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Simple Summary: The objective of the study was to evaluate the radiomics features obtained by 
contrast MRI studies as prognostic biomarkers in colorectal liver metastases patients to predict clin-
ical outcomes following liver resection. We demonstrated a good performance considering the sin-
gle textural significant metric in the identification of front of tumor growth (expansive versus infil-
trative) and tumor budding (high grade versus low grade or absent), in the recognition of mucinous 
type and in the detection of recurrences. Moreover, considering linear regression models or neural 
network classifiers in a multivariate approach was possible to increase the performance in terms of 
accuracy, sensitivity, and specificity. 

Abstract: Purpose: To assess radiomics features efficacy obtained by arterial and portal MRI phase 
in the prediction of clinical outcomes in the colorectal liver metastases patients, evaluating recur-
rence, mutational status, pathological characteristic (mucinous and tumor budding) and surgical 
resection margin. Methods: This retrospective analysis was approved by the local Ethical Commit-
tee board, and radiological databases were used to select patients with colorectal liver metastases 
with pathological proof and MRI study in a pre-surgical setting after neoadjuvant chemotherapy. 
The cohort of patients included a training set (51 patients with 61 years of median age and 121 liver 
metastases) and an external validation set (30 patients with single lesion with 60 years of median 
age). For each segmented volume of interest on MRI by two expert radiologists, 851 radiomics fea-
tures were extracted as median values using the PyRadiomics tool. Non-parametric Kruskal-Wallis 
test, intraclass correlation, receiver operating characteristic (ROC) analysis, linear regression mod-
elling and pattern recognition methods (support vector machine (SVM), k-nearest neighbors 
(KNN), artificial neural network (NNET), and decision tree (DT)) were considered. Results: The best 
predictor to discriminate expansive versus infiltrative tumor growth front was wave-
let_LHH_glrlm_ShortRunLowGrayLevelEmphasis extracted on portal phase with accuracy of 82%, 
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sensitivity of 84%, and specificity of 77%. The best predictor to discriminate tumor budding was 
wavelet_LLH_firstorder_10Percentile extracted on portal phase with accuracy of 92%, a sensitivity 
of 96%, and a specificity of 81%. The best predictor to differentiate the mucinous type of tumor was 
the wavelet_LLL_glcm_ClusterTendency extracted on portal phase with accuracy of 88%, a sensi-
tivity of 38%, and a specificity of 100%. The best predictor to identify the recurrence was the wave-
let_HLH_ngtdm_Complexity extracted on arterial phase with accuracy of 90%, a sensitivity of 71%, 
and a specificity of 95%. The best linear regression model was obtained in the identification of mu-
cinous type considering the 13 textural significant metrics extracted by arterial phase (accuracy of 
94%, sensitivity of 77% and a specificity of 99%). The best results were obtained in the identification 
of tumor budding with the eleven textural significant features extracted by arterial phase using a 
KNN (accuracy of 95%, sensitivity of 84%, and a specificity of 99%). Conclusions: Our results con-
firmed the capacity of radiomics to identify as biomarkers and several prognostic features that could 
affect the treatment choice in patients with liver metastases in order to obtain a more personalized 
approach. 

Keywords: colorectal liver metastasis; magnetic resonance imaging; radiomics; pattern recognition; 
outcome prediction 
 

1. Introduction 
Radiomics is a promising area that investigates the capability of quantitative features 

extracted by medical images as biomarkers to assess the biology of pathological processes 
at microscopic levels. These data can be converted into image-based marks to spread di-
agnostic, prognostic and predictive accuracy in oncological setting [1–8]. Radiomics could 
theoretically support tumor detection, evaluation of prognosis, estimate treatment re-
sponse [9–14]. Radiomics is designed to be used in decision support of precision medicine, 
using standard of care images that are routinely acquired in clinical practice. It presents a 
cost-effective and highly feasible addition for clinical decision support. Moreover, this 
analysis non-invasively characterize the overall tumor accounting for heterogeneity, in-
terrogating the entire tumor allows the expression of microscopic genomic and prote-
omics patterns in terms of macroscopic image-based features [15–18]. Moreover, this anal-
ysis gives prognostic and/or predictive biomarker allowing for a fast, low-cost, and re-
peatable tool for longitudinal monitoring [19,20]. 

The association of radiomics and molecular features, so named radiogenomics, 
shows clear effects for management of cancer patients. Although several studies have as-
sessed the rule of radiogenomics in hepatocellular carcinoma, only a few have tested the 
radiomics rule in colorectal cancer metastatic lesions in the liver [1–3]. Today, radiologists 
play an important role in the multidisciplinary team of colorectal patients with liver me-
tastases. During the staging and surveillance phase, it is critical to identify all liver lesions, 
since this is related to proper patient management. Additionally, after conversion therapy, 
all lesions assessed at first exam should be re-evaluated to identify responders and non-
responders as soon as possible [21–25]. Although computed tomography (CT) is habitu-
ally the diagnostic tool employed for staging and surveillance, magnetic resonance imag-
ing (MRI) is a valuable diagnostic technique in oncologic settings, since it is the only tech-
nique that allows evaluating of morphological and functional features of tumor status, 
providing quantitative parameters that improve the characterization of a lesion and the 
assessment after therapy [21–24]. Moreover, several liver-specific contrast agents have 
been inserted to improve the hepatic lesions detection and characterization. Gadobenate 
dimeglumine (Gd-BOPTA) and gadolinium ethoxybenzyl diethylenetria-mine pen-
taacetic acid (Gd-EOB-DTPA) allow obtaining information about the vascularization of 
lesions in the different phases of contrast circulation and functional parameters in the de-
layed hepatobiliary phase (EOB-phase). 
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In this scenario, the possibility to compare radiomic data extracted by MRI in the 
identification of recurrence, mutational status, pathological characteristics (mucinous and 
tumor budding), and surgical resection margin could provide significant benefits respect 
to qualitative evaluation. In fact, radiomics predictors could permit an effective treatment 
selection in the perspective of personalized medicine, treatment response prediction, in 
the differentiation of favorable subsets of patients from those with poor prognosis, and 
selecting patients that may benefit from surgical treatment. In the present study, we as-
sessed the radiomics features efficacy obtained by contrast (arterial and portal phase) MRI 
to predict clinical outcomes following liver resection in colorectal liver metastases pa-
tients. 

2. Materials and Methods 
2.1. Dataset Characteristics 

This study was approved by the local ethical committee board that renounces the 
patient informed consent due to the retrospective nature of the study. The study was per-
formed in accordance with relevant guidelines and regulations. 

Patient selection was made considering internal radiological databases in the period 
from January 2018 to May 2021 using the following criteria: (1) liver pathological proven 
metastases; (2) contrast MRI study in pre-surgical setting after neoadjuvant chemother-
apy; (3) MR images of high quality and (4) a follow-up CT scan of at least six months after 
surgery. The exclusion criteria were: (1) discordance among the imaging diagnosis and 
the pathological ones, (2) no contrast MRI studies and (c) no high-quality MR images. 

The analyzed patients included a training set and an external validation set. The in-
ternal training set included 51 patients (18 women and 33 men) with 61 years of median 
age (range 35–82 years) and 121 liver metastases. The validation cohort, provided by “Ca-
reggi Hospital”, Florence, Italy, consisted of a total of 30 patients with single lesion (10 
women and 20 men) with 60 years of median age (range 40–78 years). The patient charac-
teristics are summarized in Table 1. 

Table 1. Characteristics of the study population (81 patients). 

Patient Description Numbers (%)/Range 

Gender  
Men 53 (65.4%) 

Women 28 (34.6%) 
Age 61 y; range: 35–82 y 

Primary cancer site  
Colon 52 (64.2%) 

Rectum 29 (35.8%) 
Prior Chemotherapy 81 (100%) 

Hepatic metastases description  
Patients with single nodule 52 (64.2%) 

Patients with multiple nodules  29 (35.8%)/range: 2–13 metastases 
Nodule size (mm) mean size 36.4 mm; range 7–58 mm 

Front of tumor growth  
Expansive 30 (37.0%) 
Infiltrative  51 (63.0%) 

Tumor Budding  
Absent 12 (14.8%) 

Low grade 14 (17.3%) 
High grade 55 (67.9%) 

Mucinous carcinoma 25 (30.9%) 
Recurrence 19 (23.5%) 
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(new liver metastases)  
RAS mutation 42 (51.9%) 

2.2. MR Imaging Protocol 
A Magnetom Symphony 1.5 T scanner (Siemens, Erlangen, Germany) and a Magne-

tom Aera (Siemens) 1.5 T scanner equipped with an 8-element body and phased array 
coils were used to acquire an MRI study that includes sequences before and after intrave-
nous (IV) contrast agent (CA) injection. 

In this study, radiomic features extraction was made on volumetric interpolated 
breath-hold examination (VIBE) T1-weighted SPAIR with controlled respiration used to 
acquire images after IV CA injection with a liver-specific CA (0.1 mL/kg of Gd-EOB-BPTA, 
Primovist, Bayer Schering Pharma, Berlin, Germany) as descripted in [26,27]. 

The VIBE T1-W sequence was acquired with two different flip angles (10 and 30 de-
grees). A power injector (Spectris Solaris® EP MR, MEDRAD, Inc., Indianola, IA, USA) 
was used to administer the CA at an infusion rate of 2 mL/s. VIBE T1-w images were 
acquired in four different phases: arterial phase (35 s delay), portal venous phase (90 s), 
late/transitional phase (120 s), and hepatobiliary excretion phase (20 min). MRI protocol 
details are reported in Table 2. 

Table 2. MR Sequence parameters. 

Sequence Orientation TR/TE/FA 
(ms/ms/deg.) 

AT 
(min) 

Acquisition 
Matrix 

ST/Gap (mm) FS 

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4/0 without 

HASTE T2-W  Axial 1500/90/170 0.36 320 × 320 5/0 
without and with 

(SPAIR) 
HASTE T2w Coronal 1500/92/170 0.38 320 × 320 5/0 without 

In-Out phase T1-
W Axial 160/2.35/70 0.33 256 × 192 5/0 without 

VIBE 
T1-W_FA10 Axial 4.80/1.76/10 0.18 320 × 260 3/0 with (SPAIR) 

VIBE 
T1-W_FA30 Axial 4.80/1.76/30 0.18 320 × 260 3/0 with (SPAIR) 

Note: W = weighted, TR = repetition time, TE = echo time, FA = flip angle, AT = acquisition time, 
SPAIR = spectral adiabatic inversion recovery, VIBE = volumetric interpolated breath hold exami-
nation, HASTE = half-Fourier-acquired single-shot turbo spin echo. 

2.3. Follow-Up CT Scan 
CT studies were performed using a scanner with 64 detectors (Optima 660, GE 

Healthcare, Chicago, IL, USA). The scan data was 120 kVp, 100–470 mA (NI 16.36), slice 
thickness was 2.5 mm, and table speed/rotation was 0.984/1 mm. The liver protocol in-
cluded a quadruple phase protocol, counting unenhanced, arterial, portal, and equilib-
rium phases. A non-ionic contrast agent (120 mL of iomeprol, Iomeron 400, Bracco, Milan, 
Italy) was injected at a rate of 3 mL/s using an automatic power injector (Empower CTA, 
EZ-EM Inc., New York, NY, USA). The arterial phase was started 19 s after the descending 
aorta attenuation reached 100 HU, measured by the bolus localization method. 

2.4. Image Processing 
Regions of interest (ROIs) were manually drawn slice-by-slice by two expert radiol-

ogists with 22 and 15 years of abdominal imaging experience, respectively, first separately 
and then together and in accordance with each other. Region of interest segmentation was 
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performed avoiding encircling any distortion artefacts. For each volume of interest, radi-
omics features were extracted as median values, reducing the possible influence by arte-
facts. 

The segmentation was performed on arterial phase and portal phase of VIBE T1-
W_FA10. For these reasons, we obtained the results both on arterial phase volume and on 
portal phase volume. 

Manual definition of the ROIs was made using the segmentation tool of 3DSlicer 4.11 
(Figure 1) [https://www.slicer.org/, accessed on 20 December 2021]. 

 
Figure 1. An example of manual definition of the ROIs made using the segmentation tool of 3DSlicer 
on VIBE T1-W_FA10. 

2.5. MRI Post-Processing with Pyradiomic Tool 
Eight hundred fifty-one radiomic features were extracted using PyRadiomics v3.0.1 

[28] and included first-order statistics, shape-based (3D) metrics, shape-based (2D) fea-
tures, gray level co-occurence matrix features, gray level run length matrix features, gray 
level size zone matrix features, neighboring gray tone difference matrix features and gray 
level dependence matrix parameters. The extracted features are in compliance with fea-
ture definitions as described by the Imaging Biomarker Standardization Initiative (IBSI) 
[29] and reported in [https://readthedocs.org/projects/pyradiomics/downloads/, accessed 
on 20 December 2021]. Radiomics analysis was performed blinded to the clinical and 
pathological data. 

2.6. Statistical Analysis 
Statistical analysis included univariate and multivariate approaches. 
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2.6.1. Univariate Analysis 
The observer variability assessment was performed by calculating the intraclass cor-

relation coefficient. 
A non-parametric Kruskal-Wallis test was performed to identify statistically signifi-

cant differences among clinical parameters and radiomic metrics of two groups (front of 
tumor growth: expansive versus infiltrative; tumor budding: high-grade versus low-
grade or absent; mucinous type; and presence of recurrence). 

Receiver operating characteristic (ROC) analysis was performed, and the Youden in-
dex was used to individuate the optimal cutoff value for each feature in order to calculate 
area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and accuracy. 

The McNemar test was used to calculate statistically significant differences among 
dichotomy data of the performance results. 

2.6.2. Multivariate Analysis 
A multivariate analysis was performed in order to identify the combinations of vari-

ables which best predict the outcomes: (1) front of tumor growth: expansive versus infil-
trative; (2) tumor budding: high-grade versus low-grade or absent; (3) mucinous type; and 
(4) presence of recurrence. 

Given the high number of textural features, a first selection of variables was made 
based on the results obtained from the univariate analysis (Table 3). Therefore, there was 
no waiting for overfitting in our study because adequate feature selection was made ac-
cording to sample size. 

Table 3. (Sub)datasets, variable selection criteria and predictors combinations. 

Dataset Outcome variable Predictors Accuracy Threshold on Univari-
ate Analysis 

Dataset 1 Front of tumor growth Radiomic metrics on lesion by VIBE_FA10 ≥ 0.75 
Dataset 2 Tumor budding  Radiomic metrics on lesion by VIBE_FA10 ≥ 0.80 
Dataset 3 Mucinous Type Radiomic metrics on lesion by VIBE_FA10 ≥ 0.80 
Dataset 4 Recurrence presence Radiomic metrics on lesion by VIBE_FA10 ≥ 0.80 
Dataset 5 Front of tumor growth Radiomic metrics on lesion by VIBE_FA30 ≥ 0.80 
Dataset 6 Tumor budding  Radiomic metrics on lesion by VIBE_FA30 ≥ 0.85 
Dataset 7 Mucinous Type Radiomic metrics on lesion by VIBE_FA30 ≥ 0.85 
Dataset 8 Recurrence presence Radiomic metrics on lesion by VIBE_FA30 ≥ 0.85 

Linear regression modelling was used to assess the best linear combination of fea-
tures considered as predictors for each outcome (Table 3). The linear regression model 
was used to assess the accuracy of linear combination, and ROC analysis with Youden 
index was used to identify the optimal cut-off value, sensitivity, specificity, PPV, and 
NPV. 

Moreover, pattern recognition methods were used in the context of a multivariate 
artificial intelligence approach. The tested classifiers with a 10-k fold cross-validation 
were support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network 
(NNET), and decision tree (DT)). A description of classifiers can be found in [30]. The best 
classifier was chosen considering the highest area under ROC curve and highest accuracy. 
An external validation cohort was used to validate the findings of the best classifier found 
in the training step. 

The statistical analyses were performed using the Statistics Toolbox and Machine 
Toolbox of MATLAB R2021b (MathWorks, Natick, MA, USA) considering a p value ≤ 0.05 
as significant. 
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3. Results 
3.1. Univariate Analysis Findings 

The intraclass correlation coefficients median value for extracted features was 0.94 
(range 0.88–0.98). The size of the lesion did not affect the values of the extracted metrics 
(p-value > 0.05 at the Kruskal-Wallis test considering lesions < 2 cm and ≥ 2 cm). 

Among significant features to differentiate the tumor growth front in the arterial 
phase, 7 textural parameters obtained an accuracy ≥ 75% Among these 7 features, the best 
performance to discriminate expansive versus infiltrative front of tumor growth was ob-
tained by the wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis with accuracy of 
79%, sensitivity of 95%, specificity of 51%, PPV and NPV of 77% and 85%, respectively, 
and a cut-off value of 0.12 (Table 4). 

Table 4. Findings by univariate analysis with ROC performance results. 

Significant 
Textural 
Features 
Extracted 

by Arterial 
Phase 

Respect to 
the Front of 

Tumor 
Growth  

by Portal 
Phase 

Respect to 
the Front of 

Tumor 
Growth 

by Arterial 
Phase 

Respect to 
the Tumor 
Budding  

by Portal 
Phase 

Respect to 
the Tumor 
Budding  

by Arterial 
Phase 

Respect to 
the 

Mucinous 
Type  

by Portal 
Phase 

respect to 
the 

Mucinous 
Type  

by Arterial 
Phase 

Respect to 
Recurrence  

by Portal 
Phase 

Respect to 
Recurrence  

wavelet_LH
H_glrlm_Sh
ortRunLow
GrayLevelE

mphasis 

wavelet_LH
H_glrlm_Sh
ortRunLow
GrayLevelE

mphasis 

wavelet_LH
H_firstorder
_Minimum 

wavelet_LL
H_firstorder
_10Percentil

e 

wavelet_HL
H_glszm_La
rgeAreaHig
hGrayLevel
Emphasis 

wavelet_LL
L_glcm_Clu
sterTendenc

y 

wavelet_HL
H_ngtdm_C
omplexity 

wavelet_LL
H_glcm_Dif
ferenceEntr

opy 

AUC 0.69 0.80 0.71 0.80 0.59 0.70 0.74 0.74 
Sensitivity 0.95 0.84 0.98 0.96 0.35 0.38 0.71 0.71 
Specificity 0.51 0.77 0.52 0.81 0.99 1.00 0.95 0.94 

PPV 0.77 0.85 0.85 0.93 0.90 1.00 0.79 0.81 
NPV 0.85 0.74 0.89 0.86 0.85 0.86 0.90 0.90 

Accuracy 0.79 0.82 0.86 0.92 0.85 0.88 0.90 0.89 
Cut-off 0.12 0.12 −41.76 −37.14 −0.02 408.22 3.34 1.54 

Among significant features to differentiate the front of tumor growth in portal phase, 
9 textural parameters obtained an accuracy ≥ 80%. Among these 9 features, the best per-
formance to discriminate expansive versus infiltrative front of tumor growth was ob-
tained by the wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis (the same feature 
of previous case) with accuracy of 82%, sensitivity of 84%, specificity of 77%, PPV and 
NPV of 85% and 74%, respectively, and a cut-off value of 0.12 (Table 4). 

Among significant features to differentiate the tumor budding on arterial phase, 11 
textural parameters obtained an accuracy ≥ 80%. Among these 11 features, the best per-
formance to discriminate tumor budding was obtained by the wave-
let_LHH_firstorder_Minimum with accuracy of 86%, sensitivity of 98%, specificity of 52%, 
PPV and NPV of 85% and 89%, respectively, and a cut-off value of −41.76 (Table 4). 

Among significant features to differentiate the tumor budding in the portal phase, 13 
textural parameters obtained an accuracy ≥ 85%. Among these 13 features, the best per-
formance to discriminate tumor budding was obtained by the wave-
let_LLH_firstorder_10Percentile with accuracy of 92%, sensitivity of 96%, specificity of 
81%, PPV and NPV of 93% and 86%, respectively, and a cut-off value of −37.14 (Table 4). 

Among significant features to differentiate the mucinous type of tumor in the arterial 
phase, 13 textural parameters obtained an accuracy ≥ 80%. Among these 13 features, the 
best performance to differentiate the mucinous type of tumor was obtained by the wave-
let_HLH_glszm_LargeAreaHighGrayLevelEmphasis with accuracy of 85%, sensitivity of 
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35%, specificity of 99%, PPV and NPV of 90% and 85%, respectively, and a cut-off value 
of −0.02 (Table 4). 

Among significant features to differentiate the mucinous type of tumor in the portal 
phase, 12 textural parameters obtained an accuracy ≥ 85%. Among these 12 features, the 
best performance to differentiate the mucinous type of tumor was obtained by the wave-
let_LLL_glcm_ClusterTendency with accuracy of 88%, sensitivity of 38%, specificity of 
100%, PPV and NPV of 100% and 86%, respectively, and a cut-off value of 408.22 (Table 
4). 

Among significant features to identify tumor recurrence in the arterial phase, 10 tex-
tural parameters obtained an accuracy ≥ 80%. Among these 10 features, the best perfor-
mance to identify tumor recurrence was obtained by the wavelet_HLH_ngtdm_Complex-
ity with accuracy of 90%, sensitivity of 71%, specificity of 95%, PPV and NPV of 79% and 
90%, respectively, and a cut-off value of 3.34 (Table 4). 

Among significant features to identify tumor recurrence in the portal phase, 11 tex-
tural parameters obtained an accuracy ≥ 85%. Among these 11 features, the best perfor-
mance to identify tumor recurrence was obtained by the LHL_glcm_Correlation with ac-
curacy of 89%, sensitivity of 71%, specificity of 94%, PPV and NPV of 81% and 90%, re-
spectively, and a cut-off value of 1.54 (Table 4). 

3.2. Multivariate Analysis Findings 
3.2.1. Linear Regression Analysis Findings 

Linear regression models obtained good results in each considered classification 
problem (1. Front of tumor growth: expansive versus infiltrative; 2. tumor budding: high-
grade versus low-grade or absent; 3. mucinous type and 4. presence of recurrence) with 
accuracy in the range of 83−94% (Tables 5 and 6, Figures 2 and 3). The best linear regres-
sion model was obtained in the identification of mucinous type considering the 13 textural 
significant metrics extracted by the arterial phase (AUC of 0.93, accuracy of 94%, sensitiv-
ity of 77%, and specificity of 99%) and in the identification of tumor budding considering 
the 11 textural significant metrics extracted by the arterial phase (AUC of 0.92, accuracy 
of 93%, sensitivity of 94%, and specificity of 90%). 

Table 5. Linear regression and pattern recognition analysis with significant features from the arterial phase. 

Linear Regression of Significant Features Extracted 
by the Arterial Phase 

AUC Sensitivity Specificity PPV NPV Accuracy Cut-off 

respect to the front of tumor growth 0.74 0.89 0.89 0.93 0.83 0.89 1.45 
respect to the budding 0.92 0.94 0.90 0.97 0.85 0.93 1.38 

respect to the mucinous type 0.93 0.77 0.99 0.95 0.94 0.94 0.37 
respect to the recurrence 0.81 0.58 0.97 0.86 0.87 0.87 0.43 

Pattern Recognition Analysis with Significant 
Features 

Dataset AUC Accuracy Sensitivity Specificity 
Training 

Time [sec] 
Model Type and 

Parameters 

The best classifier is a KNN considering significant 
features extracted on arterial phase respect each of 

outcome (front of tumor growth, budding, 
mucinous type, recurrence) 

Training set 0.97 0.91 0.91 0.91 2.34 
Weighted KNN; 

number of 
neighbors:10; 

distance metric: 
Euclidean; 

distance weight: 
squared inverse 

Validation set 0.96 0.89 0.85 0.91  

Training set 0.95 0.95 0.84 0.99 4.27 
Validation set 0.95 0.95 0.8 1  

Training set 0.87 0.88 0.97 0.56 8.55 
Validation set 0.91 0.91 0.96 0.73  

Training set 0.96 0.92 0.97 0.77 10.38 
Validation set 0.93 0.92 1 0.66  

Table 6. Results of linear regression and pattern recognition analysis with significant features from the portal phase. 

Linear Regression of Significant Features 
Extracted by The Portal Phase 

AUC Sensitivity Specificity PPV NPV Accuracy Cut-off 

respect to the front of tumor growth 0.88 0.80 0.89 0.92 0.73 0.83 1.58 
respect to the budding 0.82 0.93 0.67 0.83 0.86 0.83 1.50 

respect to the mucinous type 0.88 0.77 0.96 0.83 0.94 0.92 0.36 
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respect to the recurrence 0.92 0.94 0.82 0.64 0.97 0.85 0.28 

Pattern recognition analysis results Dataset AUC Accuracy Sensitivity Specificity 
Training 
time [sec] 

Model Type and 
parameters 

The best classifier is a KNN considering 
significant features extracted on portal phase 

respect to the front of tumor growth 

Training set 0.96 0.90 0.91 0.89 13.4 Weighted KNN; 
number of 

neighbors:10; distance 
metric: Euclidean; 
distance weight: 
squared inverse 

Validation set 0.97 0.92 0.84 0.97 9.74 

The best classifier is a decision tree 
considering significant features extracted on 

portal phase respect to the budding 

Training set 0.99 0.91 0.81 0.96  Maximum number of 
splits: 100 

Split criterion: Gini’s 
diversity index 

Surrogate decision 
splits: Off 

Hyperparameter 
options disabled 

Validation set 0.97 0.93 0.84 0.97 3.4 

The best classifier is a KNN considering 
significant features extracted on portal phase 

respect to the to the mucinous type 

Training set 0.89 0.93 0.8 1  Weighted KNN; 
number of 

neighbors:10; distance 
metric: Euclidean; 
distance weight: 
squared inverse 

Validation set 0.92 0.91 0.99 0.62 11.8 
Training set 0.98 0.92 1 0.62  

The best classifier is a KNN considering 
significant features extracted on portal phase 

respect to the recurrence 
Validation set 0.94 0.93 0.99 0.77 10.1 

 
Figure 2. ROC curves of linear regression analysis with respect to the front of tumor growth (A), 
tumor budding (B), tumor mucinous type (C), and the recurrence presence (D) obtained considering 
significant features extracted by arterial phase. 
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Figure 3. ROC curves of linear regression analysis with respect to the front of tumor growth (A), 
tumor budding (B), tumor mucinous type (C), and the recurrence presence (D) obtained considering 
significant features extracted by portal phase. 

The coefficients of these linear models are reported in the Table 7. 

Table 7. Linear regression model coefficients and intercept with respective p value. 

Linear Regression of the Textural Features Extracted by the Arterial 
Phase with Respect to the Front of Tumor Growth 

Coefficients p Value  p Value  

Intercept −1.99 0.31 

<0.000 

wavelet_LHH_gldm_SmallDependenceLowGrayLevelEmphasis 33.14 0.19 
wavelet_LHH_firstorder_Minimum 0.01 0.02 
wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis −1.32 0.14 
wavelet_LHH_glrlm_ShortRunEmphasis −3.32 0.14 
wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 2.11 0.03 
wavelet_HLH_glcm_MaximumProbability 19.52 0.00 
wavelet_HHH_gldm_SmallDependenceHighGrayLevelEmphasis 5.17 0.39 
wavelet_HHH_glrlm_ShortRunHighGrayLevelEmphasis 0.06 0.70 
Linear regression of the textural features extracted by the arterial 
phase with respect to the tumor budding Coefficients p value  p value  

Intercept −12.52 0.00 
<0.000 original_glcm_Idn 31.70 0.00 

original_glcm_Idm 42.60 0.00 
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original_glcm_Id −56.44 0.00 
wavelet_LHH_firstorder_Minimum 0.02 0.00 
wavelet_LHH_firstorder_10Percentile −0.06 0.40 
wavelet_LLH_glcm_MaximumProbability 1.88 0.16 
wavelet_LLH_glcm_Imc1 8.92 0.01 
wavelet_LLH_firstorder_10Percentile 0.00 0.74 
wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized −4.57 0.05 
wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 1.67 0.11 
wavelet_HLH_firstorder_10Percentile 0.44 0.00 
Linear regression of the textural features extracted by the arterial 
phase with respect to the mucinous type Coefficients p value  p value  

Intercept −2.18 0.01 

<0.000 

original_glszm_ZoneVariance 0.00 0.14 
original_glszm_LargeAreaEmphasis 0.00 0.11 
original_glszm_LargeAreaLowGrayLevelEmphasis 0.00 0.01 
wavelet_HLL_glcm_InverseVariance 4.62 0.01 
wavelet_HLL_glrlm_RunLengthNonUniformity 0.00 0.01 
wavelet_LHH_glszm_LargeAreaEmphasis 0.00 0.08 
wavelet_LHH_glszm_ZonePercentage 0.00 0.01 
wavelet_LHH_glszm_LargeAreaLowGrayLevelEmphasis 17.35 0.00 
wavelet_LHH_glszm_HighGrayLevelZoneEmphasis 0.00 0.00 
wavelet_LLH_glcm_InverseVariance 0.00 0.95 
wavelet_HLH_glcm_Imc1 0.61 0.64 
wavelet_HLH_glszm_LargeAreaHighGrayLevelEmphasis 11.35 0.00 
wavelet_HHH_glszm_ZonePercentage 0.00 0.00 
Linear regression of the textural features extracted by the arterial 
phase with respect to the recurrence presence 

Coefficients p value  p value  

Intercept 0.44 0.11 

0.030 

wavelet_LHL_glcm_JointAverage 0.00 - 
wavelet_LHL_glcm_SumAverage −0.20 0.08 
wavelet_LHL_glcm_MCC 0.26 0.65 
wavelet_LHL_glszm_SmallAreaHighGrayLevelEmphasis −0.03 0.42 
wavelet_LHL_glszm_HighGrayLevelZoneEmphasis 0.07 0.04 
wavelet_LHL_ngtdm_Complexity −0.02 0.48 
wavelet_LLH_firstorder_InterquartileRange 0.11 0.20 
wavelet_LLH_firstorder_RobustMeanAbsoluteDeviation −0.25 0.22 
wavelet_LLH_ngtdm_Contrast 8.37 0.04 
wavelet_HLH_ngtdm_Complexity 0.03 0.07 
Linear regression of the textural features extracted by the portal phase 
with respect to the front of tumor growth 

Coefficients p value  p value  

Intercept −5.36 0.09 

<0.000 

wavelet_LHH_gldm_SmallDependenceLowGrayLevelEmphasis −11.71 0.34 
wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis 1.47 0.01 
wavelet_LHH_glszm_GrayLevelNonUniformityNormalized 0.14 0.78 
wavelet_LLH_firstorder_10Percentile 0.00 0.57 
wavelet_HLH_glcm_JointEnergy 23.11 0.06 
wavelet_HLH_glcm_MCC 1.22 0.11 
wavelet_HHH_glcm_MCC 16.45 0.00 
wavelet_HHH_glcm_Imc2 −9.75 0.04 
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wavelet_LLL_firstorder_Uniformity −0.50 0.47 
Linear regression of the textural features extracted by the portal phase 
with respect to the tumor budding Coefficients p value  p value  

Intercept 29.69 0.06 

<0.000 

original_glrlm_GrayLevelNonUniformityNormalized 2.16 0.52 
original_glszm_ZoneVariance 0.00 0.02 
original_glszm_SmallAreaLowGrayLevelEmphasis 1.38 0.39 
wavelet_LHH_firstorder_10Percentile 0.18 0.00 
wavelet_LHH_ngtdm_Busyness 0.00 0.44 
wavelet_LLH_firstorder_10Percentile 0.02 0.00 
wavelet_LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.00 0.23 
wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 5.37 0.06 
wavelet_HHH_glcm_JointEnergy −111.34 0.09 
wavelet_HHH_glcm_MCC 16.23 0.00 
wavelet_LLL_glrlm_GrayLevelNonUniformityNormalized −8.05 0.15 
wavelet_LLL_glszm_ZoneVariance 0.00 0.33 
wavelet_LLL_glszm_LargeAreaEmphasis 0.00 0.38 
Linear regression of the textural features extracted by the portal phase 
with respect to the mucinous type Coefficients p value  p value  

Intercept −0.10 0.51 

<0.000 

original_gldm_GrayLevelVariance −2.92 0.05 
original_glcm_SumSquares 2.40 0.32 
original_glcm_ClusterProminence 0.00 0.16 
original_glcm_ClusterTendency 0.18 0.82 
original_firstorder_Variance 0.00 0.81 
original_glrlm_GrayLevelVariance −0.62 0.00 
wavelet_LLL_gldm_GrayLevelVariance 1.73 0.03 
wavelet_LLL_glcm_SumSquares −0.30 0.35 
wavelet_LLL_glcm_ClusterProminence 0.00 0.10 
wavelet_LLL_glcm_ClusterTendency −0.02 0.87 
wavelet_LLL_firstorder_Variance 0.00 0.10 
wavelet_LLL_glszm_GrayLevelVariance 0.02 0.00 
Linear regression of the textural features extracted by the portal phase 
h respect to the recurrence presence 

Coefficients p value  p value  

Intercept −0.23 0.81 

<0.000 

wavelet_LLH_gldm_GrayLevelVariance 6.15 0.00 
wavelet_LLH_glcm_JointEntropy −0.25 0.48 
wavelet_LLH_glcm_Contrast −2.96 0.01 
wavelet_LLH_glcm_DifferenceEntropy −4.97 0.05 
wavelet_LLH_glcm_DifferenceVariance 4.99 0.03 
wavelet_LLH_glcm_DifferenceAverage 9.93 0.00 
wavelet_LLH_firstorder_MeanAbsoluteDeviation 0.09 0.14 
wavelet_LLH_firstorder_RootMeanSquared 0.05 0.14 
wavelet_LLH_firstorder_Variance −0.01 0.00 
wavelet_LLH_firstorder_Mean 0.04 0.00 
wavelet_LLH_glrlm_GrayLevelVariance −1.06 0.34 
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3.2.2. Pattern Recognition Approaches Findings 
Considering significant texture metrics tested with pattern recognition approaches, 

the best performance for each outcome (1. front of tumor growth: expansive versus infil-
trative; 2. tumor budding: high-grade versus low-grade or absent; 3. mucinous type and 
4. presence of recurrence) was reached by a KNN as classifier given the features extracted 
by the arterial phase (Figure 4). Instead, considering the features extracted by the portal 
phase, the best performance was reached by a KNN as classifier in the identification of the 
font of tumor growth, mucinous type, and for the detection of recurrences, and by a deci-
sion tree for the tumor budding identification (Tables 5 and 6). 

 
Figure 4. ROC curves of KNN with respect to the front of tumor growth (A), tumor budding (B), 
tumor mucinous type (C), and the recurrence presence (D) obtained considering significant features 
extracted by arterial phase. 

The accuracy was always greater than 88% (Tables 5 and 6, Figure 5) in both the train-
ing and validation sets, and the best results were obtained in the identification of tumor 
budding, with the eleven textural significant features extracted by the arterial phase (AUC 
of 0.95, accuracy of 95%, sensitivity of 84%, and specificity of 99%). 
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Figure 5. ROC curves of KNN with respect to the front of tumor growth (A), tumor budding (B), 
tumor mucinous type (C), and the recurrence presence (D) obtained considering significant features 
extracted by portal phase. 

The best performance in terms of accuracy obtained considering the extracted radi-
omics features on arterial phase was significantly superior at the best performance ob-
tained in the portal phase (p value < 0.05 at McNemar test). 

4. Discussion 
The present study confirmed the possibility of radiomics to recognize as biomarkers 

several features that could influence the treatment choice in patients with liver metastases 
in order to obtain a more personalized approach. Our data were verified by an external 
validation dataset. We obtained a good performance considering the single textural sig-
nificant metric in the identification of front of tumor growth (expansive versus infiltrative) 
and tumor budding (high-grade versus low-grade or absent), in the recognition of mucin-
ous type, and in the detection of recurrences. 

At univariate analysis, the best predictor to discriminate expansive versus infiltrative 
tumor growth front was wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis by por-
tal phase with accuracy of 82%. The best predictor to discriminate tumor budding was 
wavelet_LLH_firstorder_10Percentile by portal phase with accuracy of 92%. The best pre-
dictor to differentiate the mucinous type was the wavelet_LLL_glcm_ClusterTendency by 
portal phase with accuracy of 88%. The best predictor to identify the recurrence was wave-
let_HLH_ngtdm_Complexity by arterial phase with accuracy of 90%. 
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The best linear regression model was obtained in the identification of mucinous type 
considering the 13 textural significant metrics extracted by the arterial phase (AUC of 0.93, 
accuracy of 94%, sensitivity of 77%, and specificity of 99%). The best results were obtained 
in the identification of tumor budding with the eleven textural significant features ex-
tracted by the arterial phase using a KNN (AUC of 0.95, accuracy of 95%, sensitivity of 
84%, and specificity of 99%). Therefore, the best performance was reached considering the 
radiomics features extracted on arterial phase. 

Several studies demonstrated the correlation between radiomics parameters and 
prognosis [31–40]. An association between homogeneity and worse overall survival (OS) 
was demonstrated by Andersen et al. [32]. According to Rahmim et al., radiomic parame-
ters of heterogeneity obtained by FDG PET were predictors of lower OS [37]. Lubner et al. 
demonstrated that the degree of skewness was inversely correlated to KRAS, while the 
entropy was related with OS [34]. In addition to the survival advantages, the possibility 
to predict recurrence in the liver has been demonstrated [37–40]. According to our results, 
Ravanelli et al. related high CT uniformity and low OS and PFS in patients with CRC and 
liver metastasis [39]. 

Radiomics and radiogenomics are emerging tools with significant limits. The major 
weakness is the heterogeneity of software employed in different investigations due to the 
variety of imaging devices in different hospitals. This clearly hinders the interpretation of 
different data for multicenter studies. In addition, the segmentation may affect results 
[41]. 

Many previous studies have shown that the lower the degree of differentiation of the 
primary tumor (mainly manifested by more aggressive and malignant phenotype), the 
worse the prognosis; the number of metastases (≤ 4) and the diameter of metastases (≤ 5 
cm) are the main prognostic factors affecting the prognosis of patients with liver metasta-
ses [42–44]. Ma et al. showed that the lower the degree of tumor differentiation, the greater 
the number of metastases, and the larger the diameter of the metastases, the heavier the 
tumor burden throughout the body, and the shorter the survival period. The distance be-
tween metastases and great vessels could affect the recurrence-free survival of patients 
[45]. However, the prognostic and predictive value of radiomics in colorectal cancer me-
tastases to the liver have been well studied, demonstrating its higher utility in predicting 
clinical outcomes compared to other clinical data [2]. 

The present study had several limitations: (1) the small size of the population consid-
ered, although the analysis was performed on a homogeneous sample and on all individ-
ual lesions; furthermore the patients analyzed included a training set and an external val-
idation set for a total of 151 liver lesions analyzed. The external dataset was used to vali-
date the results obtained during the training phase; however, the results of this study were 
considered preliminary, and the future goal is to broaden the dataset to evaluate the gen-
eralization of the results; (2) the retrospective nature of the study; (3) a manual segmenta-
tion, that, although several studies support automatic segmentation to avoid inter-ob-
server variability, in our opinion, the manual approach is more realistic. Moreover, we 
did not assess the impact of chemotherapy. However, we assessed the impact of the dif-
ferent phases of contrast study (arterial and portal), although we have not evaluated these 
results with respect to transitional and EOB-phase due to morphological sequences, such 
as T2-weigthed, T1-weigthed, or diffusion-weighted imaging. Data that we plan to eval-
uate in a future study. 

5. Conclusions 
Our results confirmed the capacity of radiomics to identify as biomarkers several 

prognostic features that could affect the treatment choice in patients with liver metastases 
in order to obtain a more personalized approach. We obtained a good performance con-
sidering the single textural significant metric in the identification of front of tumor growth 
(expansive versus infiltrative) and tumor budding (high-grade versus low-grade or ab-
sent), in the recognition of mucinous type and in the detection of recurrences. 
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