-induced carcinogenesis, infections have been
etiologically linked to several cancers; indeed, inflammation plays a decisive role in human
papillomavirus (HPV)-induced cervical cancer and Epstein–Barr virus (EBV)-induced na-
sopharyngeal carcinoma [77–79]. Similarly, Helicobacter pylori (HP) infection causes chronic
inflammation of the gastric mucosa, leading to gastric carcinoma [80,81]. Notably, the
inflammatory process itself regulates different epigenetic mechanisms, generating a pos-
itive feedback loop that promotes carcinogenesis (Figure 2). In a gerbil model of gastric
cancer, it has been reported that the expression levels of several inflammation-related
genes, including C-X-C motif chemokine ligand (CXCL)-2, IL-1β, nitric oxide synthase 2
(NOS2), and tumor necrosis factor α (TNF-α), display a correlation with their methylation
levels. Accordingly, the suppression of inflammation with the immunosuppressive drug
cyclosporin A in HP-infected gastric mucosa cells showed a block of altered DNA methyla-
tion, indicating that the infection-associated inflammatory response induces alterations in
DNA methylation [82]. In fact, infections, and more generally chronic inflammation, have
been reported to play a role in approximately 25% of all cancers, including breast, colon,
prostate, liver, and gastric carcinoma [80,83–87].

Although inflammation has been largely related to infections, it can also be promoted
by exposure to various substances, such as inhalable fibers, chemicals, dust, and particulate
matter. These substances promote the inflammatory process, acting as proinflammatory
factors and connecting inflammation to carcinogenicity. For instance, asbestos fiber inhala-
tion, which leads to chronic inflammation, is crucial for the development of malignant
mesothelioma [88]. Accordingly, the lungs are highly influenced by lifestyle-induced
inflammation, as in smokers, where profound epigenetic changes, including DNA methy-
lation, deregulated histone acetylation, altered gene expression levels, and microRNA
profiles, are the basis of a predisposition to the development lung tumors. In particular, in a
nicotine-addicted mouse model, inflammation-driven changes in cytosine methylation and
hydroxymethylation patterns resulted in an imbalance of DNA methylation–demethylation
dynamics, which in turn gave rise to a shift in histone acetylation contributing to the
initiation of lung cancer [89].

In addition to the inflammation-induced epigenetic alterations at the primary tumor
site, an evident link between inflammatory pathways and epigenetic mechanisms also exists
in the regulation of the metastatic process (Figure 2). Indeed, chronic inflammation not only
triggers cancer development but also facilitates tumor progression. For instance, in non-
small-cell lung cancer (NSCLC), IL-1β-induced epithelial–mesenchymal transition (EMT)
promotes SLUG-dependent epigenetic modifications of the E-cadherin and CDH1 promot-
ers. Notably, upon acute IL-1β exposure, upregulated SLUG, a zinc-finger transcription
factor, reduces activating histone modifications, such as H3K4 trimethylation (H3K4Me3)
and H3K9 acetylation, and enriches repressive H3K27 trimethylation (H3K27Me3). In
the continuous presence of IL-1β, SLUG accumulation leads to further enrichment of
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H3K27Me3 and de novo H3K9Me2/3, contributing to memorized E-cadherin suppression
in EMT memory [90]. The chemical inhibition of DNA methylation, as well as the restora-
tion of E-cadherin expression in EMT memory, also leads cells to chemotherapy-induced
apoptosis. This evidence highlights the role of IL-1β-regulated chronic inflammation as
a central component in carcinogenesis and metastasis, suggesting that the inhibition of
this pathway may contribute to both the prevention and treatment of NSCLC. Interest-
ingly, in mouse models of NSCLC, it has been reported that a combination of DNMT
inhibitors (DNMTis) with HDACis, defined also as epidrugs, reverses tumor immune
evasion and addresses T cells toward memory and effector T cell phenotypes. Thus, the
inhibition of DNMT and HDAC represents a promising approach for enhancing cancer
immunotherapy [91].
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Figure 2. Role of inflammatory-driven epigenetic alterations in cancer initiation and progression.
Chronic exposure to proinflammatory environmental factors, such as inhalable fibers, particulate
matter, smoke, pathogens, or chemicals, promotes epigenetic alterations that trigger cancer devel-
opment. At the same time, proinflammatory signals, such as miRNAs, ROS, and cytokines, are
released by tumor cells within the tumor microenvironment and are responsible for tumor progres-
sion and metastasis. ROS: reactive oxygen species; Me: methylation; Ac: acetylation. Created with
BioRender.com.

A further example is breast cancer, where a proinflammatory microenvironment at
the distant metastatic site, particularly enriched in IL-6 and prostaglandin E2 (PGE2),
promotes DNMT3B induction, thus altering the methylation of multiple pathways involved
in cancer cell survival, apoptosis, and invasion, including signal transducer and activator
of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells
(NFκB), PI3K/Akt, b-catenin, and Notch signaling. Hence, targeting IL-6 or PGE2 reduced
DNMT3B induction and enhanced the efficacy of programmed cell death protein 1 (PD-1)
immunotherapy in preclinical mouse models of breast cancer metastasis [92]. In addition,
PGE2-induced DNMT3B expression and, thus, altered DNA methylation was also reported
in gastric cancer, and the combined inhibition of COX-2 and DNMT inhibited gastric cancer
growth both in vitro and in vivo [93]. Furthermore, DNMT3B activity has a pivotal role
in IL-6-mediated octamer-binding transcription factor 4 (OCT4) expression in sorafenib-
resistant hepatocellular carcinoma (HCC), highlighting DNMT3B as a putative therapeutic
target for patients expressing cancer stemness properties or sorafenib resistance in HCC [94].
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Importantly, elevated IL-1β and IL-6 levels have been found in the serum of patients with
pancreatic cancer, a cancer type that strictly relies on the inflammatory process [95].

Among the inflammation-induced epigenetic modifications in cancer-related contexts,
inflammation-induced miRNA alterations are being discovered. Indeed, during inflam-
mation, the expression pattern of miRNAs is rearranged, suggesting a prominent role of
extracellular miRNAs in cancer cell transcriptome reprogramming [96]. For instance, in
colon cancer, high activation levels of IL-1β/NF-κB have been reported to induce the expres-
sion of miR-181a, thus promoting cell proliferation by repressing phosphatase and tensin
homolog (PTEN) [97]. Similarly, in gastric cancer, the IL-1β/NF-κB axis has been demon-
strated to upregulate the expression of miR-425, which can promote the growth of gastric
cancer cells by negatively regulating PTEN [98]. The downregulation of microphthalmia-
associated transcription factor (MITF-M) through IL-1β-induced miR-155 in melanoma
cells could represent a mechanism of melanoma immune escape in an inflammatory mi-
croenvironment [99]. In addition to the upregulation of several miRNAs by IL-1β, the
release of this cytokine has also been associated with the downregulation of miR-101. This
event in the Xuan Wei lung cancer cell line increased the expression of EZH2, conferring
cell proliferation and metastasizing characteristics [100]. Consistent with this result, in
NSCLC cells, it has been shown that IL-1β upregulates Lin28B by downregulating miR-101,
thus affecting cell proliferation and migration [101]. It has been reported that, in human
colorectal cancer (CRC) cells, IL-6, another proinflammatory cytokine, activates the STAT3
transcription factor by directly repressing miR34A, leading to IL-6-induced EMT and in-
vasion [102]. In prostate cancer cell lines, such as PC-3 and LNCaP, IL-6 administration
results in the induction of miR-21, which in turn is responsible for the downregulation of
the tumor suppressor programmed cell death 4 (PDCD4) [103].

All these findings support the central role of inflammation-induced epigenetic alter-
ations in the initiation, progression, and metastasis of human cancers. Since epigenetic
inheritance is reversible, its modulation may represent a valid alternative to prevent or
treat cancers.

4. Inflammation-Mediated Epigenetic Modifications: A Focus on the Tumor
Microenvironment

As mentioned above, carcinogenesis is a complex mechanism that finds its roots in
the tumoral drift of specific cells supported both by genetic and/or epigenetic alterations
and by a predisposed microenvironment. Specifically, epigenetic modifications also act in
the TME, especially in the regulation of the immune system in the tumorigenic process.
The TME consists of extracellular matrix enriched in stromal and immune cells within a
continuous network of cytokines and chemokines. This scenario is susceptible to epigenetic
reprogramming, resulting in the modulation of the immune response and changes in the
stromal compartment (Figure 3) [6].

Starting from the cellular level, it is well known that, to escape from T cell-regulated
immune surveillance, carcinogenesis needs an immune-suppressive environment. Briefly,
T cells can be divided into two main groups: CD4+ T cells, which are highly versatile
and polyfunctional, and CD8+ cytotoxic T lymphocytes (CTLs). Notably, CD4+ T cells
are characterized by their ability to sense the surrounding environment and differentiate
into several diverse functional subtypes in response to detected signals, becoming central
coordinators of the immune response. By secreting different tumoricidal cytokines, such as
interferon-γ (IFNγ) and TNFα, CD4+ T cells, also named CD4+ helper (Thelpers), support
CTLs in the disruption of primary tumor cells [104]. On the other hand, CD4+ regulatory
T cells (Tregs), which are characterized by their immune-suppressive activity and by the
expression of the transcription factor forkhead box P3 (FOXP3), play a pivotal role in
promoting tumor progression by suppressing effective antitumor immunity [105,106].
Interestingly, FOXP3 is stabilized by epigenetic modification at the Foxp3 locus [107]. In
particular, DNA demethylation of CpG motifs within this locus appears to be a crucial
mechanism for the development of the stable CD4+ Treg lineage [108]. The expression
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of FOXP3 defines two major subsets of Tregs: thymus-derived natural Tregs (nTregs) that
express FOXP3 constitutively and peripherally induced Tregs (iTregs) in which FOXP3
expression is unstable [107]. Notably, the plasticity of iTregs to go from conventional Thelpers
to Tregs, and vice versa, has been ascribed to epigenetic modifications based on the presence
of transforming growth factor β (TGF-β) [109–111]. In fact, conversely to Tregs, Thelpers are
involved in antitumoral responses together with tumor-specific CTLs; therefore, TGF-β
is, at least in part, responsible for the modulation of the inflammatory response in the
TME [112–115]. Notably, TGF-β is a pleiotropic cytokine involved in both suppressive and
proinflammatory immune responses. Briefly, on the one hand, TGF-β inhibits immune
responses by suppressing the functions of type 1 and type 2 Thelpers and natural killer cells
and by promoting the generation of Tregs. However, in combination with IL-6, TGF-β
promotes immune responses by inducing the generation of type 17 Thelpers [116–119].
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Figure 3. Role of inflammatory-driven epigenetic alterations in the TME. In the early stages of
tumorigenesis, immune cells drive an antitumoral response. Within the TME, there is a continuous
network of cytokines and chemokines that modulates both the recruitment and the activity of immune
cells. In fact, proinflammatory stimuli (such as LPS) drive epigenetic modifications within immune
cells, thus prompting tumor growth. Me: methylation; Ac: acetylation. Created with BioRender.com.

Epigenetic mechanisms involving DNA methylation have also been reported to be
fundamental for CTL differentiation. Specifically, it was reported that the shift from the
methylation to the demethylation state of biologically relevant gene promoters is required
for the transition from naïve CTLs into effector cells, thus endowed with antitumoral
effects [120]. In this regard, the transition between naïve and activated immune cells is
regulated by different checkpoint proteins that are expressed both on the surface of T cells
and of target cells, such as cancer cells. These immune checkpoints can be regulated by
changes in the DNA methylation pattern and enrichment of methylated histone marks
in the promoter regions induced by the TME [121]. The most studied and characterized
are cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), PD-1, lymphocyte-activation
gene 3 (LAG-3), T cell immunoglobulin and mucin domain 3 (TIM3), B- and T-lymphocyte
attenuator (BTLA), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) [122]. For
instance, it has been described that, in breast and colorectal cancer, PD-1, CTLA-4, TIM3,
and TIGIT are hypomethylated both at the DNA level and in the histones of their promoters
compared to healthy tissue [123,124].
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Likewise, macrophage activation is also regulated epigenetically. For instance, HDAC3
was reported to be crucial in activating the inflammatory gene expression program in
lipopolysaccharide (LPS)-stimulated macrophages [125]. Additionally, an enzyme belong-
ing to the TET family of enzymes, namely TET2, specifically represses the transcription
of IL-6 by recruiting HDAC2 and resolving inflammation [126]. Another study investi-
gated the contribution of DNMT3B to macrophage polarization and inflammation and
showed that it regulates the methylation of the peroxisome proliferator-activated recep-
tor (PPAR)γ1 promoter, a critical regulator of alternative macrophage activation. Briefly,
DNMT3B knockdown stimulates macrophage polarization to an alternatively activated M2
(anti-inflammatory) phenotype, thus correlating DNMT3B activity in macrophages with
lower inflammation. Accordingly, DNMT3B overexpression revealed its important role as
a negative regulator of M2 macrophage polarization, confirming the important role of the
methylation state in the modulation of the inflammatory response [127]. In addition, Zhang
et al. [51] showed a positive correlation between ARG1 expression and histone lactylation
in tumor-associated macrophages (TAMs) isolated from melanoma and lung tumor cells
and suggested, as previously proposed by Colegio et al. [128], that lactate can regulate
TAM polarization toward an M2-like phenotype and, consequentially, have an important
role in tumor growth.

Cytokines and chemokines are critical key points for the correct communication
between different immune cells and for their recruitment to the TME, and their promoters
are often epigenetically regulated.

For instance, the 5′ region of the IL-4 locus is specifically demethylated during
type 2 Thelper differentiation, promoting high levels of cytokine production [129]. Ac-
cordingly, different studies supported that IL-4 production is epigenetically regulated by
DNMTs and HDACs [130,131]. Similarly, 5-azacytidine (5-AZA), a DNMT inhibitor, is
able to induce the production of IFNγ by type 2 Thelper murine cells, which are unable to
secrete this cytokine under normal conditions [132]. Furthermore, the absence of DNMT1
increases the expression of other cytokines, particularly IL-4, IL-5, IL-10, and IL-13, in
CTLs [133]. However, these latter cytokines, together with other chemokines, are epigeneti-
cally suppressed in many cancers. As an example, trimethylation at H3K27 represses the
production of CXCL9 and CXCL10 in ovarian cancer, establishing an immune-suppressive
TME [134], while DNMT1 is responsible for the diminution of CXCL12 in osteosarcomas,
resulting in reduced CTL recruitment at the cancer site [135]. These findings indicate how
the use of specific epidrugs might reduce cancer progression by modulating inflammatory
cytokine expression.

In addition to cytokines and chemokines, extracellular vesicles (EVs) have an im-
portant role in mediating communication between different immune cell types within
the TME [136]. EVs are named according to their dimension and, depending on whether
they are of intracellular or cellular origin, they can be defined as exosomes, macrovesicles,
apoptotic vesicles, and oncosomes. EVs contain DNA, mRNA, ncRNAs, reactive oxygen
species (ROS), cytokines, and chemokines, and are directly connected with carcinogenesis.
In fact, their contribution starts with the generation of a protumoral environment and ends
with the coordination of chemoresistance and metastatic processes [137–141]. For instance,
exosomes secreted by ovarian cancer cells induce the production of IL-6, IL-1β, and TNF-α
within monocytes through toll-like receptor (TLR) activation, which in turn activates the
STAT3 pathway in immune cells, supporting the suppression of antitumorigenic inflamma-
tion [142]. Moreover, two closely related miRNAs, miR-146a, and miR-146b, known to be
present in exosomes [143], are important regulators of the immune response. miR-146a/b
are expressed in response to high levels of the inflammatory mediators, i.e., IL-6 and IL-8,
and regulate TLRs and cytokine signaling through a negative feedback loop [144,145]. Inter-
estingly, the administration of mesenchymal stem cell (MSC)-derived exosomes containing
miR-146/b significantly reduced glioma xenograft growth in a rat model of primary brain
tumors [143]. Thus, it is possible to hypothesize that miR146a/b are involved in tumor
growth modulation by decreasing the secretion of inflammatory cytokines. In conclusion,
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epigenetic modifications have a central role in the modulation of inflammation within the
TME and can represent a possible target for the treatment of cancer.

5. Anti-Inflammatory and Epidrug Applications in Cancer Therapy

In the previous paragraphs, we described how different inflammatory stimuli can
lead to epigenetic modifications and how epigenetic alterations in the immune system
result in increased inflammation. Since both of these situations translate into a favorable
tumorigenic environment, the application of drugs targeting one or both of these pathways
has become promising in cancer therapy.

Interestingly, different anti-inflammatory drugs have also been shown to act at the epi-
genetic level. As an example, nonsteroidal anti-inflammatory drug (NSAID) administration
resulted in the suppression of cancer progression through the regulation of HDAC expres-
sion. Particularly, in a mouse model of colitis-associated colon cancer, aspirin promoted a
reduction in H3K27 acetylation in inducible nitric oxide synthase (iNOS), TNF-α, and IL-6
promoters, leading to a dramatic suppression of both mRNAs and proteins [146]. Further-
more, in COX-1-positive ovarian cancer cells, aspirin enhanced the effects of romidepsin, an
HDACi epidrug, through the augmentation of P21 expression, thus potentiating the inhibi-
tion of tumor growth [147]. Further support for the role of NSAIDs in epigenetic-mediated
cancer modulation comes from studies reporting that the prolonged use of ibuprofen also
correlates with a reduction in the risk of developing several cancers [148]. Notably, in vitro
and in vivo studies revealed that ibuprofen diminished cancer cell metastasis, stemness
properties, and cancer cell chemoresistance through a reduction in HDAC and histone
demethylase KDM6A/B expression in a COX2-dependent manner [148]. In A549 lung
cancer cells, MDA-MB-231 breast cancer cells, and HepG2 liver cancer cells, ibuprofen
inhibited inflammation-related stemness genes, including IL-1α, IL-1β, ICAM3, CCL16,
TRAF6, PDE3A, PRTN3, NFκB1, IκBκB, and BCAR1 [148].

At the same time, epidrugs that have been designed for the modulation of epigenetic
mechanisms have shown anti-inflammatory properties. For example, it has been shown that
the combination of the HDACi MS-275 and resveratrol, a sirtuin 1 activator, reduced inflamma-
tion in vivo in ictus models by inhibiting microglia–macrophage activation [149]. Moreover,
the combination of trichostatin A and 5-AZA, an HDACi and a DNMTi, respectively, mitigates
inflammation-induced pyroptosis and apoptosis in acute lung injury by inhibiting the activity
of IL1β, caspase 3, caspase 9, and caspase 11 in bone-marrow-derived macrophages [150].

In recent decades, a new class of epidrugs targeting the bromodomain (BRD) and
extraterminal family (BET), named BET inhibitors (BETis), have been developed for cancer
treatment [151]. Briefly, BET are BRD-containing proteins involved in gene expression
regulation through histone recognition and modification, chromatin remodeling, and
transcriptional machinery regulation [152]. BET performs this regulatory activity by recog-
nizing the e-N-acetylation of lysine residues (Kac) on histone tails [151]. Their inhibitors,
BETis, have been successfully used for the in vitro and in vivo treatment of different cancer
types, such as nuclear protein in testis (NUT) midline carcinomas and hematological ma-
lignancies [151,153]. As an example, recent studies have identified the application of two
BETis, I-BET151 and ABBV-075, which induce apoptosis in MLL-fusion leukemia, acute
myeloid leukemia, non-Hodgkin lymphoma, and multiple myeloma cells [154,155]. Fasci-
natedly, these compounds have strong anti-inflammatory proprieties. The BETi I-BET151
suppresses the expression of TNF-α, IL-1β, and TLR ligands, resulting in a reduction in the
proliferation rate and immune cell recruitment capacity in rheumatoid arthritis synovial
fibroblasts [156]. High-throughput screening revealed that both I-BET151 and Ro 11-1464,
another BETi, upregulate the mRNA expression of the endogenous tumor suppressor pro-
tein CEBPD and suppress IL-6 and CCL2 gene expression in cultured macrophages [157],
reinforcing their anti-inflammatory role.

All these studies further validate the idea that tumorigenesis and inflammation are
linked by epigenetics. Therefore, anti-inflammatory drugs combined with epidrugs repre-
sent a promising strategy in the prevention of cancer progression.
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6. Conclusions

Epigenetic modifications occur in response to environmental changes and play a
fundamental role in gene expression following environmental stimuli. As described, the
inflammatory process plays a key role in the regulation of the initiation and progression
of carcinogenesis. At the same time, carcinogenesis is responsible for the induction of a
protumorigenic process. Interestingly, both these processes can be connected by a com-
mon denominator: they are controlled by epigenetics. Since epigenetic modifications are
reversible and highly influenced by the surrounding environment, it is fundamental to
deeply elucidate how these mechanisms promote the advancement of cancer growth and
diffusion. For instance, many studies have demonstrated how aberrant epigenetic modifi-
cations play a key role in cancer incidence through the generation of specific methylation
patterns [158,159]. Notably, due to their reversible regulation, epigenetic modifications are
a promising target for cancer therapy. Indeed, epidrugs could directly target the alterations
within the tumor core and those occurring in the TME. Moreover, with the advent of
high-throughput epigenome mapping technologies, it will be of priority interest to study
the epigenomic map of patient-derived cancer cells to find a more suitable therapeutic
approach. Finally, it will be important to identify an “inflammatory identity card”, which
will describe both the immune cells and the inflammatory cytokines present within the
TME, allowing the use of patient-tailored synergic therapies.
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