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Simple Summary: The tumor immune contexture plays a pivotal role for the clinical outcome of can-
cer patients and the efficacy of various treatment modalities. Dendritic cells (DCs) represent a major
component of the tumor immune architecture that can either efficiently promote antitumor immunity
or contribute to immunosuppression. Here, we investigated the frequency, spatial organization, and
clinical significance of tumor-infiltrating conventional DCs type 1 (cDC1s) and type 2 (cDC2s) and
plasmacytoid DCs (pDCs) in pancreatic ductal adenocarcinoma (PDAC). A higher frequency of whole
tumor area (WTA)- and tumor stroma (TS)-infiltrating cDC1s, and of intraepithelial tumor-infiltrating
cDC2s, was significantly associated with improved survival. Furthermore, a higher density of both
WTA- and TS-infiltrating cDC1s and pDCs emerged as an independent prognostic factor for better
survival. These results provide evidence that tumor-infiltrating DCs are associated with survival of
PDAC patients and may support the design of novel DC-based immunotherapeutic strategies.

Abstract: Dendritic cells (DCs) play a key role in the orchestration of antitumor immunity. Activated
DCs efficiently enhance antitumor effects mediated by natural killer cells and T lymphocytes. Con-
versely, tolerogenic DCs essentially contribute to an immunosuppressive tumor microenvironment.
Thus, DCs can profoundly influence tumor progression and clinical outcome of tumor patients. To
gain novel insights into the role of human DCs in pancreatic ductal adenocarcinoma (PDAC), we
explored the frequency, spatial organization, and clinical significance of conventional DCs type 1
(cDC1s) and type 2 (cDC2s) and plasmacytoid DCs (pDCs) in primary PDAC tissues. A higher
density of whole tumor area (WTA)- and tumor stroma (TS)-infiltrating cDC1s was significantly
associated with better disease-free survival (DFS). In addition, an increased frequency of intraep-
ithelial tumor-infiltrating cDC2s was linked to better DFS and overall survival (OS). Furthermore,
an increased density of WTA- and TS-infiltrating pDCs tended to improve DFS. Moreover, a higher
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frequency of WTA- and TS-infiltrating cDC1s and pDCs emerged as an independent prognostic factor
for better DFS and OS. These findings indicate that tumor-infiltrating DCs can significantly influence
the clinical outcome of PDAC patients and may contribute to the design of novel treatment options
that target PDAC-infiltrating DCs.

Keywords: pancreatic cancer; dendritic cells; tumor microenvironment; neoadjuvant chemotherapy

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with
a 5-year overall survival (OS) of 10% [1]. This very poor prognosis is caused by late
disease detection, the absence of suitable biomarkers [2], and insufficient efficacy of current
treatment options [3,4]. Despite the success of immunotherapy across solid tumors [5],
the favorable outcome of this treatment modality remains limited in PDAC patients, with
primary resection and chemotherapy still being the current standards of care [3,4,6]. Two
of the main limitations of immunotherapy in PDAC patients are the mechanical barrier
of the tumor surroundings, as well as the presence of immune cell populations with a
predominantly immunosuppressive phenotype [3,7].

Desmoplasia, a characteristic hallmark of PDAC, is one of the major tumor escape
mechanisms caused by activated pancreatic stellate cells (PSCs). These cells are the main
source of fibrosis, which creates the mechanical barrier and, therefore, may hinder immune
cell infiltration and may limit drug delivery. Furthermore, PSC’s proximity to cancer cells
promotes tumor growth, invasion, and metastasis formation [8–10]. Another typical feature
of PDAC is the immunosuppressive tumor microenvironment (TME) that is supported
by PSCs through the secretion of cytokines, such as interleukin (IL)-10 and transforming
growth factor (TGF)-β [9,11], and chemokines that attract regulatory T cells (Tregs) [12]. In
addition, PSCs can produce galectin-1, which limits the cytotoxic properties of CD8+ T cells
and promotes the differentiation of CD4+ T cells toward a T-helper (Th) 2 phenotype [9,11].
For these reasons, the TME of PDAC patients consists mainly of regulatory immune
cells, such as Tregs, tumor-associated macrophages (TAMs) with dominant M2 phenotype,
myeloid-derived suppressor cells (MDSCs), and immunosuppressive cytokines [7,13].

Dendritic cells (DCs) are professional antigen-presenting cells that play a critical role in
the induction and maintenance of antitumor immunity. Due to their functional properties,
DCs may profoundly influence tumor progression and the clinical outcome of cancer
patients. Conventional DCs type 1 (cDC1s) and type 2 (cDC2s), and plasmacytoid DCs
(pDCs) represent major subsets of human blood DCs that have been detected in various
tumor entities. Human cDC1s characteristically express CD141 (BDCA-3), XCR1, and
CLEC9A [14]. They display an extraordinary capacity to cross-present antigens and induce
effective cytotoxic T lymphocyte (CTL) responses. In addition, activated cDC1s can produce
significant amounts of IL-12 that favors the polarization of naïve CD4+ T lymphocytes into
Th1 cells and promotes the cytokine release and cytotoxic capacity of natural killer (NK)
cells [14–17]. When evaluating the potential clinical relevance of cDC1s, it has been reported
that a higher expression of a cDC1-specific gene signature is correlated with favorable
disease-free survival (DFS) of breast cancer patients [18]. Furthermore, higher expressions
of cDC1-associated gene signatures were significantly associated with prolonged OS in
patients with breast cancer, colorectal cancer, head and neck squamous cell carcinoma
(HNSCC), lung adenocarcinoma, skin cutaneous melanoma, and ovarian cancer [19–22].
Moreover, a high frequency of melanoma-infiltrating CD40+ cDC1s predicted improved
OS [23].

Identification of human cDC2s is based on high expression of various molecules,
primarily CD1c and CLEC10A [14]. cDC2s display an extraordinary capacity to present
MHC-II-associated antigens to CD4+ T lymphocytes and to promote the polarization of
naïve CD4+ T cells into Th1, Th2, and Th17 cells. Activated cDC2s secrete large amounts of
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various cytokines, including tumor necrosis factor (TNF)-α, IL-1, IL-6, and IL-12 [24,25].
Higher expression of specific gene signatures for cDC2s was linked to better prognosis of
patients with HNSCC, invasive breast carcinoma, lung adenocarcinoma, and skin cutaneous
metastatic melanoma [20]. Conversely, a higher frequency of tumor-associated cDC2s was
correlated with reduced OS in non-small cell lung cancer [26] and worse progression-free
survival (PFS) of melanoma patients [23].

Human pDCs are mainly characterized by the expression of CD123, CD303 (BDCA-2),
and CD304 (BDCA-4) [14]. pDCs present antigens with lower efficacy in comparison to
cDCs, however, they are main producers of type I interferon upon stimulation. Interestingly,
pDCs can directly kill cancer cells [27–29]. Enhanced expression of pDC-specific genes was
associated with prolonged OS in HNSCC, papillary renal cell carcinoma, and lung adenocar-
cinoma [20]. Moreover, high levels of tumor-infiltrating CD86+ pDCs predicted prolonged
PFS of melanoma patients [23]. More recently, we have shown that a higher density of
tumor-associated pDCs is linked to improved PFS and OS of colon cancer patients [30].
In contrast, an enhanced frequency of tumor-infiltrating pDCs was associated with poor
prognosis in breast cancer, hepatocellular cancer, melanoma, and ovarian cancer [31–34].

Previous studies have mainly explored the frequency of blood-circulating cDCs and
pDCs and their association with clinicopathological characteristics of pancreatic cancer
patients [35–37]. However, little is known about the potential clinical role of distinct PDAC-
infiltrating human DC subsets. Here, we explored the density and spatial organization of
PDAC-associated cDC1s, cDC2s, and pDCs by utilizing multiplex immunohistochemistry
(mIHC). In addition, the frequency of tumor-infiltrating DC subsets was linked to the
clinicopathological characteristics of PDAC patients to gain novel insights into their clinical
relevance. Additionally, we evaluated the influence of neoadjuvant chemotherapy on the
frequency of the PDAC-associated DC subsets.

2. Materials and Methods
2.1. Patient Samples

This is a retrospective study consisting of 58 PDAC patients treated with either neoad-
juvant therapy or primary resection at the Department of Visceral, Thoracic, and Vascular
Surgery of the University Hospital Carl Gustav Carus of Dresden between 2008 and 2015.
This study received the approval of the institutional review board of the Faculty of Medicine
of the TU Dresden (No EK446112017). Patients gave their written informed consent to
participate in the study. Serial sections of formalin-fixed paraffin-embedded (FFPE) tumor
tissues were stained with hematoxylin and eosin (H&E) for histologic assessment by an
experienced pathologist. The clinical stage was determined by utilizing the pathologi-
cal tumor-node-metastasis (pTNM) classification of the Union for International Cancer
Control [38]. Table 1 summarizes the clinicopathological characteristics of PDAC patients.
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Table 1. Clinicopathologic characteristics of pancreatic ductal adenocarcinoma (PDAC) patients.

n = 58
n (%)

Age
Median (Range) 67.14 (47–79)

Gender
Male 30 (52)

Female 28 (48)
pT Stage

1 5 (9)
2 33 (57)
3 20 (34)

pN Stage
0 35 (60)
1 23 (40)

pM Stage
0 58 (100)

UICC Stage
I 8 (14)
II 50 (86)

Neoadjuvant Chemotherapy
Yes 21 (36)
No 37 (64)

Abbreviations: pT: pathological tumor, pN: pathological node, pM: pathological metastasis, UICC: Union for
International Cancer Control.

2.2. Classical Immunohistochemistry

We conducted immunohistochemical stainings of the BDCA-2 molecule to investigate
the presence, localization, and density of pDCs in the PDAC tissues of 58 patients as
described previously [30]. Briefly, the FFPE tissue blocks, sectioned at a thickness of 3–
5 µm, were first deparaffinized, rehydrated, and exposed to heat-induced antigen retrieval.
Once preparation was completed, the samples were incubated with a goat anti-BDCA-2
antibody (1:200, polyclonal, R&D Systems, Minneapolis, MN, USA) overnight at 4 ◦C. A
bridging step, consisting of a 10 min incubation with a mouse anti-goat antibody solution
(Thermo Fisher Scientific, Rockford, IL, USA), preceded the labeling and visualization of
the BDCA-2+ pDCs by using the alkaline phosphatase-based EnVision detection system
(Dako, Glostrup, Denmark). At the end, all tissue slides were counterstained with Mayer’s
hematoxylin (Merck, Darmstadt, Germany) and coverslipped with Aquatex mounting
agent (Merck).

2.3. Multiplex Immunohistochemistry

To determine the presence, localization, and frequency of PDAC-associated cDC1s
and cDC2s, we performed mIHC stainings in 40 tumor specimens. For this, we employed
the Ventana Discovery Ultra Instrument (Roche, Basel, Switzerland) and the Opal mul-
tiplex reagents (Akoya Biosciences, Menlo Park, CA, USA) together with the Vectra 3
automated quantitative pathology imaging system (Akoya Biosciences). As for the classical
immunohistochemical stainings, the samples were firstly prepared by deparaffinization
and heat-mediated antigen retrieval using the cell conditioning 1 solution (Roche). Then,
incubation of a primary antibody and a corresponding secondary antibody (OmniMap
anti-mouse, anti-rabbit, or anti-mouse-HQ, ready-to-use, all from Roche) followed for
32 min and 12 min, respectively. In the case of the anti-mouse-HQ polymer, anti-HQ-HRP
solution (Roche) was applied for another 12 min. After that, incubation with one of the
tyramide signal amplification fluorophores (Opal 520, 540, 620, and 650, all from Akoya
Biosciences) took place for 8 min. Heat treatment followed for 24 min to remove the
primary and secondary antibodies. All these steps (excluding initial preparation) were
repeated for each primary antibody in the panel, namely anti-CD1c (1:50, clone 2F4, Novus
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Biologicals, Littleton, Colorado, USA), anti-CLEC9A (1:100, clone EPR22324, Abcam, Cam-
bridge, UK), anti-CLEC10A (1:75, polyclonal, Human Protein Atlas, Bromma, Sweden), and
anti-PanCK (prediluted, clone AE1/AE3/PCK26, Roche). Finally, spectral DAPI (Akoya
Biosciences) was added to the slides to counterstain the nuclei and a fluoromount medium
(SouthernBiotech, Birmingham, Alabama, USA) was used for coverslipping.

2.4. Quantification of PDAC-Infiltrating cDC1s, cDC2s, and pDCs

All stained sections were whole scanned (×100 magnification) using the Vectra 3
automated quantitative pathology imaging system. The tumor-containing areas were
marked in the PhenochartTM software (Akoya Biosciences), following the delineation
performed by an experienced pathologist in serial H&E slides. Then, a proportion of
25–50% of these tumor-containing regions was scanned (×200 magnification) for all patient
slides for subsequent analysis. For the classical immunohistochemical stainings, positively
stained pDCs were counted using the ImageJ software. These raw counts were used to
determine the mean value, which was then converted into cell density. The analysis of
mIHC stainings was performed using the inForm software (Akoya Biosciences). Following
spectral unmixing, a semi-automatic approach was employed to teach the inForm software
to segment the tissue areas (intraepithelial PanCK+ tumor region, stromal region, and
non-tissue areas), delineate the cells, and phenotype them. For all analyses, we defined
and used the whole tumor area (WTA) as the entire tumor region comprising both the
intraepithelial tumor (IET) area and the tumor stroma (TS) area. Finally, the reliability
of each algorithm was tested on a validation set of MSIs drawn from all patients, before
applying them to the entire cohort.

2.5. Statistical Analysis

Mann–Whitney U test was performed to investigate the difference in DCs density at
different tumor stages and for distinct therapy regimens, while the paired Wilcoxon test
was used to compare DC frequencies between tumor localizations. Kaplan–Meier survival
curves were utilized to visualize the differences in OS and DFS. OS was defined as the time
period between surgery and death. DFS represents the time interval between surgery and
disease recurrence. The patients were stratified into terciles (high, medium, and low infiltra-
tion), and only the high and low groups were compared. The significance was analyzed by
log-rank test. A Cox proportional hazards regression model was implemented to explore
the hazard ratio (HR) of DC infiltration in combination with several clinicopathological
characteristics. Throughout the manuscript, the results are presented as mean value ± the
standard error of the mean. All statistical analyses were performed using the R software,
and values of p ≤ 0.05 were considered significant.

3. Results
3.1. cDC1s, cDC2s, and pDCs Infiltrate PDAC

To evaluate the role of three major human blood DC subsets in PDAC, we investigated
the presence and density of cDC1s, cDC2s, and pDCs in tissue specimens from PDAC
patients with different clinicopathological characteristics (Table 1). The three DC subsets
were detectable in all PDAC samples at varying frequencies (Figure 1A–D).

As depicted in Figure 2A–C, cDC1s were the most abundant DC subset in the WTA
(9.84 ± 1.16 cDC1s/mm2) in comparison to cDC2s (2.98 ± 0.597 cDC2s/mm2) and pDCs
(6.28 ± 0.917 pDCs/mm2). In addition, we observed a significantly higher density of cDC1s
(12.6 ± 1.62 cDC1s/mm2), cDC2s (3.35 ± 0.662 cDC2s/mm2), and pDCs (6.04 ± 0.887
pDCs/mm2) in the TS compared to the IET area (0.679 ± 0.179 cDC1s/mm2, 1.51 ± 0.371
cDC2s/mm2, 0.246 ± 0.0436 pDCs/mm2). These findings provide evidence that cDC1s,
cDC2s, and pDCs are cellular components of the PDAC immune contexture that are
preferentially localized in the TS and may participate in the orchestration of antitumor
immunity.
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Figure 1. Conventional dendritic cells (DCs) type 1 (cDC1s) and type 2 (cDC2s), and plasmacytoid
dendritic cells (pDCs) are cellular components of the pancreatic ductal adenocarcinoma (PDAC)
immune architecture. (A–D) Immunohistochemical stainings were performed to assess the pres-
ence of tumor-infiltrating DCs. (A) Representative multiplex immunohistochemical staining of
PDAC-infiltrating cDC1s (CLEC9A+ cells) and cDC2s (CD1c+CLEC10A+ cells) obtained by utilizing
antibodies against CD1c (red), CLEC9A (yellow), CLEC10 (cyan), and PanCK (gray). Enlarged
depictions of (B) cDC1s and (C) cDC2s. (D) Representative immunohistochemical staining of PDAC-
infiltrating pDCs (BDCA-2+ cells). Original magnification of all images was ×200. Scale bars indicate
50µm.
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Figure 2. Frequency of pancreatic ductal adenocarcinoma (PDAC)-associated conventional dendritic
cells (cDCs) and plasmacytoid dendritic cells (pDCs). Mean densities of PDAC-infiltrating (A)
conventional DCs type 1 (cDC1s) (n = 40), (B) type 2 (cDC2s) (n = 40), and (C) plasmacytoid DCs
(pDCs) (n = 58) were calculated for the whole tumor area (WTA), intraepithelial tumor area (IET),
and tumor stroma (TS). Significance was determined by using paired Wilcoxon test, and p ≤ 0.05 was
considered significant.

3.2. Levels of PDAC-Infiltrating cDCs Correlate with Favorable Pathological Tumor Features and
with Increased Survival of Patients

Next, we evaluated whether the density of tumor-associated cDC1s, cDC2s, and pDCs
correlates with relevant clinicopathological characteristics of PDAC patients. We observed
a higher infiltration of cDC1s into the IET area of patients with early pT1 tumor stage vs.
pT2 and pT3 stages (Figure 3A), and of patients classified as UICC stage I compared to
UICC stage II (Figure 3B). Similarly, a significantly higher density of cDC2s was found
within the IET area of patients with pT1 stage (Figure 3C) and UICC stage I (Figure 3D). In
contrast to cDCs, a lower pDC infiltration was detected in pT1 stage tumors compared to
pT3 stage tumors (Figure 3E), while the density of pDCs remained unchanged between
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UICC stage I and II (Figure 3F). Furthermore, no other significant differences were detected
in the frequencies of DCs within the WTA (Figure S1A–F) or TS (Figure S2A–F) across
different pT and UICC stages. However, there was a trend toward an increased infiltration
of cDC2s into the WTA (Figure S1D) and TS (Figure S2D) of patients classified as UICC
stage I vs. stage II.

Figure 3. Frequency of intraepithelial tumor (IET) area-infiltrating dendritic cell (DC) subsets across
distinct pathological tumor (pT) and Union for International Cancer Control (UICC) stages of pan-
creatic ductal adenocarcinoma (PDAC) patients. Boxplots show the density of IET-infiltrating con-
ventional DCs type 1 (cDC1s) (n = 40), type 2 (cDC2s) (n = 40), and plasmacytoid DCs (pDCs)
(n = 58) at different (A,C,E) tumor stages or (B,D,F) UICC stages. p values were calculated using the
Mann–Whitney U test, and p ≤ 0.05 was considered significant.

In further studies, we explored the correlation between the density of PDAC-infiltrating
DC subsets and the clinical outcome of patients (Figure 4A–L). A higher density of WTA-
and TS-infiltrating cDC1s was significantly associated with improved DFS in contrast to
the IET-associated cDC1 frequency (Figure 4A–C). A trend for a correlation between an
increased number of TS-infiltrating cDC1s and an improved OS was also observed, whereas
the cDC1 density in the WTA and IET area did not influence OS (Figure 4D–F). As depicted
in Figure 4G–L, a higher density of WTA-, IET-, and TS-infiltrating cDC2s was linked to
better DFS and OS. Of note, the correlation between IET-infiltrating cDC2s and DFS or OS
was significant (Figure 4H,K). When exploring the association between PDAC-infiltrating
pDCs and the clinical outcome of patients, we found that an increased number of WTA-
and TS-infiltrating pDCs tended to be correlated with an improved DFS, whereas high
densities of IET-infiltrating pDCs did not impact DFS (Figure 5A–C). Additionally, pDCs
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infiltration did not significantly influence OS, irrespective of localization (Figure 5D–F).
These results indicate that a higher frequency of WTA- and TS-infiltrating cDC1s, as well as
of IET-infiltrating cDC2s, is significantly linked to better DFS.

Figure 4. Association between the frequency of pancreatic ductal adenocarcinoma (PDAC)-infiltrating
conventional dendritic cells (cDCs) and clinical outcome of patients. Kaplan–Meier curves illustrate
the association between whole tumor area (WTA)-, intraepithelial tumor (IET)-, and tumor stroma
(TS)-infiltrating cDCs type 1 (cDC1s) (n = 40) and (A–C) disease-free survival (DFS) or (D–F) overall
survival (OS). Kaplan–Meier curves show the correlation between WTA-, IET-, and TS-infiltrating
cDCs type 2 (cDC2s) (n = 40) and (G–I) DFS and (J–L) OS. Upper tercile (density > 2/3 of the patients
in the analyzed cohort; solid line) and lower tercile (density≤ 1/3 of patients in the analyzed cohort;
dash line) were compared. p values were calculated using the log-rank test, and p ≤ 0.05 was
considered significant.
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Figure 5. Association between the density of pancreatic ductal adenocarcinoma (PDAC)-infiltrating
plasmacytoid dendritic cells (pDCs) and clinical outcome of patients. Kaplan–Meier curves illustrate
the association between whole tumor area (WTA)-, intraepithelial tumor (IET)-, and tumor stroma
(TS)-infiltrating pDCs (n = 58) and (A–C) disease-free survival (DFS) or (D–F) overall survival (OS).
Upper tercile (density > 2/3 of the patients in the analyzed cohort; solid line) and lower tercile
(density≤ 1/3 of patients in the analyzed cohort; dash line) were compared. p values were calculated
using the log-rank test, and p ≤ 0.05 was considered significant.

Based on these findings, we applied a multivariate Cox proportional hazard model
to evaluate the prognostic relevance of PDAC-infiltrating DCs by adjusting for several
clinicopathological characteristics, including age, gender, and tumor stage. From this anal-
ysis, we observed that a higher frequency of WTA- and TS-infiltrating cDC1s represents an
independent prognostic factor for both DFS and OS in PDAC patients (Tables 2 and 3). Con-
versely, elevated levels of IET-infiltrating cDC1s and WTA-, IET-, and TS-infiltrating cDC2s
did not show any prognostic significance for DFS and OS (Tables S1–S4). Furthermore, a
higher density of WTA- and TS-infiltrating pDCs emerged as an independent prognostic
factor for DFS, but not for OS (Tables 4 and 5). A higher density of IET-infiltrating pDCs
did not show any prognostic value for DFS and OS (Table S5). Altogether, these findings
provide evidence that PDAC-infiltrating cDCs are associated with the clinical outcome of
the patients, and cDC1s and pDCs may represent novel prognostic biomarkers.
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Table 2. Higher densities of whole tumor area (WTA)-infiltrating conventional dendritic cells type 1
(cDC1s) are associated with favorable disease-free survival (DFS) and overall survival (OS). Hazard
ratios (HR) and 95% confidence intervals (CI) are shown.

DFS–WTA n HR 95% CI p-Value
cDC1s 40 0.89 0.82–0.97 0.006 **

Age 40 0.92 0.86–0.99 0.017 *
Female vs. male 16 vs. 24 1.69 0.64–4.47 0.294

pT stage
pT2 vs. pT1 22 vs. 5 2.04 0.52–8.02 0.306
pT3 vs. pT1 13 vs. 5 2.26 0.52–9.77 0.273

pN stage
pN1 vs. pN0 14 vs. 26 1.79 0.68–4.70 0.239

OS–WTA
cDC1s 40 0.92 0.85–0.98 0.016 *

Age 40 0.96 0.91–1.01 0.094
Female vs. male 16 vs. 24 1.70 0.74–3.93 0.214

pT stage
pT2 vs. pT1 22 vs. 5 5.41 0.67–43.51 0.113
pT3 vs. pT1 13 vs. 5 3.77 0.46–31.09 0.217

pN stage
pN1 vs. pN0 14 vs. 26 2.88 1.28–6.50 0.011 *

Abbreviations: pT: pathological tumor, pN: pathological node. p ≤ 0.05 was considered significant. * p ≤ 0.05,
** p ≤ 0.01.

Table 3. Higher frequencies of tumor stroma (TS)-infiltrating conventional dendritic cells type 1
(cDC1s) are correlated with better disease-free survival (DFS) and overall survival (OS). Hazard ratio
(HR) and 95% confidence intervals (CI) are shown.

DFS–TS n HR 95% CI p-Value
cDC1s 40 0.91 0.86–0.97 0.005 **

Age 40 0.91 0.85–0.98 0.013 *
Female vs. male 16 vs. 24 1.84 0.67–5.04 0.237

pT stage
pT2 vs. pT1 22 vs. 5 1.88 0.49–7.26 0.361
pT3 vs. pT1 13 vs. 5 1.98 0.46–8.55 0.36

pN stage
pN1 vs. pN0 14 vs. 26 1.83 0.70–4.84 0.22

OS–TS
cDC1s 40 0.93 0.88–0.98 0.012 *

Age 40 0.95 0.90–1.01 0.086
Female vs. male 16 vs. 24 1.70 0.73–3.96 0.22

pT stage
pT2 vs. pT1 22 vs. 5 4.91 0.62–39.22 0.133
pT3 vs. pT1 13 vs. 5 3.24 0.39–26.86 0.277

pN stage
pN1 vs. pN0 14 vs. 26 2.94 1.30–6.69 0.01 **

Abbreviations: pT: pathological tumor, pN: pathological node. p ≤ 0.05 was considered significant. * p ≤ 0.05,
** p ≤ 0.01.
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Table 4. Higher densities of whole tumor area (WTA)-infiltrating plasmacytoid dendritic cells (pDCs)
influence disease-free survival (DFS) but not overall survival (OS). Hazard ratio (HR) and 95%
confidence intervals (CI) are shown. p ≤ 0.05 was considered significant.

DFS–WTA n HR 95% CI p-Value
pDCs 58 0.90 0.82–0.98 0.018 *
Age 58 0.94 0.90–0.99 0.01 *

Female vs. male 28 vs. 30 1.38 0.61–3.12 0.445
pT stage

pT2 vs. pT1 33 vs. 5 1.74 0.47–6.46 0.405
pT3 vs. pT1 20 vs. 5 2.97 0.74–11.91 0.124

pN stage
pN1 vs. pN0 35 vs. 23 3.08 1.35–7.03 0.008 **

OS–WTA
pDCs 58 0.95 0.89–1.0 0.135
Age 58 0.98 0.94–1.0 0.28

Female vs. male 28 vs. 30 1.21 0.60–2.4 0.587
pT stage

pT2 vs. pT1 33 vs. 5 4.81 0.63–36.9 0.13
pT3 vs. pT1 20 vs. 5 4.87 0.61–38.8 0.135

pN stage
pN1 vs. pN0 35 vs. 23 3.23 1.65–6.3 <0.001 ***

Abbreviations: pT: pathological tumor, pN: pathological node. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

Table 5. Higher densities of tumor stroma (TS)-infiltrating plasmacytoid dendritic cells (pDCs)
influence disease-free survival (DFS) but not overall survival (OS). Hazard ratio (HR) and 95%
confidence interval (CI) are shown. p ≤ 0.05 was considered significant.

DFS–TS n HR 95% CI p Value
pDCs 58 0.89 0.81–0.98 0.017 *
Age 58 0.94 0.90–0.99 0.01 *

Female vs. male 28 vs. 30 1.38 0.61–3.13 0.445
pT stage

pT2 vs. pT1 33 vs. 5 1.74 0.47–6.46 0.405
pT3 vs. pT1 20 vs. 5 2.98 0.74–11.95 0.124

pN stage
pN1 vs. pN0 35 vs. 23 3.08 1.35–7.04 0.008 **

OS–TS
pDCs 58 0.95 0.89–1.0 0.144
Age 58 0.98 0.94–1.0 0.276

Female vs. male 28 vs. 30 1.21 0.60–2.4 0.588
pT stage

pT2 vs. pT1 33 vs. 5 4.79 0.63–36.7 0.131
pT3 vs. pT1 20 vs. 5 4.82 0.61–38.3 0.137

pN stage
pN1 vs. pN0 35 vs. 23 3.21 1.65–6.3 <0.001 ***

Abbreviations: pT: pathological tumor, pN: pathological node. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.3. Neoadjuvant Chemotherapy Does Not Influence the Frequency of DCs in PDAC

Recently, it has been demonstrated that chemotherapy can efficiently stimulate the
antitumor immune response by triggering immunogenic cell death [39–41]. In contrast,
chemotherapy can also induce immunosuppressive effects, including the increase in tumor-
promoting MDSCs [41–43]. In addition, it has been reported that neoadjuvant chemother-
apy results in an increased frequency of PDAC-infiltrating CD4+ and CD8+ T cells, while
the density of Tregs and MDSCs decreases [44–47]. Following these findings, we explored
the influence of neoadjuvant chemotherapy on the level of PDAC-associated DCs. As
shown in Figure 6A–C, neoadjuvant chemotherapy did not significantly modulate the
frequency of PDAC-infiltrating cDC1s, cDC2s, and pDCs.
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Figure 6. Effect of neoadjuvant chemotherapy (NEO) on the frequency of dendritic cells (DCs)
within the whole tumor area (WTA) of pancreatic ductal adenocarcinoma (PDAC) patients. Boxplots
show the frequencies of (A) conventional DCs type 1 (cDC1s) (n = 40), (B) type 2 (cDC2s) (n = 40),
and (C) plasmacytoid DCs (pDCs) (n = 58) in patients treated with NEO or primary resection (PR).
Significances were tested using the Mann–Whitney U test. p ≤ 0.05 was considered significant.



Cancers 2022, 14, 1216 14 of 19

4. Discussion

The tumor immune architecture plays a crucial role for the clinical outcome of cancer
patients and influences the efficacy of various treatment modalities [48–51]. In PDAC, we
and other groups have shown that elevated levels of tumor-infiltrating T lymphocytes
favored the prognosis of PDAC patients [52–56]. The spatial distribution of these cells is
critical, as it has been reported that close proximity of CD8+ T cells to tumor cells favored
OS [52]. The clinical impact of PDAC-infiltrating T lymphocytes has also been demonstrated
in a recent report, indicating that a high Immunoscore, which is characterized by elevated
densities of CD3+ and CD8+ T cells in both the tumor center and invasive margin, is
significantly associated with better disease-specific survival (DSS) and OS [57]. In contrast,
we have observed that a high infiltration of LAG-3+ T cells is a negative independent
prognostic factor for DFS [54]. In addition, an increased density of Tregs was linked to
worse clinical outcome, while a high frequency of intratumoral PD-1+ Tregs was correlated
with lymph node metastasis [53,58,59]. When investigating macrophages as another major
component of the tumor immune contexture, it has been shown that they mainly polarize
toward an M2 phenotype in PDAC [60]. Additionally, a meta-analysis of PDAC-associated
macrophages revealed that M2 macrophages are linked to unfavorable survival [61]. So
far, only a few studies have evaluated other PDAC-infiltrating immune cell populations.
Among them, it has been reported that high neutrophil counts negatively impact OS [55],
whereas increased B-cell densities are associated with better survival [62]. The presence
of B cells in the tumor-associated tertiary lymphoid structures, but not in the TS, favored
patients’ clinical outcome [63].

In contrast to T cells and macrophages, studies investigating the frequency, spatial
organization, and clinical relevance of distinct human DC subsets in PDAC are very limited.
DCs can essentially contribute to innate and adaptive antitumor immunity. In contrast,
they can act as tolerogenic DCs by inhibiting tumor-directed immune responses. Hence,
DCs may profoundly influence tumor development and progression, as well as clinical out-
come. To gain novel insights into the role of DCs in pancreatic cancer, recent studies have
used murine models. Thus, it has been shown that tumor-infiltrating cDCs are rare and
dysfunctional and that enhancing the influx and activation of cDCs in established PDAC
restores antitumor T-cell immunity, resulting in disease stabilization [64]. Furthermore, it
has been reported that murine cDC1s are systemically dysregulated early in pancreatic
cancer and that apoptosis of cDC1s mediated by IL-6 essentially contributes to this ef-
fect [65]. In addition, it has been demonstrated that Tregs promote a tolerogenic phenotype
of PDAC-associated CD11c+ DCs, leading to an insufficient activation of CD8+ CTLs [66].
Meyer et al. observed that granulocyte colony-stimulating factor produced by pancreatic
cancer cells inhibits interferon regulatory factor-8 expression in cDCs progenitors, leading
to reduced cDC1 generation and impaired antitumor CD8+ T cell responses [67]. Another
recent study has reported that CD11b+CD11c+MHC-II+CD24+CD64lowF4/80low DCs are
an important component of PDAC-associated metastases that induce the expansion of
Tregs and promote metastasis formation [68].

To explore the role of human DCs in PDAC, previous studies mainly evaluated
the frequency and potential clinical impact of blood-circulating cDCs and pDCs. PDAC
patients have reduced proportions of cDCs and pDCs in the blood compared to healthy
donors [35–37,65]. In addition, it has been demonstrated that PDAC patients who survived
longer had a higher percentage of circulating cDCs compared to those patients with shorter
survival [35–37]. So far, only a few studies have investigated the density and clinical
relevance of PDAC-infiltrating human DCs. When utilizing public databases, it has been
shown that the density of activated DCs in PDAC tissues is significantly higher compared
to para-tumor tissues [69]. Additionally, PDAC patients with early-stage tumors had
significantly higher levels of tumor-infiltrating fascin+ DCs compared to more advanced
tumor stages. Moreover, an elevated density of tumor-infiltrating fascin+ DCs was linked to
improved survival of PDAC patients [37]. To gain novel insights into the clinical relevance
of distinct human DC subsets in PDAC, we investigated the density and spatial organization
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of PDAC-associated cDC1s, cDC2s, and pDCs by utilizing mIHC and by evaluating their
association with clinicopathological parameters. All three DC subsets were detectable in
PDAC tissues and were preferentially located in the TS. The preferential localization of
DCs in the TS was also previously shown in ovarian carcinoma, where mature DC-LAMP+

cells were mainly found in TS rather than in the IET area [70], as well as in breast cancer,
where cDC1s were primarily located in the TS, close to CD8+ T lymphocytes [20]. Similarly,
CD11c+ cDCs cells were significantly increased in the TS compared to the IET area in
melanoma metastases [71]. In further experiments, we evaluated the clinical impact of the
spatial organization of the three DC subsets within the PDAC tissues, given that the spatial
distribution emerged as an important factor influencing patients’ prognosis in previous
studies. High densities of TS-infiltrating CD4+ T cells favored DSS of non-small-cell lung
carcinoma patients, whereas their frequency in the tumor islands did not have any effect
on DSS [72]. In contrast, an increased frequency of tumor island-associated CD3+ T cells
was linked to improved relapse-free survival in triple negative breast cancer [73]. Here, we
showed that in contrast to IET-infiltrating cDC1s, a higher density of TS-associated cDC1s
was significantly correlated with prolonged DFS. These findings provide evidence that the
density and spatial organization of PDAC-associated cDC1s, cDC2s, and pDCs play an
important role for the clinical outcome of PDAC patients.

Taken together, we found that cDC1s, cDC2s, and pDCs were present in primary
PDAC tissues at varying frequencies and were mainly located in the TS. Higher levels of
IET-infiltrating cDC1s and cDC2s were detectable in pT1 and UICC I stages compared
to higher stages. Moreover, elevated infiltration of cDC1s within the WTA and TS was
significantly correlated with improved DFS. We also observed that an increased frequency
of IET-infiltrating cDC2s was linked to better DFS and OS when performing Kaplan–Meier
analysis, while a higher level of WTA- and TS-infiltrating pDCs tended to improve DFS.
Moreover, a higher frequency of both WTA- and TS-infiltrating cDC1s and pDCs emerged
as an independent prognostic factor for better DFS and OS. Additionally, neoadjuvant
chemotherapy did not significantly influence the density of PDAC-infiltrating DCs.

5. Conclusions

These novel findings indicate that cDC1s, cDC2s, and pDCs, as major human blood
DC subsets, are components of the PDAC immune landscape. In addition, our results
provide evidence that tumor-infiltrating DCs are associated with the survival of PDAC
patients and that their density and spatial organization play an important role for the
clinical outcome. PDAC-infiltrating cDC1s and pDCs may represent new independent
prognostic markers for improved survival. Our data may also have implications for the
generation of new treatment strategies that target PDAC-infiltrating DCs.
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//www.mdpi.com/article/10.3390/cancers14051216/s1, Figure S1: Frequency of whole tumor area
(WTA)-infiltrating dendritic cell (DC) subsets across distinct pathological tumor (pT) and Union for
International Cancer Control (UICC) stages of pancreatic ductal adenocarcinoma (PDAC) patients,
Figure S2: Frequency of tumor stroma (TS)-infiltrating dendritic cell (DC) subsets across distinct
pathological tumor (pT) and Union for International Cancer Control (UICC) stages of pancreatic
ductal adenocarcinoma (PDAC) patients, Table S1: Higher densities of intraepithelial tumor (IET)-
infiltrating conventional dendritic cells type 1 (cDC1s) do not influence disease-free survival (DFS)
and overall survival (OS), Table S2: Higher frequencies of whole tumor area (WTA)-infiltrating
conventional dendritic cells type 2 (cDC2s) do not alter disease-free survival (DFS) and overall
survival (OS), Table S3: Higher densities of intraepithelial tumor (IET)-infiltrating conventional
dendritic cells type 2 (cDC2s) do not modulate disease-free survival (DFS) and overall survival (OS),
Table S4: Higher frequencies of tumor stroma (TS)-infiltrating conventional dendritic cells type 2
(cDC2s) do not influence disease-free survival (DFS) and overall survival (OS), Table S5: Higher
densities of intraepithelial tumor (IET)-infiltrating plasmacytoid dendritic cells (pDCs) do not alter
disease-free survival (DFS) and overall survival (OS).
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