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Simple Summary: In this pilot study, we aimed to investigate the use of deep learning for the
classification of whole-slide images of liquid-based cytology specimens into neoplastic and non-
neoplastic. To do so, we used a large training and test sets. Overall, the model achieved good
classification performance in classifying whole-slide images, demonstrating the promising potential
use of such models for aiding the screening processes for cervical cancer.

Abstract: Liquid-based cytology (LBC) for cervical cancer screening is now more common than the
conventional smears, which when digitised from glass slides into whole-slide images (WSIs), opens
up the possibility of artificial intelligence (AI)-based automated image analysis. Since conventional
screening processes by cytoscreeners and cytopathologists using microscopes is limited in terms of
human resources, it is important to develop new computational techniques that can automatically
and rapidly diagnose a large amount of specimens without delay, which would be of great benefit for
clinical laboratories and hospitals. The goal of this study was to investigate the use of a deep learning
model for the classification of WSIs of LBC specimens into neoplastic and non-neoplastic. To do so,
we used a dataset of 1605 cervical WSIs. We evaluated the model on three test sets with a combined
total of 1468 WSIs, achieving ROC AUCs for WSI diagnosis in the range of 0.89–0.96, demonstrating
the promising potential use of such models for aiding screening processes.

Keywords: liquid-based cytology; deep learning; cervical screening; whole slide image

1. Introduction

According to the Global Cancer Statistics 2020 [1], cervical cancer is the fourth leading
cause of cancer death in women, with an estimated 342,000 deaths worldwide in 2020.
However, incidence and mortality rates have declined over the past few decades due to
either increasing average socioeconomic levels or a diminishing risk of persistent infection
with high risk human papillomavirus (HPV) [1]. In developed countries, cervical cytology
screening systems have been organised to reduce mortality from cervical cancer [2–9].

The introduction of cervical cancer screening led to a fall in associated mortality rates;
however, there is some evidence that the conventional smear method for screening is
not consistent in reliably detecting cervical intraepithelial neoplasia (CIN) [10–12]. This
is because conventional cervical smears, when spread on glass slides, tend to have the
cells of interest mixed with blood, debris, and exudate. A number of new technologies
and procedures are becoming available in various screening programs (e.g., liquid-based
cytology (LBC), automated screening devices, computer-assisted microscopy, digital col-
poscopy with automated image analysis, HPV testing). The LBC technique preserves the
cells of interest in a liquid medium and removes most of the debris, blood, and exudate
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either by filtering or density gradient centrifugation. The other advantages in LBC are
the availability of residual material for HPV and other molecular tests and the connection
with automated screening devices. ThinPrep (Hologic, Inc., Marlborough, MA, USA) and
SurePath (Becton Dickinson, Inc., Franklin Lakes, NJ, USA) for LBC specimen preparation
have been approved by the US Food and Drug Administration (FDA), and it has also been
adopted by the cervical screening programme in the UK. Moreover, the ThinPrep collection
vial has been approved by the FDA for direct testing for HPV, which is particularly useful
for managing women whose Pap smear tests show atypical squamous cells (ASCs) [4,13].

In 1998, the FDA approved the FocalPoint Slide Profiler (Becton Dickinson, Inc.) as a
primary automated screener for cervical smears, followed by approval in 2002 for use with
SurePath slides. In 2003, the FDA approved the ThinPrep Imaging System (Hologic, Inc.)
as a primary screener for ThinPrep Pap slides. The FocalPoint uses algorithms to measure
cellular features (e.g., nuclear size, integrated optical density, nuclear to cytoplasmic ratio,
and nuclear contour) for the diagnosis of squamous and glandular lesions [14]. In the US,
the American Society of Cytopathology (ASC) established guidelines for automated Pap test
screening using the ThinPrep Imaging System and the FocalPoint GS Imaging System [15].
However, there are some issues with the current automated screening support systems.
A multi-institutional feasibility study in Japan validated the usefulness of FocalPoint for
cervical cytology automated screening quality control and showed that it was useful for
NILM (Negative for Intraepithelial Lesion or Malignancy) cases, but on the other hand, 2174
(18.1%) of 12,000 specimens were judged to be unmeasurable and were not evaluated [16].
In the US, unmeasured rates were reported to be as low as 2.5% [17], 5.9% [18], and
4.8% [19], while in Brazil, the unmeasured rate was very high at 30.8% [20]. In order to use
FocalPoint, it was reported that the unmeasured ratio can be suppressed to a low value by
adjusting a specimen preparation method(s) including staining [16]. However, in routine
clinical practice, there are many screening facilities that do not (or cannot) stain specimens
accordingly to adjust for FocalPoint, as reported in Japan and Brazil [16,20].

The sensitivity of conventional cytology cervical cancer screening for detecting pre-
invasive squamous and glandular lesions (pre-invasive intraepithelial lesions) is clearly
far from perfect. It has been reported that most studies of the conventional Pap test were
severely biased, and it was only moderately accurate and did not achieve concurrently
high sensitivity and specificity (i.e., sensitivity ranged from 30% to 87% and specificity
ranged from 86% to 100%) [21]. Moreover, the sensitivity of conventional cervical cytology
is less than ideal for invasive cancers, with a wide range (45% to 76%), and false-negative
or false-unsatisfactory rate in conventional smears was 50% [22]. These studies indicate
that many women with cervical cancer have a history of one or more negative cervical
cytology reports. As a background of these results, the interobserver reproducibility of
cervical cytology is less than perfect. The reproducibility of 4948 monolayer cytologic
interpretations was moderate (kappa = 0.46; 95% confidence interval (CI), 0.44–0.48) among
four categories of diagnosis (i.e., negative, ASC-US, LSIL, and over HSIL) by multiple
well-trained observers [23]. In the same study, the greatest disagreement in monolayer
cervical cytology involved ASC-US interpretations. Of the 1473 original interpretations of
ASC-US, the second reviewer concurred in only 43.0% [23].

Whole-slide images (WSIs) are digitisations of the conventional glass slides obtained
via specialised scanning devices (WSI scanners), and they are considered to be comparable
to microscopy for primary diagnosis [24]. A routine scanning of LBC slides in a single layer
of WSIs would be suitable for further high throughput analysis (e.g., automated image
based cytological screening and medical image analysis) [25]. The advent of WSIs led to
the application of medical image analysis techniques, machine learning, and deep learning
techniques for aiding pathologists in inspecting WSIs. Deep-learning-based applications
ranged from tasks, such as cancer diagnosis from WSIs, cell classification, and segmentation
of nuclei, to patient stratification and outcome prediction [26–44]. For cytology, in particular,
only recently have there been investigations for applying deep learning on large datasets of
cervical WSIs Holmström et al. [45], Lin et al. [46], Cheng et al. [47].
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In this pilot study, we trained a deep learning model, based on convolutional and
recurrent neural networks, using a dataset of 1605 cervical WSIs. We evaluated the model
on three test sets with a combined total of 1468 WSIs, achieving ROC AUCs for WSI
diagnosis in the range of 0.89–0.96.

2. Materials and Methods
2.1. Clinical Cases and Cytopathological Records

This is a retrospective study. A total of 3121 LBC ThinPrep Pap test (Hologic, Inc.)
conventionally prepared cytopathological slide glass specimens of human cervical cytology
were collected from a private clinical laboratory in Japan after cytopathological review
of those specimens by cytoscreeners and pathologists. The cases were selected mostly at
random so as to reflect a real clinical scenario as much as possible; we have also collected
cases so as to compile a test set with an equal balance of neoplastic and NILM. The
cytoscreeners and pathologists excluded cases that had poor scanned quality (n = 32).
Each WSI diagnosis was observed by at least two cytoscreeners and pathologists, with
the final checking and verification performed by a senior cytoscreener or pathologist. All
WSIs were scanned at a magnification of ×20 using the same Aperio AT2 digital whole-
slide scanner (Leica Microsystems, Osaka, Japan) and were saved in SVS file format with
JPEG2000 compression.

2.2. Dataset

Table 1 breaks down the distribution of the dataset into training, validation, and
test sets. The split was carried out randomly taking into account the proportion of each
label in the dataset. A clinical laboratory that provided LBC cases was anonymised. The
test sets were composed of WSIs of full agreement, clinical balance, and equal balance
LBC specimens. The full agreement test set consisted of NILM and neoplastic LBC cases
whose obtained diagnoses were fully agreed by two independent cytoscreeners in different
institutes. The clinical balance test set consisted of 95% NILM and 5% neoplastic LBC cases
based on a real clinical setting [48,49]. The equal balance test set consisted of 50% NILM and
50% neoplastic LBC cases. NILM and neoplastic LBC cases for clinical and equal balance
test sets were collected based on the diagnoses provided by the clinical laboratory. The
cases in the clinical and equal balance test sets were only based on the diagnostic reports.
From these two test sets, we have also created their reviewed counterparts (clinical balance
reviewed and equal balance reviewed), where two independent cytoscreeners viewed all
the cases and the ones they had a disagreement on were removed (see Table 1).

Table 1. Distribution of WSIs into training, test, and validation sets.

Total Neoplastic NILM

training 1503 302 1201
validation 150 50 100

test: full agreement 300 20 280
test: equal balance 750 375 375
test: equal balance-rev. 643 279 364
test: clinical balance 750 38 712
test: clinical balance-rev. 525 35 490

2.3. Annotation

Senior cytoscreeners and pathologists who perform routine cytopathological screening
and diagnoses in general hospitals and clinical laboratories in Japan manually annotated
352 neoplastic WSIs from the training sets. Coarse annotations were obtained by free-hand
drawing. (Figure 1 using an in-house online tool developed by customising the open-source
OpenSeadragon tool at https://openseadragon.github.io/ (accessed on 10 January 2020),

https://openseadragon.github.io/
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which is a web-based viewer for zoomable images.) On average, the cytoscreeneers and
pathologists annotated 150 cells (or cellular clusters) per WSI.

Neoplastic WSIs consisted of ASC (atypical squamous cell), LSIL (low-grade squamous
intraepithelial lesion), HSIL (high-grade squamous intraepithelial lesion), CIS (carcinoma
in situ), ADC (adenocarcinoma), and SCC (squamous cell carcinoma), except for the NILM.
For example, on the HSIL (Figure 1A–D) and SCC (Figure 1E–H) WSIs, cytoscreeners
and pathologists performed annotations around the neoplastic cells (Figure 1B–D,F–H)
based on the representative neoplastic epithelial cell morphology (e.g., increased nu-
clear/cytoplasmic ratio, abnormalities of nuclear shape, hyperchromatism, irregular chro-
matin distribution, and prominent nucleolus). On the other hand, the cytoscreeners and
pathologists did not annotate areas where it was difficult to cytologically determine that
the cells were neoplastic. The NILM subset of the training and validation sets (1301 WSIs)
was not annotated and the entire cell spreading areas within the WSIs were used.

The average annotation time per WSI was about an hour. Annotations performed by
the cytoscreeners and pathologists were modified (if necessary), confirmed, and verified by
a senior cytoscreener.

Figure 1. Representative manually drawing annotation images for neoplastic labels on liquid-
based cytology (LBC) slides. The LBC case (A) was diagnosed as HSIL (high-grade squamous
intraepithelial lesion) based on the representative neoplastic squamous epithelial cells with increase
in nuclear/cytoplasmic ratio and nuclear atypia (B–D). The LBC case (E) was diagnosed as SCC
(squamous cell carcinoma) based on the representative neoplastic squamous epithelial cells with
HSIL features (F–H). Representative neoplastic cells were roughly annotated using in-house on-line
drawing tools.
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2.4. Deep Learning Models

Our deep learning models consisted of a convolutional neural network (CNN) and a
recurrent neural network (RNN) that were trained simultaneously end to end. For the CNN,
we have used the EfficientNetB0 architecture [50] with a modified input size of 1024 × 1024 px
to allow a larger view; this is based on cytologists’ input that they usually need to view
the neighbouring cells around a given cell in order to diagnose more accurately. We then
performed 7 × 7 max pooling with a stride of 5 × 5. The output of the CNN was reshaped
and provided as input to an RNN with a gated recurrent unit Cho et al. [51] model of size
128, followed by a fully connected layer. We used the partial fine-tuning approach [52] for the
tuning the CNN component, where only the affine weights of the batch normalisation layers
are updated while the rest of the weights in the CNN remain frozen. We used the pre-trained
weights from ImageNet as starting weights. Figure 2 shows a simplified overview of the
model. The RNN component was initialised with random weights.

Figure 2. Method overview. (a) Large 1024 × 1024 are extracted from the WSIs; for the neoplastic
WSIs, tiles are extracted only from annotated regions, while from NILM WSIs, tiles are extracted
randomly from any region. (b) The tiles are then used to create random balanced batches used to
train the model, which is composed of a CNN and an RNN and are trained simultaneously. During
inference, the model is applied on all of the tiles of the WSIs in a sliding window fashion, and the
WSI label is predicted based on the maximum probability from all of the tiles.

WSIs tend to contain a large white background that is not relevant for the model.
We therefore start the preprocessing by eliminating the white background using Otsu’s
method [53] applied to the greyscale version of the WSIs.

For training and inference, we then proceeded by extracting 1024 × 1024 px tiles from
the tissue regions. We performed the extraction in real-time using the OpenSlide library [54].
To perform inference on a WSI, we used a sliding window approach with a fixed-size stride
of 512 × 512 px (half the tile size). This results in a grid-like output of predictions on all
areas that contained cells, which then allowed us to visualise the prediction as a heatmap of
probabilities that we can directly superimpose on top of the WSI. Each tile had a probability
of being neoplastic; to obtain a single probability that is representative of the WSI, we
computed the maximum probability from all the tiles.
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During training, we maintained an equal balance of positively and negatively labelled
tiles in the training batch. To do so, for the positive tiles, we extracted them randomly from
the annotated regions of neoplastic WSIs, such that within the 1024 × 1024 px, at least one
annotated cell was visible anywhere inside the tile. For the negative tiles, we extracted
them randomly anywhere from the tissue regions of NILM WSIs. We then interleaved
the positive and negative tiles to construct an equally balanced batch that was then fed
as input to the CNN. In addition, to reduce the number of false positives, given the large
size of the WSIs, we performed a hard mining of tiles, whereby at the end of each epoch,
we performed full sliding window inference on all the NILM WSIs in order to adjust the
random sampling probability such that false positively predicted tiles of NILM were more
likely to be sampled.

During training, we performed real-time augmentation of the extracted tiles using
variations of brightness, saturation, and contrast. We trained the model using the Adam
optimisation algorithm [55], with the binary cross entropy loss, beta1 = 0.9, beta2 = 0.999,
and a learning rate of 0.001. We applied a learning rate decay of 0.95 every 2 epochs.
We used early stopping by tracking the performance of the model on a validation set,
and training was stopped automatically when there was no further improvement on the
validation loss for 10 epochs. The model with the lowest validation loss was chosen as the
final model.

2.5. Interobserver Concordance Study

For the interobserver concordance study, a total of 10 WSIs (8 NILM cases and 2 neo-
plastic cases) of cervical LBC already reported by a clinical laboratory were retrieved from
the records. Using the in-house on-line web virtual slide application, a total of 16 cyto-
screeners (8 have over 10 years experiences and 8 have less than 10 years experiences) have
reviewed the 10 WSIs and reported in subclasses (NILM, ASC-US, ASC-H, LSIL, HSIL,
SCC, ADC).

2.6. Software and Statistical Analysis

The deep learning models were implemented and trained using the open-source
TensorFlow library [56].

To assess the cytopathological diagnostic concordance of cytoscreeners, we performed
the Fleiss’ kappa statistic, which is a measure of inter-rater agreement of a categorical
variable [57] between two or more raters. We calculated the kappa values using Microsoft
Excel 2016 MSO (16.0.13029.20232) 64 bit. The scale for interpretation is as follows: ≤0.0,
poor agreement; 0.01–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, mod-
erate agreement; 0.61–0.80, substantial agreement; 0.81–1.00, almost perfect agreement.
AUCs were calculated in python using the scikit-learn package [58] and plotted using
matplotlib [59]. The 95% CIs of the AUCs were estimated using the bootstrap method [60]
with 1000 iterations.

The true positive rate (TPR) was computed as

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as

FPR =
FP

FP + TN
(2)

where TP, FP, and TN represent true positive, false positive, and true negative, respectively.
The ROC curve was computed by varying the probability threshold from 0.0 to 1.0 and
computing both the TPR and FPR at the given threshold.
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2.7. Code Availability

We adapted the training code from https://github.com/tensorflow/models/tree/
master/official/vision/image_classification (accessed on 14 February 2020).

3. Results
3.1. High AUC Performance of WSI Evaluation of Neoplastic Cervical Liquid-Based Cytology
(LBC) Images

The aim of this retrospective study was to train a deep learning model for the classifi-
cation of neoplastic cervical WSIs. We trained a model that consists of a convolutional and
a recurrent neural network using a dataset of 1503 WSIs for training and 150 for validation.
We evaluated the model on three test sets with a combined total of 1468 WSIs. Figure 3
shows the resulting ROC curves, and Table 2 lists the resulting ROC AUC and log loss, as
well as the accuracy, sensitivity, and specificity computed at a probability threshold of 0.5.
Table 3 shows the confusion matrix. The model achieved a good performance overall, with
ROC AUCs of 0.96 (0.92–0.99) on the full agreement, 0.89 (0.81–0.96) on the clinical balance
reviewed, and 0.92 (0.89–0.94) on the equal balance reviewed test sets.

Figure 3. ROC curves for the three test sets.

Table 2. ROC AUC, log loss, accuracy, sensitivity, and specificity results on the test sets.

Full Agreement Clinical Balance Clinical Balance-rev. Equal Balance Equal Balance-rev.
ROC AUC 0.960 [0.921–0.988] 0.774 [0.679–0.841] 0.890 [0.808–0.963] 0.827 [0.795–0.852] 0.915 [0.892–0.937]
log loss 2.244 [2.021–2.458] 2.272 [2.141–2.412] 1.347 [1.238–1.465] 1.126 [0.994–1.264] 0.913 [0.794–1.055]
accuracy 0.907 [0.873–0.937] 0.629 [0.591–0.660] 0.903 [0.876–0.924] 0.759 [0.725–0.785] 0.885 [0.859–0.908]
sensitivity 0.850 [0.667–1.000] 0.816 [0.686–0.923] 0.886 [0.774–0.978] 0.624 [0.573–0.668] 0.839 [0.794–0.880]
specificity 0.911 [0.877–0.942] 0.619 [0.579–0.652] 0.904 [0.877–0.926] 0.893 [0.862–0.924] 0.920 [0.890–0.945]

https://github.com/tensorflow/models/tree/master/official/vision/image_classification
https://github.com/tensorflow/models/tree/master/official/vision/image_classification
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Table 3. Confusion matrix.

Predicted Label

NILM Neoplastic

Full agreement True label NILM 255 25
Neoplastic 3 17

Clinical balance True label NILM 441 271
Neoplastic 7 31

Clinical balance-rev. True label NILM 443 47
Neoplastic 4 31

Equal balance True label NILM 335 40
Neoplastic 141 234

Equal balance-rev. True label NILM 335 29
Neoplastic 45 234

3.2. True Positive Prediction

Our deep learning model satisfactorily predicted neoplastic epithelial cells (Figure 4C–G)
in cervical LBC (Figure 4A,B) specimen. The heatmap image shows true positive predictions
(Figure 4B–D) of neoplastic epithelial cells. In contrast, in low probability tiles (Figure 4H,I),
two independent cytoscreeners confirmed there were no neoplastic epithelial cells.

Figure 4. A representative example of neoplastic true positive prediction outputs on a liquid-based
cytology (LBC) case from test sets. In the neoplastic whole-slide image (WSI) of LBC specimen (A), the
heatmap image (B) shows a true positive prediction of neoplastic epithelial cells in high probability
tiles (C,D), which correspond, respectively, to neoplastic epithelial cells (E–G) equivalent to HSIL
(high-grade squamous intraepithelial lesion). On the other hand, in low probability tiles (H,I) of the
same heatmap image (B), there are no evidence of neoplastic cells.

3.3. True Negative Prediction

Our model satisfactorily predicted NILM cases (Figure 5A,B) in cerevical LBC speci-
men. The heatmap image shows true negative predictions (Figure 5B,D,E) of neoplastic
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epithelial cells. In both zero (Figure 5C) and very low probability tiles (Figure 5D,E), there
are no neoplastic epithelial cells.

Figure 5. A representative example of neoplastic true negative prediction outputs on a liquid-based
cytology (LBC) case from test sets. In the NILM (negative for intraepithelial lesion or malignancy)
whole slide image (WSI) of LBC specimen (A), the heatmap image (B) shows true negative prediction of
neoplastic epithelial cells which correspond, respectively, to non-neoplastic epithelial cells (C). Moreover,
in very low probability tiles (D,E) of the same heatmap image (B), there are no evidence of neoplastic cells.

3.4. False Positive Prediction

A cytopathologically diagnosed NILM case (Figure 6A) was false positively predicted
for neoplastic epithelial cells (Figure 6B). The heatmap image (Figure 6B) shows false
positive predictions of neoplastic epithelial cells (Figure 6C,E) with high probabilities.
Cytopathologically, there are parabasal cells with a high nuclear cytoplasmic (N/C) ratio
(Figure 6C,D) and cell clusters of squamous epithelial cells with cervical gland cells with
high N/C ratios (Figure 6E), which could be a major cause of false positive.

Figure 6. A representative example of neoplastic false positive prediction outputs on a liquid-based
cytology (LBC) case from test sets. Cytopathologically, (A) is a NILM (negative for intraepithelial
lesion or malignancy) whole-slide image (WSI) of LBC specimen. The heatmap image (B) exhibited
false positive predictions of neoplastic tiles (C,E). In (C), there are parabasal cells with a slightly high
nuclear cytoplasmic (N/C) ratio with dense chromatin appearance due to the cellular overlapping (D).
In (E), there are cell clusters of squamous epithelial cells and cervical gland cells with slightly high
N/C ratios and a dense chromatin appearance due to the cellular overlapping.
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3.5. Interobserver Variability

To evaluate the practical interobserver variability among cytoscreeners, we have asked
a total of 16 cytoscreeners (8 are over 10 years experiences and 8 are less than 10 years
experiences) to review the same 10 LBC WSIs, which consist of 8 NILM and 2 neoplastic
cases already diagnosed by a clinical laboratory. The results of each cytoscreener were
summarised in Table 4. The Fleiss’ kappa statistics were summarised in Table 5. There
was poor to moderate concordance in assessing subclass, with Fleiss’ kappas of NILM
(range: 0.042–0.755), neoplastic (range: 0.098–0.500), and all cases (range: 0.364–0.716). On
the other hand, there was poorly to almost perfect concordance in assessing binary class,
with Fleiss’ kappas of NILM (range: 0.073–0.815), neoplastic (1.000), and all cases (range:
0.568–0.861). Interestingly, there was a robust higher concordance in both subclass and
binary class among cytoscreeners over 10-year experiences. However, overall, there was
poor concordance in assessing NILM cases (range: 0.042–0.073).

Table 4. Cytopathological evaluations for 10 LBC WSIs by diagnostic report (Dx) and 16 cytoscreeners
(CS) with their age and years of experience.

Age Exp. (Years) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

Dx NILM NILM NILM NILM NILM NILM NILM NILM HSIL LSIL

30s

≥10

CS1 NILM NILM NILM NILM NILM NILM NILM NILM HSIL ASC-H
50s CS2 NILM NILM NILM ASC-H NILM NILM HSIL ASC-H HSIL HSIL
50s CS3 NILM NILM NILM NILM NILM NILM NILM ASC-US HSIL LSIL
40s CS4 NILM NILM NILM ASC-US NILM NILM NILM ASC-US HSIL SCC
30s CS5 NILM NILM NILM NILM NILM NILM NILM NILM HSIL ASC-US
30s CS6 NILM ASC-US NILM NILM NILM NILM NILM NILM HSIL HSIL
60s CS7 NILM NILM NILM NILM NILM NILM NILM NILM HSIL ASC-H
40s CS8 NILM NILM NILM NILM NILM NILM NILM NILM HSIL ASC-US

20s

<10

CS9 NILM NILM NILM NILM NILM NILM NILM NILM HSIL LSIL
20s CS10 NILM NILM NILM NILM NILM NILM NILM NILM LSIL LSIL
30s CS11 NILM NILM NILM NILM ASC-H NILM NILM HSIL LSIL HSIL
20s CS12 NILM ASC-US ASC-H NILM NILM NILM NILM LSIL SCC HSIL
40s CS13 NILM NILM HSIL NILM NILM NILM NILM ASC-US HSIL ASC-H
30s CS14 NILM NILM LSIL NILM NILM NILM NILM NILM HSIL LSIL
20s CS15 NILM NILM NILM NILM NILM NILM LSIL NILM HSIL ASC-US
20s CS16 NILM NILM NILM ASC-US LSIL NILM NILM ASC-US HSIL SCC

Table 5. Interobserver variability: kappa.

Classification Dx Report 16 Cytoscreeners 8 Cytoscreeners (≥10 Years of Exp.)

NILM 0.042 (slight) 0.755 (substantial)
Subclass Neoplastic 0.098 (slight) 0.500 (moderate)

All cases 0.364 (fair) 0.716 (substantial)

NILM 0.073 (slight) 0.815 (almost perfect)
Binary Neoplastic 1.000 (complete) 1.000 (complete)

All cases 0.568 (moderate) 0.861 (almost perfect)

4. Discussion

In this pilot study, we trained a deep learning model for the classification of neoplastic
cells in WSIs of LBC specimens. The model achieved overall a good performance, with
ROC AUCs of 0.96 (0.92–0.99) on the full agreement, 0.89 (0.81–0.96) on the clinical balance
reviewed, and 0.92 (0.89–0.94) on the equal balance reviewed test sets.

Looking at the interobserver concordance among cytoscreeners in Table 4, it is obvious
that there is considerable interobserver variability, with the poor concordance in NILM
cases even for binary classification (NILM vs. neoplastic). In addition, there is the problem
of human fatigue due to the continuous observation of a large number of cases. Therefore,
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when considering future accuracy control, it may be necessary to conduct screening using
deep learning model(s) with guaranteed accuracy, such as the results of this study, at least
in the binary classification (NILM vs. neoplastic), and to conduct detailed assessments by
cytoscreeners and cytopathologists in the subclassification (e.g., NILM, ASC-US, ASC-H,
LSIL, HSIL, SCC, and ADC).

From our results in Figure 2, it was obvious that there was interobserver variability
among cytoscreeners in different clinical laboratories and hospitals. Clinical balance and
equal balance test sets were prepared based on diagnostic (screening) reports from a clinical
laboratory. The only difference between clinical balance and clinical balance-reviewed
(same as equal balance and equal balance-reviewed) was whether it was additionally
reviewed by two more cytoscreeners in different clinical laboratories and hospitals or
not. All scores (ROC-AUC, accuracy, sensitivity, and specificity) were increased in clinical
balance-reviewed and equal balance-reviewed test sets as compared to clinical balance and
equal balance test sets (Figure 2). Hence, our deep learning model would be helpful for
standardising in the screening process.

In routine cervical cancer screening at clinical laboratories and hospitals, it is difficult
to introduce a screening programme dependent on cervical smears due to poor human
cytoscreener resources. LBC techniques opened new possibilities for a systemic cervical
cancer screening. LBC slides are amenable to high throughput automated analysis. Espe-
cially for the detection of rare events on LBC slides, WSI and subsequent image analysis is
of crucial importance for guaranteeing a standardised high-quality read out [25]. Practical
automated cervical cytology screening devices have been under development since the
1950s. The technological development in semi-automated screening devices for cervical
cancer screening is very rapid; however, currently, no machines are available to provide
a fully automated screening by computer without human intervention. There are two
FDA-approved semi-automated slide scanning devices on the market; these systems are
the BD FocalPoint GS Imaging System and the HOLOGIC ThinPrep Imaging System. Both
are designed to perform computer-assisted analysis of cellular images followed by location-
guided screening of limited fields of view. FocalPoint-assisted smear reading has been
proposed prior to conventional manual reading; the latter may be unnecessary for cases
reported as No Further Review (NFR) and would be required for cases reported as Review
(REV) [61]. FocalPoint-assisted practice showed statistically superior sensitivity and speci-
ficity when compared to conventional manual smear screening for the detection of HSIL
and LSIL [14,62,63]. However, ASC-US sensitivity and specificity were not significantly
different between FocalPoint-assisted practice and conventional screening [62]. Overall,
in neoplastic slides (ASC-US, LSIL, and HSIL) by FocalPoint-assisted practice, sensitivity
was in the range of 81.1–86.1% and specificity was in the range of 84.5–95.1% [62]. The
other study showed that FocalPoint-assisted reading was comparable to conventional
reading, and the very low observed negative predictive value of an NFR report (0.02%)
suggested that these cases might safely return to periodic screening [61]. The ThinPrep
Imaging System (TIS) is an automated system that uses location-guided screening to assist
cytoscreeners in reviewing a ThinPrep Pap LBC slides [64]. TIS scans the LBC slides and
identifies 22 fields of view (FOVs) on each slide based on optical density measurements
and other features [64]. It has been reported that TIS was ideally suited to the rapid
screening of negative cases; however, the sensitivity and specificity of the TIS (85.19% and
96.67%, respectively) were equivalent to those of manual screening (89.38% and 98.42%,
respectively) [65]. In another study, for diagnostic categories of neoplastic slides (ASC-US,
LSIL, and HSIL) by TIS practice, sensitivity was in the range of 79.2–82.0% and specificity
was in the range of 97.8–99.6% [64].

As shown in Figure 2, our LBC cervical cancer screening deep learning model exhibited
around 90% accuracy (in the range of 89–91%), 86% sensitivity (in the range of 84–89%),
and 91% specificity (in the range of 90–92%) in full agreement, clinical balance-reviewed,
and equal balance-reviewed test sets; those scores were as well or better than the existing
assistance systems mentioned above.
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5. Conclusions

In the present study, we have trained a deep learning model for the classification of
neoplastic cervical LBC in WSIs. We have evaluated the model on three test sets achieving
ROC-AUCs for WSI diagnosis in the range of 0.89-0.96. The main advantage of our deep
learning model is that the model can be used to evaluate the cervical LBC at the WSI level.
Therefore, our model is able to infer whether the cervical LBC WSI is NILM (non-neoplastic)
(Figure 5) or neoplastic (Figure 4). This makes it possible to use a deep learning model
such as ours as a tool to aid in the cervical screening process, which could potentially
be used to rank the cases by order of priority. After which the cytoscreeners will need
to perform full screening and subclassification (e.g., ASC-US, ASC-H, LSIL, HSIL, SCC,
ADC) on neoplastic output cases after the primary screening by our deep learning model,
which could reduce their working time as the model would have highlighted the potential
suspected neoplastic regions, and they would not have to perform an exhaustive search
through the entire WSI.
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