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Simple Summary: Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by
recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in
the improvement of the quality of standard of care therapies; however, the overall survival of the
patients remains static. This is due to numerous mutations in FLT3, which causes resistance against
these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to
overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as
well as the alternative measures to overcome resistance to the current therapies.

Abstract: Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal
myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia
in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50%
of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-
molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain
in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several
FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target
AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to
identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the
current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic
biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and
alternative approaches to combat this resistance are also discussed and presented.
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1. Introduction

Acute myeloid leukemia (AML) is a hematological malignancy that accounts for the
most common leukemia that occurs in adults. In the US, there were 20,240 cases and
11,400 deaths due to AML in 2021. The five-year relative survival rate for AML patients
is 29.5% [1]. The incidence of AML increases with age, whereby there are 1.3 cases per
100,000 of the population who are under 65 years old, whereas there are 12.2 cases per
100,000 of the population who are 65 years old and above [2]. Several treatment options
have improved the survival of younger patients, but the mortality remains high for elderly
patients [2,3].

AML is characterized by clonal proliferation of poorly differentiated cells of hema-
tologic origin. These cells are genetically altered with recurrent deletions, amplifications,
point mutations, and rearrangements [4,5].

The human flt3 (FMS-like tyrosine kinase 3) gene is located on chromosome 13q12
and has 24 exons [6]. It encodes a membrane-bound glycosylated protein with a molec-
ular weight of 160 kDa, along with a non-glycosylated isoform which is 143 kDa and
not associated with the plasma membrane [7]. FLT3 is a transmembrane protein that
encodes for proto-oncogene FLT3. It is a member of the class III receptor tyrosine kinase
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family and plays an important role in the regulation of the hematopoiesis [8]. The struc-
ture of FLT3 consists of four regions: (i) an N-terminal, extracellular region consisting
of five immunoglobulin domains involved in ligand binding; the proximal domain is
involved in receptor dimerization, (ii) a transmembrane domain, (iii) a juxta membrane
domain (JM), and (iv) an intracellular, C-terminal region with a split-kinase domain. The
two substructures of this domain are called N-lobe and C-lobe, which are connected by
an inter-kinase domain. These lobes consist of a TKD and are also indicated as the first
tyrosine kinase (TK1) and second tyrosine kinase (TK2) domain, respectively [9] (Figure 1).

Figure 1. Structure of FLT3 and its drug targets. The structure of FLT3 in its inactive conformation
which, upon binding to FLT3 ligand (FL), becomes active, resulting in its autophosphorylation.
Different FLT3 inhibitors and their binding sites on their domains.

The extracellular region contains a binding domain with a high affinity for its ligand
(FLT3 ligand or FL). FL is expressed by most tissues, including the spleen, thymus, and
bone marrow; however, the highest expression is seen in peripheral blood mononuclear
cells [7].

Once the FL binds to FLT3, it induces receptor dimerization and conformational
changes. Subsequently, FLT3 autophosphorylation activates intracellular signaling cascades
that control cell proliferation, differentiation, and survival [7,9,10]. The kinase activity of the
FLT3 receptor is negatively modulated by tyrosine phosphatase that dephosphorylates the
JM domain. Thus, the frequency of FLT3 production, its degradation, and the downstream
effects are regulated by a complex feedback loop for the normal activity of the receptor [7].

The most common mutations in FLT3 include FLT3 internal tandem duplication (FLT3-
ITDmut), which is detected in 25% of patients, and point mutations in the tyrosine kinase
domain (FLT3-TKDmut) that are detected in 7–10% of the patients [11]. These mutations
result in the overexpression or constitutive activation of the tyrosine kinase receptor and the
downstream proliferative signaling pathways. In addition, FLT3-ITDmut potently activates
STAT5, which activates cyclin D1, c-myc, and Pim-2; the activation of these proteins results
in the accelerated growth of leukemic cells [7,12]. FLT3-TKDmut consists mainly of missense
point mutations, deletions, or insertions in the tyrosine kinase domain of FLT3. The most
frequent point mutations are primarily seen in the activation loop in amino acid residues
D835, I836, Y842, and some in the TKD1, including the residues N676 and F691 [13].
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2. Biomarkers for FLT3 Inhibition in AML

A biomarker is a characteristic that is a measurable indicator of a biological process or
response to an intervention. Molecular biomarkers are valuable in providing information
about the biological behavior of the AML. These biomarkers can be classified into various
categories, including diagnostic, predictive, prognostic, and pharmacodynamic biomarkers,
based on their putative applications [14].

Diagnostic biomarkers are used to confirm the presence of a disease and aid in the
identification of individuals with a disease subtype. These biomarkers are used to identify
people with a disease [14]. For example, in the case of AML, gene rearrangements, gene
fusions, and chromosomal translocations are used in the diagnosis [15].

Predictive biomarkers are used to identify the likelihood of response or lack of response
to a particular therapy. These biomarkers help in the identification of patients most likely
to benefit from a given treatment and spare other patients from the toxicities of ineffective
therapies [14]. NPM1 mutations and the FLT3-ITD allelic ratio (AR) are candidate predictive
biomarkers in FLT3 AML [16].

Prognostic biomarkers are used to identify the likelihood of a clinical event, disease
recurrence, or progression in patients who have the disease [14]. Mutations in the FLT3
gene, such as FLT3-ITD, confer a poor prognosis in AML patients [11]. Pharmacodynamic
biomarkers depict the biological response to a medical product or environmental agent
in an individual. Such biomarkers are useful for clinical practice and therapeutic devel-
opment [14]. Various molecular markers, such as phosphorylation, and immune markers
have been used in various studies [17,18].

All these biomarkers are important because of their high clinical importance, and their
expression can reveal the disease evolution in real time [19]. So far, several biomarkers
have been identified by various studies and clinical trials of FLT3 inhibitors, which are
discussed in the sections below.

3. Diagnostic Biomarkers

Various diagnostics have been developed for detecting AML, including morphological,
immunophenotyping, and gene fusion screening [20]. For morphological diagnostics, bone
marrow smears are examined for myeloblasts, monoblasts, and megakaryoblasts in the
blast cells using Wright-Giemsa stains. Immunophenotyping using flow cytometry is used
to determine the lineage of leukemia cells [21]. In AML patients, leukemic cells express
early, hematopoiesis-associated antigens (CD34, CD38, CD117, HLA-DR) and lack markers
of myeloid and monocytic maturation (NSE, CD11c, CD14, CD64) [15,22–24]. Similarly,
cytogenetic abnormality can be detected in 50% to 60% of newly diagnosed AML patients.
The majority of AML patients have nonrandom chromosomal translocations that often
lead to gene rearrangements. [25–27]. The World Health Organization (WHO) recognizes
recurrent translocations and inversions in AML [28,29] (Table 1). Gene rearrangements,
gene fusions, and loss of chromosomes are detected using fluorescence in situ hybridization
(FISH) and reverse transcriptase–polymerase chain reaction (RT-PCR) [30,31]. These include
gene fusions in RUNX1-RUNX1T1 (runt-related transcription factor 1), CBFB-MYH11 (core-
binding factor subunit beta–myosin heavy chain 11), acute promyelocytic leukemia (APL)
with PML-RARA (promyelocytic leukemia/retinoic acid receptor alpha), MLLT3-KMT2A
(mixed-lineage leukemia translocated to chromosome 3- lysine methyltransferase 2A),
DEK-NUP214 (DEK oncogene–nucleoporin 214), and an inversion that repositions a distal
GATA2 enhancer to activate MECOM expression. BCR-ABL1 is added to recognize that
these cases may benefit from tyrosine kinase inhibitor therapy [28,29,32,33]. Finally, for
AML diagnosis, testing for mutations in three genes—FLT3, NPM1 (nucleophosmin 1),
and CEBPA (CCAAT/enhancer binding protein (C/EBP) alpha)—is recommended [34–36].
Additional genes with varying gene mutation frequency in AML patients include mixed-
lineage leukemia (MLL), neuroblastoma RAS (NRAS), Wilms’ tumor type 1 (WT1), v-KIT,
runt-related transcription factor (RUNX1), and iso-citrate dehydrogenase (IDH1) [37–42].
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Table 1. Acute myeloid leukemia and acute leukemias of ambiguous lineage (WHO, 2017).

WHO Classification of Acute Myeloid Leukemia with Recurrent Genetic Abnormalities

AML with recurrent genetic abnormalities
AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
APL with PML-RARA

AML with t(9;11)(p21.3;q23.3); MLLT3-KMT2A
AML with t(6;9)(p23;q34.1); DEK-NUP214

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM
AML (megakaryoblastic) with t(1;22)(p13.3;q13.3); RBM15-MKL1

Provisional entity: AML with BCR-ABL1
AML with mutated NPM1

AML with biallelic mutations of CEBPA
Provisional entity: AML with mutated RUNX1

Interestingly, recent studies indicated that circulating micro RNAs (miRNAs) can be
utilized as diagnostic biomarkers for AML. A study identified six serum miRNAs (miR-
10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p, and miR-320d) which were
specifically upregulated in the serum of AML patients using a next-generation sequencing
approach [43,44].

Four miRNAs (let-7b, miR-128a, miR-128b, and miR-223) were used for the diagnosis
of AML with 97% accuracy and analyzed using RT-PCR. miR-142-3p and miR-29a can also
be used as diagnostic biomarkers for AML [45]. Interestingly, miR-424 was downregulated
in AML patients with NPM1 mutation regardless of FLT3 mutation, whereas miR-155 was
upregulated in patients with FLT3-ITD regardless of the NPM1 mutation [46].

These studies suggest that miRNAs from serum or blood samples can be effective
diagnostic biomarkers for AML patients.

4. Predictive Biomarkers

There have been multiple FLT3 inhibitors in clinical trials, but predictive biomarkers
remain undiscovered. In a recent study aimed at identifying gene expression changes
associated with FLT3 mutation in AML patients, the transcriptomic patterns of six different
cohorts of AML patients were analyzed, and a FLT3-mutation-like pattern was highly
enriched in NPM1 and DNMT3A mutants. In addition, FLT3-like patterns consisted of
numerous homeobox (HOX) genes [47].

Based on the FLT3 mutations, companion diagnostics were generated that tested
for a predictive biomarker [48]. These tests classified patients into responders and non-
responders and directly equated them to the administration of a drug [49].

One such FDA-approved companion diagnostic test was the LeukoStrat CDx FLT3
mutation assay. This is a PCR-based, in vitro diagnostic test that detects ITD and TKD
mutations D835 and I836 from the genomic DNA extracted from the mononuclear cells
from peripheral blood or bone marrow aspirates of AML-diagnosed patients [50].

This test was used with FLT3 inhibitors, including midostaurin, gilteritinib, and
quizartinib [51].

Similarly, co-occurrence of mutations in FLT3 with national comprehensive cancer
network (NCCN)-listed gene mutations were used as predictive biomarkers [52,53]. Co-
occurrence of mutations in monoallelic, CCAAT/enhancer-binding protein alpha (mo-
CEBPA) with FLT3-ITD/TKD led to a poor prognosis. Mutations in NPM1, DNMT3A,
and FLT3-ITD were identified at higher rates in patients with intermediate-risk cytoge-
netics [54,55]. It was seen that a group of AML patients with FLT3 plus NPM1 and/or
DNMT3A mutations shared a similar transcriptomic background [47]. The revised 2017
WHO classification has myeloid neoplasms with germline mutations in RUNX1, CEBPA,
DDX41 (DEAD-box helicase 41), RUNX1, GATA2 (GATA binding protein 2), ETV6 (ETS vari-
ant transcription factor 6), SRP72 (signal recognition particle 72), and ANKRD26 (ankyrin
repeat domain 26) as markers of AML predisposition [29,56,57].
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Another study identified that the response to gilteritinib and crenolanib among re-
lapsed FLT3mut AML patients is higher in patients with mutations in NPM1 or DNMT3A
and particularly in those with both genes mutated [58,59]. When FLT3-ITD leukemias with
mutations in NPM1 or DNMT3A are treated with quizartinib, the cell differentiation effect
predominates over the cytotoxic mechanism [60]. Additionally, a long non-coding RNA (lnc
RNA) expression profile using RNA-seq identified that lncRNA RP11-342 M1.7, lncRNA
CES1P1, and lncRNA AC008753.6 serve as predictive biomarkers for AML risk [61].

5. Prognostic Biomarkers

FLT3 is widely overexpressed and the most frequently mutated gene in both pediatric
and adult patients with AML [62]. Higher expression of FLT3 results in poor overall
survival (OS) in AML patients, as seen in the cancer genome atlas (TCGA) dataset analyzed
by GEPIA. The hazard ratio is 1.8 for high-FLT3-expressing patients, indicating that these
patients have a ~2 times greater chance of dying compared to the low-FLT3-expressing
AML patients [63] (Figure 2).

Figure 2. Analysis of FLT3 expression in AML patients. (A) Transcript levels of FLT3 in AML patients
versus control patients. (B) Percent survival of high-FLT3-expressing patients versus low-FLT3-
expressing AML patients. The hazard ratio is 1.8, and the p-value is 0.035, as analyzed from the
TCGA dataset upon GEPIA analysis.

FLT3 ligand (FL) is detectable during homeostasis and is increased in hypoplasia. FL
is markedly elevated upon the depletion of the hematopoietic stem or progenitor cells.
However, in FLT3+ AML, the levels of FL fall to undetectable levels. It was observed that,
after the induction of chemotherapy, FL levels are restored in patients with complete remis-
sion but not in patients with refractory disease. FL levels were measured in a randomized
study with lestaurtinib where it was seen that patients achieving complete remission (CR)
had higher FL levels after the completion of the therapy followed by a normal range after
recovery. However, patients with refractory disease had a transient increase in FL levels
followed by rapid depletion [64]. Thus, FL levels have the potential to emerge as prognostic
biomarkers to guide clinical decisions.

The presence or absence of specific gene mutations can be utilized to classify AML
patients and determine their prognosis. The NCCN AML prognostic stratification system
listed FLT3, NPM1, CEBPA, IDH1/2, DNMT3A (DNA methyltransferase 3A), KIT, TP53
(tumor suppressor 53), RUNX1, and ASXL1 (ASXL transcription factor) gene mutations
for the classification of the AML patient population [65,66]. Mutations of NRAS and IDH2
occur in FLT3-independent clones, but TET2 and IDH1 co-occur in FLT3-mutant clones [67].
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Mutations in the FLT3 gene are of prognostic value for detecting AML in patients.
The most common FLT3 mutations (FLT3mut) occur in the JM domain internal tandem
duplications, FLT3-ITDmut, or in the tyrosine kinase domain, FLT3-TKDmut. FLT3-ITDmut,

are in-frame mutations consisting of duplications of 3–400 base pairs which lead to an elon-
gated JM. This results in constitutive activation of the FLT3 receptor and the downstream
signaling (Figure 3) [68,69].

Figure 3. FLT3 signaling pathway. FL binds to the FLT3 receptor and induces receptor dimerization
and conformational changes. FLT3 autophosphorylation activates intracellular signaling cascades
including RAS/RAF/MAPK PI3K/AKT/mTOR and JAK/STAT. These pathways control cell prolif-
eration, survival, and apoptosis. These different proteins can be used as predictive, prognostic, and
pharmacodynamic biomarkers.

The prognostic value of FLT3-ITD is determined by various factors, including the
allele ratio (AR), ITD length, karyotype, insertion site, and co-mutations (NPM1) [11,70].
AR is the ratio of ITD-mutated alleles to wild-type alleles (FLT3-ITD/FLT3 wild-type).
Similarly, variant allele frequency is determined by the ratio of ITD-mutated alleles to
ITD-mutated and wild-type alleles. The European Leukemia Net (ELN) identified a value
of 0.5 as a cut-off to distinguish between low and high AR [71]. FLT3-ITD insertion
(AR > 0.51) is associated with an unfavorable, relapse-free survival, RFS (p = 0.0008) and
OS (p = 0.004) [72]. However, a recent study depicted that the size of FLT3-ITD mutations
has no prognostic impact on the overall survival, relapse, or complete remission rate among
newly diagnosed AML patients treated with chemotherapy [73].

Favorable relapse risk and OS was seen with the occurrence of co-mutations NPM1,
along with FLT3mut, in young adult AML patients [74]. In patients with concurrent
NPM1mut, the OS and relapse risk were comparable between FLT3 wild-type and FLT3-
ITDmut (AR < 0.5), but worse when AR ≥ 0.5 [75]. Among patients with NPM1 wild-type,
all FLT3-ITDmut patients had an increased risk of relapse and inferior OS, regardless of
the AR. The European Leukemia Net (ELN) guidelines categorize FLT3-ITDmut AML into
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three categories: favorable (NPM1mut with FLT3 wild-type or NPM1mut with FLT3-ITD
AR < 0.5), intermediate (NPM1mut with FLT3-ITD AR > 0.5 or NPM1WT with FLT3-ITD
AR < 0.5), and adverse (NPM1WT with FLT3-ITD AR > 0.5) [76]. Although the AR ratio is
predictive of the severity of AML in the patients, a strict threshold cannot be established
for clinical decision making. This is because the current assays are not optimized, and there
is a high intrasample variability [77].

FLT3-TKD mutations have prognostic value in the overall AML patient population,
but the impact of FLT3-TKDmut AR remains obscure. However FLT3-TKDmut has a high
incidence in co-occurrence with mutations in NPM1, CEBPA, and NRAS [78]. These TKD
mutations can be identified and detected using next-generation sequencing (NGS). Addi-
tionally, computational, biology-based algorithms, such as Pindel, show high sensitivity
and specificity in detecting these gene alterations [79].

6. FLT3 Inhibitors in Clinical Trials and Development

Since FLT3 mutations lead to dysregulation of cell proliferation pathways, inhibiting
FLT3 signaling using small molecule inhibitors is a viable strategy for AML patients [80].

FLT3 inhibitors can be classified into type I and type II based on their mechanism
of interaction with FLT3 (Table 2). Type I inhibitors bind to the gatekeeper domain near
the activation loop or the ATP binding site on the receptor regardless of its conformation;
however, type II inhibitors bind to the hydrophobic region adjacent to the ATP binding
site on the receptor in its inactive conformation. As a result, type I inhibitors can inhibit
FLT3 with both ITD and TKD, but type II inhibitors can only inhibit FLT3 with ITD
and not TKD [51]. Type I inhibitors include FN-1501, sunitinib, lestaurtinib, midostaurin,
crenolanib, and gilteritinib, while type II inhibitors include sorafenib, quizartinib, ponatinib,
and pexidartinib [81–84].

FLT3 inhibitors can also be classified into first generation and second generation based
on their specificity for FLT3 (Table 2). First-generation inhibitors lack specificity for FLT3.
They can bind to multiple receptor tyrosine kinases (RTKs) and inhibit several targets
downstream of the FLT3 signaling pathway and parallel pathways, thus, providing a broad
range of efficacy in AML patients. Second-generation inhibitors are more specific and only
target FLT3. As a result, they are expected to have fewer off-target effects and toxicities.
First-generation inhibitors include sunitinib, sorafenib, midostaurin, and lestaurtinib. Some
second-generation inhibitors include quizartinib, crenolanib, and gilteritinib [11,96,97].

Currently, there are only three FDA-approved FLT3 inhibitors, sorafenib, midostaurin,
and gilteritinib, for use in the U.S. Of these, only two are approved for AML indication:
midostaurin, along with chemotherapy, and gilteritinib [98]. Midostaurin is a multi-targeted
kinase inhibitor with activity against both FLT3-ITD and FLT3-TKD, along with induction
chemotherapy with cytarabine and daunorubicin; however, it has limited clinical efficacy
as a single agent [87,99]. On the other hand, gilteritinib was recently approved by the FDA
with activity against FLT3-ITD, FLT3-TKD, and FLT3, non-canonical mutations in relapsed
and refractory (R/R), FLT3-mutated AML patients as a monotherapy [100]. Sorafenib is
not approved for the treatment of AML, but off-label use in 13 patients showed improved
clinical outcomes in FLT3-ITDmut AML patients [101].

Several other FLT3 inhibitors are in the early and late stages of clinical development.
Quizartinib is the most potent and selective type II inhibitor and crenolanib is a potent type
I inhibitor in the late stages of clinical development (Table 2).
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Table 2. FLT3 inhibitors and their targets.

FLT3 Inhibitor Generation Type Target FLT3
Mutations Other Targets Phases of

Development References

Sunitinib First I ITD, TKD
VEGFR1, VEGFR2,
PDGFRα/β, KIT,

RET, CSF1R
II [85]

Lestaurtinib First I ITD, TKD JAK2/3, TrkA,B,C
AURKA, AURKB, III [86]

Midostaurin First I ITD, TKD EGFR2, KIT, PDGFR,
PKCα, VEGFR, Akt Approved [87]

Crenolanib Second I ITD, TKD PDGFRα/β II [88]

Gilteritinib Second I ITD, TKD ALK, AXL Approved [89]

Sorafenib First II ITD VEGFR, PDGFR, c-Kit
and RET, RAF III [90]

Quizartinib Second II ITD PDGFRα/β, RET,
Kit, CSF1R II [91]

Ponatinib First II ITD Abl, c-Kit, c-Src, FGFR1,
PDGFRα, VEGFR2, LYN Ib/II [92]

Pexidartinib First II ITD KIT, CSF1R I/II [93]

Tandutinib First II ITD PDGFRα/β,
c-KIT I [94]

FF-10101 Novel I ITD, TKD N/A I [95]

FN-1501 First I ITD, TKD CDK4/6, KIT, PDGFR,
ALK, RET I [81]

7. Indicators for the Efficacy of FLT3 Inhibitors (Pharmacodynamic Biomarkers)

Biomarkers that predict the efficacy of FLT3 inhibitors have important applications
in clinical care. Activation of FLT3 triggers the phosphorylation and activation of down-
stream signal transduction pathways including PI3K/AKT/mTOR, RAS/RAF/MAPK
and JAK/STAT (Figure 3). Autophosphorylation of the FLT3 receptor has proven to be
an excellent biomarker for its activation, and loss of this autophosphorylation is an indi-
cation of successful inhibition. The degree of phosphorylation can be quantified directly
in the circulating blast cells or the plasma from the patients. Phospho-FLT3 levels can be
measured using an enzyme-linked immunosorbent assay (ELISA) and plasma inhibitory
activity (PIA) assay. Decreased phosphorylation of FLT3 is associated with clinical activity
in patients administered with gilteritinib, midostaurin, and lestaurtinib [18,89,102]. Re-
cently, SEL24/MEN1703, a dual PIM/FLT3 kinase inhibitor, underwent clinical trials for
AML patients. This study tested phospho-inhibition of S6, 4-EBP1, and STAT5 as their
phosphorylation levels are controlled by both PIM1/2 and FLT3. Preclinical studies identi-
fied that S6 phosphorylation (pS6) was at its maximum 4 h post drug treatment; hence, pS6
was chosen as a biomarker for this dual kinase inhibitor (Table 3). pS6 was measured from
the whole blood and bone marrow of the patients administered with the drug-using flow
cytometry [103,104]. Another preclinical study evaluated the potential use of follistatin
(FST) as a pharmacodynamic biomarker. It was seen that, in FLT3-ITD patients treated with
quizartinib, serum FST levels significantly decreased but resurged during relapse [105].
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Table 3. Biomarkers for FLT3 AML.

Types Categories Markers

Diagnostic
biomarkers

Morphological Bone marrow smears from blast cells

Immunophenotyping Early hematopoiesis-associated antigens
(CD34, CD38, CD117, HLA-DR)

Gene fusion RUNX1-RUNX1T1, CBFB-MYH11,
MLLT3-MLL, DEK-NUP214

Micro RNAs

miR-10a-5p, miR-93-5p, miR-129-5p,
miR-155-5p, miR-181b-5p, miR-320d,
let-7b, miR-128a, miR-128b, miR-223,

miR-142-3p, miR-29a, miR-424, miR-155

Predictive
biomarkers

Gene mutations CEBPA, DDX41, RUNX1, GATA2, ETV6,
ANKRD26, NPM1, FLT3

Long non-coding RNAs lncRNA RP11-342 M1.7, lncRNA CES1P1,
lncRNA AC008753.6

Prognostic
biomarkers

Gene mutations FLT3, NPM1, CEBPA, IDH1/2, DNMT3A,
KIT, TP53, RUNX1, and ASLXL1

FLT3 mutations FLT3-ITD, FLT3-TKD

Protein FLT3 ligand

Pharmacodynamic
biomarkers

Protein
Phospho-FLT3

Phospho-S6
Follistatin

Immune markers CD112, CD155

Another study identified that the expression of immune checkpoint markers CD155
and CD112 (using flow cytometry and real-time PCR) was specifically downregulated upon
treatment with gilteritinib and quizartinib in FLT3-mutated cell models. Thus, CD155 and
CD112 have the potential to serve as PD biomarkers for FLT3-ITD AML patients [17].

8. Resistance to FLT3 Inhibitors

Although FLT3 inhibitors show response in AML patients, the duration of this response
is short-lived due to primary and acquired resistance. The most common mechanism of
acquired resistance in patients is due to on-target mutations in the tyrosine kinase domain.
F691L and D835 are frequently occurring FLT3 gatekeeper mutations. These mutations
hinder the drug binding which results in an active kinase conformation unfavorable to
interaction with FLT3 inhibitors [100,106]. This resistance mechanism was reported for
type II inhibitors, including quizartinib and sorafenib. Both gilteritinib and crenolanib
had preclinical and clinical activity against FLT3 D835 mutations, but they had limited
activity against the F691L mutations [83,107–109]. However, pexidartinib and ponatinib
had activity against F691L mutations in preclinical models [98]. Recently, another FLT3
inhibitor, FF-10101, displayed significant activity against F691L and D835 both in vitro and
in vivo [110].

In addition, FLT3-ITD mutations contribute to resistance to the FLT3 inhibitors. This is
because FLT3-WT is sensitive to FLT3 ligand and resistant to FLT3 inhibitors. FLT3-ITD has
a WT sequence; therefore, it contributes to the resistance [111–113].

It was also observed that high levels of FL in the bone marrow microenvironment
during induction and consolidation therapy can lead to activation of the FLT3-MAPK
pathway and provide a survival signal to the blast cells even in the presence of FLT3
inhibitors [111]. Some preclinical studies also demonstrated that CYP3A4 in the bone
marrow stromal cells also leads to FLT3-TKI resistance [114].

Acquired resistance due to non-overlapping, secondary mutations is caused by dif-
ferent FLT3 inhibitors. In-vitro-based studies demonstrated that SU5614 produced TK2
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changes in D835 exclusively; however, midostaurin produced mutations in TK1 at N676. In
addition, sorafenib produced resistant mutations in TK1 (F691L) and TK2 (Y842). These mu-
tations led to different drug responses. While TK2 mutations were sensitive to midostaurin,
sunitinib, and sorafenib, TK1 mutations had a differential response to SU5614, sorafenib,
and sunitinib but impaired response to midostaurin [115].

Additional resistance mechanisms were seen where FLT3-TKI resistant cells became
FLT3-independent due to the activation of parallel signaling pathways, including
Ras/MEK/MAPK and PI3K/Akt, which compensate for cell survival signals when FLT3
is inhibited. Additionally, activating mutations in the Ras/MAPK pathway, including
NRAS, PTPN11, KRAS, and CBL, were of common occurrence in gilteritinib and crenolanib
resistance [116–118].

9. Fighting FLT3 Inhibitor Resistance and Future Approaches

Given that FLT3 inhibitors present limited efficacy due to the reasons mentioned above,
alternate approaches are required to cure FLT3-AML patients. One of the approaches is
the use of combination therapies of FLT3 inhibitors with other agents to enhance their
efficacy and identify synergistic drug combinations. A combination of sorafenib with
vorinostat (histone deacetylase inhibitor) was seen to be effective against FLT3 AML in an
early-phase clinical trial [106]. Additionally, triple combinations of sorafenib, vorinostat,
and bortezomib (proteasome inhibitor) were effective in early-phase clinical trials [119].
Similarly, a combination of sorafenib and azacytidine (DNA methyltransferase inhibitor)
was effective for patients with FLT3-ITD and relapsed AML [120]. Combination therapies
with signaling proteins downstream of the FLT3 pathway are another viable approach
to overcome FLT3-inhibitor resistance. It was seen that pimozide (STAT5 inhibitor) is
synergistic with midostaurin and sunitinib in FLT3-ITD patients in early-phase clinical
trials [121]. Recently developed PIM1/FLT3 dual inhibitor SEL23/MEN1703, which targets
Pim-1 (a kinase downstream of FLT3) and FLT3 together, is currently undergoing clinical
trials [103]. Another study is assessing the safety of everolimus (mTOR inhibitor) with
midostaurin in patients with relapsed and refractory AML (NCT00819546). A promising
approach is targeting heat shock proteins, including Hsp40, Hsp70, and Hsp90 [122–125].
Hsp70 inhibition suppresses the proliferation of FLT3-ITD-positive and drug-resistant
AML cells via the induction of proteasome-mediated degradation of FLT3-ITD [126]. Co-
treatment of midostaurin with 17-AAG (Hsp90 inhibitor) attenuated phospho-FLT3 and
induced apoptosis in human acute leukemia cells MV4-11 [127].

Some studies used anti-FLT3 monoclonal antibody (mAb) treatment for FLT3-TKI-
resistant clones, but it was found to be a cytotoxic [128–130]. An alternative approach would
be using FLT3 inhibitors with anti-FLT3 antibodies and/or inhibitors of the downstream
signaling proteins of FLT3 [128].

Additionally, chimeric antigen receptor (CAR) T cells are an emerging novel thera-
peutic approach to target FLT3 AML. CD8+ and CD4+ T-cells expressing an FLT3-specific
chimeric antigen receptor (CAR) were efficacious in vitro. Treatment with crenolanib en-
hanced the surface expression of FLT3 on FLT3-ITD AML cells which led to increased
recognition by FLT3-CAR T cells in preclinical studies [131].

10. Conclusions

FLT3 inhibitors show promising efficacies in progressive and relapsed AML, but the
duration of the clinical response is short. Biomarkers are of great importance in predicting
the biological behavior of AML, as well as monitoring the efficacy of FLT3 inhibitors in
patients. The expression of biomarkers can be used to predict the disease activity in real
time. They can also serve as a guide for administering a particular FLT3 inhibitor to achieve
CR and high OS.

Additionally, to overcome the resistance to FLT3 inhibitors caused by different mecha-
nisms, combination therapies of FLT3 inhibitors with other targeted agents or immunother-
apeutic approaches are additional areas of investigation.
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