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Simple Summary: Human health is significantly affected by microbial infections. One of the largest
determinants of the outcomes of such infections is the host immune response. Too weak of a response
can lead to enhanced spread by the pathogen, while an overstimulated response can lead to immune-
induced tissue damage. Thus, to effectively treat infected individuals, it is critical to understand
the regulators that control inflammatory responses. Recently, it has become widely accepted that
estrogens, a class of sex hormones, are capable of dramatically altering the responses of host cells to
microbes. In this review, we discuss how estrogens change the host immune response, as well as how
these changes can alter the outcome of the infection for the individual.

Abstract: Sex hormones, such as estrogen and testosterone, are steroid compounds with well-
characterized effects on the coordination and development of vertebrate reproductive systems.
Since their discovery, however, it has become clear that these “sex hormones” also regulate/influence
a broad range of biological functions. In this review, we will summarize some current findings on
how estrogens interact with and regulate inflammation and immunity. Specifically, we will focus on
describing the mechanisms by which estrogens alter immune pathway activation, the impact of these
changes during infection and the development of long-term immunity, and how different types of
estrogens and their respective concentrations mediate these outcomes.
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1. Introduction

Despite advances in medicine, infectious diseases remain one of the leading causes
of human death globally [1]. These infections are caused by diverse organisms that infect
a variety of tissues and organ systems. An essential line of defense in combating these
invaders is our immune system, which works to both identify the pathogen and effectively
clear it from the body. While it is critical that inflammation be rapidly activated during
the early stages of infection to limit the spread of a microbe, it is well appreciated that
overstimulation of the immune response can lead to host tissue damage and even death [2].
Interestingly, it has been reported for decades across a range of organisms that host sex
alters the immune response to and mortality rate from a variety of infections. These data
implicate sex hormones as potential regulators of antimicrobial responses [3-8].

While estrogens were traditionally thought to primarily regulate the female reproduc-
tion system, previous studies have demonstrated that estrogenic activity can regulate many
pathways in the body, including immune responses [9-11]. In general, it is now appreciated
that estrogens, and in particular E2, can control the proinflammatory signals/pathways
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of the immune system [12-14]. ERa and GPERI, two of the three known estrogen re-
ceptors that enact the observed effects of estrogens, are commonly associated with anti-
inflammatory phenotypes [14-18]. Reports concerning the third receptor, ERf3, are not as
consistent; some describe an anti-inflammatory role similar to ERx and GPER1 [19,20],
while others indicate an increased ratio of ERf is associated with proinflammatory sig-
natures [21,22]. Thus, it is likely that reported differences in the effects of estrogen on
the immune system are due to variations in receptor expression in cell types and during
different physiological states. This review will highlight some of what we know regarding
the effects of estrogens on the immune system, with a specific focus on their impact in the
context of infection and immunity to different pathogens.

2. Estrogens and Their Mechanisms of Signaling

Estrogens are a class of sex hormones whose function has been well characterized in
the regulation of the development and function of the female reproduction system [23].
There are four forms of endogenous estrogen that are responsible for the effects attributed to
this hormone: estrone (E1), estradiol (E2), estriol (E3), and etestrol (E4), with estradiol being
both the most prevalent and potent estrogen prior to menopause [24]. These hormones
are synthesized using cholesterol as the base sterol, with the enzyme aromatase convert-
ing them into estrogens [25]. In premenopausal females, these estrogens are primarily
synthesized in the ovaries, as well as in the placenta during pregnancy; after menopause,
ovarian-produced estrogen levels sharply decline and the majority of remaining estrogens
are synthesized in secondary tissues such as the brain, kidneys, bones, skin, and adipose
tissues (Figure 1, left) [24,26,27]. In males, the single largest producer of estrogen is the
testis; however, estrogen produced from secondary tissues accounts for a much greater
percentage of total estrogen in males as compared to females (Figure 1, left) [28].
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Figure 1. A summary of the sources of estrogen production in the body (left) and schematic diagram
of both “classical” and “nongenomic” estrogen signaling pathways (right). Abbreviations: ATP:
adenosine 5'-triphosphate, cAMP: cyclic adenosine monophosphate, ER: estrogen receptor, ERE:
estrogen-responsive element, TF: transcription factor, «s: alpha subunit, 3 /y: beta/gamma subunit,
MAPK: mitogen-activated protein kinase, PI3K: phosphoinositide 3-kinase, PLC: phosphoinositide-
specific phospholipase C, and IP3: inositol triphosphate. Created with Biorender.com, accessed on
9 December 2021.
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The effects of estrogens are primarily enacted by their binding with estrogen receptors
(ERs) via two distinct mechanisms. The classical mechanism involves estrogen diffusing
into the cell and binding to the ER in the nucleus to stimulate the activation or repression
of specific genes [29] (Figure 1, right). Additionally, estrogens can stimulate cells more
rapidly through “nongenomic” mechanisms by binding to ERs localized to the plasma
membrane or endoplasmic reticulum to stimulate immediate responses such as changes in
Ca?* levels or kinase activity [30,31] (Figure 1, right). Alongside receptor localization, the
downstream functions of estrogens are dictated by which receptor is bound. Currently, it is
appreciated that there are three estrogen receptors: estrogen receptor alpha (ERx), estrogen
receptor beta (ERf3), and guanine nucleotide-binding protein-coupled estrogen receptor 1
(GPER1/GPR30) [32-34]. Even further tailoring of estrogenic effects is accomplished by
distinct splicing variations and expression patterns of these ERs in tissues, creating the
opportunity for a variety of estrogen-induced responses across the body [35-38].

3. Influence of Estrogens during Viral Infection and Pathogenesis
3.1. Estrogens and Their Receptors Regulate Innate Immune Responses to Viral Infection

After infecting a cell, viruses are sensed by cellular pattern recognition receptors, such
as toll-like receptors (TLRs), cGAS/STING, and RIG-I-like receptors (RLRs), that initiate
antiviral immune responses. This cascade of signaling events activates interferon-regulatory
factors (IRFs) and nuclear factor-«B (NF-«kB) to induce the expression of type-I interferons
(IENs), interferon o (IFN«) and interferon 3 (IFN), as well as other proinflammatory
cytokines [39]. Type-I IFNs are an initial line of antiviral defense that can signal both via
autocrine and paracrine mechanisms after secretion to induce the expression of interferon-
stimulated genes (ISGs), which are responsible for antiviral activities inside the infected
host cell.

Estrogens have been shown to regulate the type-1 IFN response through several
potential mechanisms, subsequently impacting the outcome of viral infection. One of the
most common mechanisms is by preventing cells from producing type-I IFNs altogether.
It has been shown that this can occur via direct interactions between ERx, GPER1, and
NEF-«B [16,40], by ERf occupying NF-«kB transcriptional sites, or through ERs inducing
the expression of the NF-«B inhibitor Ik« [19,41]. Additionally, we have recently shown
that estrogens, especially E2, can activate GPER1 to directly suppress IFN signaling [14].
While the mechanism of this suppression is yet to be elucidated, it highlights that both the
production of and response to IFNs, two early steps in the antiviral immune response, can
be impacted by estrogens.

While type-I IFNs are primarily responsible for early activation of antiviral immunity
and inflammation, inflammatory cytokines/chemokines play an important role in the
recruitment and activation of immune cells, such as macrophages and neutrophils. The
production of these cytokines, which drastically alter the immune state in the body, is also
a result of the activation of NF-«B [42]. Correspondingly, it has been shown that increases
in estrogen lead to the suppression of many proinflammatory cytokines via blocking
NEF-«B signaling [6,43—45]. While there is a large body of literature demonstrating how
estrogens suppress inflammatory responses, some groups have reported a proinflammatory,
or even a dual pro- and anti-inflammatory, effect depending on the specific cytokine/cell
type studied [46]. E2 treatment has been reported to enhance IFN-y, a type-II interferon,
production [47]. Type-II IFNs, unlike type-I IFNs, are predominantly produced by natural
killer (NK) cells after their detection of various cytokines, including type-IIFNs, IL-12, IL-15,
and IL-18, which results in phosphorylation of STAT4 [48]. Differences in the mechanisms
regulating and cell types producing type-II IFNs may explain why estrogens exhibit a
different regulatory effect when compared to type-I IFNS.

3.2. Estrogens and Their Receptors Modulate Viral Infection Severity

High levels of the replication of some viruses induces significant immune activation,
eventually leading to uncontrolled inflammation. This signaling, often termed a “cytokine
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storm”, is associated with severe disease and can cause further damage to the host leading
to poor infection outcomes [49]. As potentially anti-inflammatory hormones, it follows that
high levels of estrogens are associated with better outcomes following a variety of viral
infections that can cause severe inflammatory states. Work by the Klein lab has shown
that outcomes from influenza infection, a respiratory virus capable of inducing a cytokine
storm phenotype, are improved when estrogens levels are increased [6,50,51]. Logically,
this has been linked to the ability of estrogens to reduce the harmful overexpression
of proinflammatory cytokines, creating a more balanced immune response that is able
to clear the virus without severely damaging the host. This work agrees with a study
in a murine pregnancy model of influenza infection where heightened estrogen levels
during pregnancy suppressed inflammatory markers during influenza infection, preventing
harmful overstimulation of the host immune response [52].

Additional work with several coronaviruses, including severe acute respiratory syn-
drome coronavirus (SARS-CoV), middle eastern respiratory syndrome coronavirus (MERS-
CoV), and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-
CoV2), has yielded similar findings connecting estrogens and the mediation of severe
disease. Several groups have shown that both in animal models and humans, elevated
levels of estrogens or ER agonists are associated with improved outcomes of coronavirus
infections [53-55]. In fact, during the first SARS outbreak, it was reported that being male
was significantly associated with intensive care admission or death during infection [56].
During the MERS epidemic and SARS-CoV2 pandemic infected men have been reported
to be up to twice as likely to die as women [57,58]. This phenomenon is further corrobo-
rated by the fact that premenopausal women, who typically exhibit higher concentrations
of estrogens than men, have been reported to be at a lower risk of severe coronavirus
infection [55,58,59].

4. Influence of Estrogens during Bacterial Infection and Pathogenesis
4.1. Estrogens and Their Receptors Regulate Innate Immune Responses to Bacterial Infection

Unlike viruses, bacteria can exist both intra- and extracellularly during infection and
thus stimulate a broad array of inflammatory signatures. In general, bacterial pathogens
are initially sensed by the host based on their cell wall compositions, which are divided
into two major groups based on the terminally exposed structures. Gram-positive bacteria
are surrounded by a thick cell wall composed of peptidoglycans, whereas gram-negative
bacteria possess a much thinner peptidoglycan cell wall that is encapsulated in an outer
lipid membrane comprised of lipopolysaccharides (LPSs). The detection of these different
cell wall components is mediated by Toll-like receptors (TLRs). For example, TLR2 in
conjunction with TLR1 or TLR6 detects different peptidoglycans, whereas TLR4 detects
LPS [60]. These different TLRs induce both a conserved inflammatory response via NF-
kB signaling, as well as unique inflammatory signatures that are more tailored to either
gram-positive or -negative pathogens [61-64]. For example, signaling through TLR4 also
induces the activation of type-1 IFNs, which have been associated with severe inflammatory
reactions to gram-negative bacteria [60,65].

As mentioned above, estrogens are capable of reducing inflammation by negatively
regulating the NF-«kB signaling pathway and suppressing IFN signaling [14,16,19]; this has
also been observed the context of bacterial-induced inflammation via sensing of molecules
such as LPS [66]. Interestingly, it has also been reported that activation of GPER1 is
capable of rapidly reducing TLR4 expression in macrophages, identifying an additional ER-
associated mechanism of controlling bacterial-induced inflammation [67]. However, this
same group also demonstrated that in some instances estrogenes enhance TLR4 expression,
suggesting that the regulation of this pathway by estrogens is mediated by the balance of
different estrogen receptors across tissues and cell types [68].
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4.2. Estrogens and Their Receptors Modulate Bacterial Infection Severity

During some bacterial infections, inflammatory responses can progress to sepsis or
septic shock, a severe inflammatory state affecting multiple organ systems associated with
an up to a 50% mortality rate [69]. Sepsis is typically initiated by bacterially derived
molecules that overstimulate recognition receptors, such as TLRs, leading to uncontrolled
inflammatory signaling. Gram-negative bacterial infections, for example, can lead to sepsis
when pathogenic bacteria actively release LPS, an endotoxin and the most potent stimulator
of the TLR4 pathway [70,71]. A number of studies using different sepsis models with
altered estrogen levels have reported a generally protective role for estrogens, however
the downstream mechanisms are less clear [68,72-74]. Notably however, these reports
use sepsis models without a true bacterial pathogen, eliminating their ability to evaluate
the full impact of estrogen on bacterial infection outcomes. While experimentation with
authentic bacterial infection models has been limited, studies suggest that women are up
to three times less likely to develop severe sepsis following infection compared to men,
potentially indicating protective effect of estrogens [75,76]. Reports of the effects of estrogen
administration to cells (or comparisons of cells isolated form men or women) followed by
application of TLR agonists have revealed selective effects of the hormone, suppressing
some associated responses while enhancing others [77-80]. The mechanisms underlying
these effects may be mediated by affecting TLR expression or the downstream signaling
pathways, however more work is required to distinguish between these possibilities.

5. Influence of Estrogens during Eukaryotic Infection and Pathogenesis

While less common than bacterial and viral infections, humans are also infected by
eukaryotic pathogens, such as parasites and fungi. Eukaryotic pathogens are an extremely
diverse group of organisms that vary wildly in size, tissue tropism, pathology, and immune
mechanisms of clearance. Here, we will illustrate the impact of estrogens on specific
pathogens to illustrate some common themes.

5.1. Estrogens and Their Receptors Modulate Parasitic Infection Responses and Severity

Clinically-relevant parasitic pathogens have complex lifecycles that often involve
transmission by a vector and require the infection of several hosts, including humans.
Malaria is one of the most well-known and common parasitic infections caused by the
apicomplexan Plasmodium parasites [81]. These obligate intracellular parasites are trans-
mitted by infected mosquitoes and during their lifecycle transition between infecting red
blood cells and liver cells [81]. Interestingly, it has been reported that male hosts sustain up
to twice as much parasitic burden and experience up to twice as long infection durations
by Plasmodium parasites compared to females, corresponding with enhanced symptom
severity [82,83]. During parasitic infections, such as with Plasmodium, it has been estab-
lished that type-II IFN acts as a critical regulator of the host immune response [84]. Murine
models of malaria infection have revealed that administering exogenous estrogen leads to
an increase in IFN-y production, resulting in lower parasitemia and reduced morbidity;
accordingly, ovariectomizing mice, thereby reducing estrogen levels, has the opposite
effect [85,86].

In addition to malaria, other parasitic infections have been found to be influenced
by sex, and potentially estrogens. The incidence of amebic liver abscess, which is caused
by the protozoan parasite Entamoeba hysolytica, has been shown to be up to four times
more common in males [87]. These observations were confirmed using animal models,
where it was shown that an increase in testosterone, the major male sex hormone, led to a
suppression of IFN-y production and enhanced pathology of the disease [88]. Interestingly,
the association between female sex and reduced parasitic infections does not hold true for
all parasites. Toxoplasma gondii infections, for example, are more common in women, and
murine infection models display reduced activation of immune pathways and higher para-
sitemia and mortality in female mice as opposed to male mice [89,90]. These distinctions
in the role of sex and likely impact of estrogens on immune responses during parasitic
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infection are possibly due to differences in immune signaling molecules and cell types that
are required for successful clearance of the pathogen.

5.2. Estrogens and Their Receptors Modulate Fungal Infection Responses and Severity

Candida albicans is the causative agent of one of the most common fungal infections,
vulvovaginal candidiasis (VVC) [91]. Increased levels of estrogens have been shown to be
strongly linked with an increased risk of developing VVC in a variety of settings [92-94].
One proposed explanation is that C. albicans has cellular receptors that can bind estrogen,
specifically E2, and this binding promotes growth of the fungal pathogen [95-97]. However,
recent work has demonstrated that estrogens fail to stimulate the growth of all C. albicans
strains equally, suggesting that differences in the estrogen binding proteins between fungal
species and strains might lead to different outcomes [98]. The growth of Paracoccidiodes
brasiliensi, the causative agent of paracoccidiodomycosis (PCM), for example, is inhibited
by the presence of E2 [99]. Furthermore, unlike C. albicans infections, males are at nearly a
10-fold higher risk of developing PCM [100]. In animal models of PCM infection, it has been
shown that male mice are at an enhanced risk of severe disease and death, while treatment
with estrogen, specifically E2, is capable of reversing this heightened male susceptibil-
ity [101]. This is partially explained by the observation that female mice produce enhanced
levels of IFN-y in response to infection by the etiological agent of PCM, Paracoccidiodes
brasiliensis [102]. Another group found that female mice also demonstrated enhanced
survival against Mucor circinelloides, one of the causative agents of mucormycosis [103].
The mechanism behind this effect, however, remains unclear and was not consistently
seen when looking at a closely related species of Mucor, suggesting estrogens play a more
complicated role during fungal infections than in other infectious disease states.

6. Effect of Estrogen on Recovery from Infection and Long-Term Immunity
6.1. Estrogens and Their Receptors Modulate Recovery after Infection

Following clearance of an invading pathogen, host tissues must begin the process of
down-regulating inflammation to prevent excessive damage. This switch is often coupled
with the transition of immune cells from inflammatory gene signatures to repair and tissue
regeneration signatures, a shift that is critical for the recovery and long-term health of the
individual. While many cell types participate in tissue repair following infection, it has
been shown that macrophages are key regulators of this process [104]. Their ability to
begin coordinating efforts to heal the host after infection is primarily initiated by a shift to a
distinct gene profile [105]. During the course of injury/infection, macrophages often display
an “M1” profile that is characterized by the production of proinflammatory cytokines and
nitric oxide, which aid in the clearance and control of pathogens [106]. During resolution
and recovery, however, macrophages shift to an “M2” profile that is instead characterized
by the production of the compound ornithine, a key molecule in initiating cell proliferation
and other repair processes [107].

Recently, several groups have demonstrated that estrogen, specifically E2, can
shift macrophages toward this M2 repair profile in a variety of disease and injury
models [17,108-110]. Estrogens have been reported to accomplish this primarily through
an ERx-dependent pathway that enhances IL-4 pathway activity, a key activator of M2 po-
larization, along with reducing/blocking the NF-«B signaling and nitric oxide production
associated with the M1 proinflammatory state. Contrary to these findings, it has been
shown that estrogens reduce tumor size and metastasis in a hepatocellular carcinoma
model by blocking M2 polarization in an ER3-dependent manner [111]. Together these ob-
servations suggest the exact effects of estrogen on macrophage polarization are dependent
on the ERs present and the microenvironment of the cell.

Similar observations have been made when looking at estrogen’s effects on T helper
cells, which are characterized as having a proinflammatory (Th1) or repair skewed (Th2)
gene profile. High levels of estrogen tend to shift T helper cells toward the Th2 transcription
profile in an IL-4 related manner, similar to macrophage polarization, an effect frequently
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observed during pregnancy [112,113]. Considering these findings, it is unsurprising that
states of life or being associated with increased concentrations of estrogen, such as women
vs. men, pregnancy, and premenopause, are commonly observed as having improved
recovery and tissue repair phenotypes [114,115].

6.2. Estrogens and Their Receptors Regulate Adaptive Immune Responses to Infection

In addition to affecting innate and early immune pathways, estrogens also affect
adaptive immune responses. One way that estrogens influence adaptive immunity is by
impacting levels of circulating antibodies. Many groups have demonstrated that estrogen
typically correlates with increased levels of antibodies. For example, it has been shown
that during enhanced states of estrogen production, such as pregnancy, higher levels
of serum antibodies can be detected [116,117]. Similarly, women often exhibit higher
antibody responses following vaccination, and this increase in antibodies correlates with
better immunity-based protection [118]. These findings have interesting implications
in the potential evolution of this predisposition toward enhanced antibody-mediated
production during heightened estrogen concentrations. For example, during pregnancy,
it is appreciated that strong innate inflammatory signatures, such as type-I IFN signaling,
can lead to detrimental outcomes for the developing fetus [14,119]. With estrogen levels at
their peak during pregnancy, certain dangerous inflammatory pathways are suppressed,
as discussed above, while generation of neutralizing antibodies is enhanced, providing a
safer mechanism of immune protection.

Antibodies produced by B cells make up only a part of the adaptive immune response,
with T cells representing the other major cell type responsible for our long-term immunity.
T cells can be broadly classified into two groups by the presence of specific cell-surface
markers, CD8" or “cytotoxic” T cells and CD4* or “helper” T cells. As their names would
suggest, these two populations of T cells perform distinct functions during the immune
response, with CD8" T cells primarily targeting infected or damaged host cells and inducing
cell death to control infection, and CD4" T cells secreting effector molecules (both pro-
and anti-inflammatory) to help coordinate the larger immune efforts of other cell types
throughout the response [120]. While few studies have been published directly comparing
the expression levels of specific ERs in different immune cell types, it is thought that
B cells display the highest level of expression of ERs, with an increased ratio of ERf3
to ERa; whereas CD4* and CD8* T cells express more intermediate levels, with CD4*
cells exhibiting increased levels of ERox [121,122]. Previous work has demonstrated that
estrogens are critical for the development of T cells via the use of ER knockout mouse
models [121,123]. It has also been shown that estrogens have an anti-inflammatory effect
in the context of regulation of helper T cells [41,112,124,125]. These works suggest this is
primarily accomplished by blocking NF-«B signaling and shifting helper T cells to their
more repair-oriented Th2 signature, as discussed in Section 6.1 [110,112].

7. Changes in Estrogen Levels and Impacts on the Immune System
7.1. Estrogen Levels during Menstruation, Pregnancy, and Menopause Modulate Immunity

When discussing the impacts estrogens have on inflammation and immunity, it is im-
portant to consider how and when the levels of these sterols can differ. Prior to menopause,
females have approximately 5x as much circulating estrogen as compared to males; how-
ever, these concentrations fluctuate with menstrual cycling and can at times be close to that
found in males (Figure 2) [126]. Interestingly, females have been documented to experience
general low-grade inflammation and an increase in inflammatory markers, such as high
sensitivity C-reactive protein, during the start of menstruation when estrogen levels are at
their lowest [127,128].
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Figure 2. Examples of reasons estrogen levels vary and change. Females experience fluctuating
estrogen levels during menstruation, in addition to dramatic changes in hormone levels during
pregnancy and following menopause. Exogenous estrogens from dietary or therapeutic (hormonal
contraceptives, HRT) sources also alter estrogenic effects in the body. Created with Biorender.com,
accessed on 15 January 2022.

While estrogen concentrations fluctuate during menstrual cycling, these shifts are
minor compared to hormone changes during pregnancy. Estrogen levels are often at their
highest during pregnancy, peaking during the third trimester when circulating estrogen
can be up to 60 times higher than in nonpregnant females (Figure 2) [129]. Given this
drastic increase and the immunomodulatory effects of estrogen, it is no surprise that
pregnant females have been shown to exhibit altered immune and inflammatory responses.
While the changes in the immune system during human pregnancy are complicated by
both hormonal and non-hormonal factors, general trends can be observed that align with
previously discussed impacts of estrogen on the immune system. For example, pregnancy
is associated with a shift toward a Th2 signature, elevated antibody levels, improved
autoimmune disease symptoms, and increased expression of key immunomodulatory
anti-inflammatory cytokines [112,130-133].

Estrogen levels in females are lower after menopause (Figure 2) [134]. In general,
menopause, and the subsequent reduction in estrogen, is associated with an increase in inflam-
mation and the development of chronic conditions in a variety of organ systems [135-137].
While it is difficult to attribute these changes solely to reduced estrogen levels, sudden
losses in estrogen due to oophorectomies in premenopausal women can lead to similar
outcomes [138,139]. This work also demonstrated that treatment with estrogen therapy can
ameliorate the severity of some symptoms. These findings support the specific importance
of estrogen to immune health, as opposed the general effects of aging.

7.2. Exogenous Estrogens Modulate Immunity

Aside from the natural variations in endogenous estrogen throughout life, individuals
can also experience changes in estrogens via exogenous sources. One of the most common
sources of exogenous estrogens is hormonal contraceptives, which release high levels of
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hormones, such as estrogen, to regulate the menstrual cycle and stop ovulation to prevent
pregnancy. These increases in circulating estrogen have been shown to impact the immune
system and alter inflammatory states. Interestingly, some groups have reported a reduction
in inflammation and inflammatory states during hormonal contraceptive use [140,141],
while others have reported an increase in inflammatory markers and disease [142-144].
These inconsistencies are likely due to a combination of factors, including different routes
of contraceptive delivery (i.e., oral vs. vaginal), differing concentrations of estrogen and
progestin in contraceptives, and differences in when sampling was performed relative to
when contraceptives were taken.

Another potential source of estrogens is hormone replacement therapy (HRT), where
exogenous estrogens are administered to treat a variety of conditions, often postmenopause
(Figure 2). Administration of HRT is associated with anti-inflammatory effects and it is
commonly used to treat inflammatory diseases in older women [145-147]. However, the
use of these treatments for some conditions must be tightly regulated as HRT is associated
with negative outcomes, such as an increased risk of specific cancers [148]. One of the
traditional roles of estrogens is to aid in the development of reproductive tissues, which
includes inducing cellular proliferation and growth. This property has been shown to be
a major mechanism by which estrogens can drive female-associated cancers (i.e., breast
and endometrial cancers) [148,149]. Thus, while the effects of estrogens can lead to im-
provements in some conditions and even certain types of cancers, it can also stimulate the
initiation or recurrence of others.

Humans can also encounter estrogen-like compounds naturally through their diet.
For example, phytoestrogens are compounds found in many plants, such as soybeans,
that are structurally similar to mammalian estrogen and can even activate ERs (Figure 2).
Interestingly, research has demonstrated that diets high in phytoestrogens often lead
to similar immune suppression phenotypes as those seen when human estrogen levels
are high [150-154]. This immune regulation by phytoestrogens has been suggested by
many as a potential treatment mechanism in lieu of the administration of HRT to achieve
similar health benefits when estrogen levels naturally decrease, such as in postmenopausal
females. Certain fungal metabolites, such as zearalenone, commonly contaminate foods (i.e.,
grains) and have been shown to have estrogenic effects that similarly regulate the immune
system [155]. The specific impact of these compounds, also referred to as mycotoxins,
appears to be heavily influenced by the dose, tissues/cell type examined, as well as species
of animal studied. For example, it was shown that zearalenone treatment in pigs leads
to an increase in several proinflammatory cytokines in the spleen and blood; however, a
decrease in these same cytokines was observed in the liver [155,156]. Along these same
lines, another group demonstrated that in mice, zearalenone treatment results in reduced
proinflammatory signatures in the blood, while the opposite was found when examining
the kidneys [157,158]. The complex nature of this interaction is likely attributed to a variety
of factors, including differences in the dosing of the mycotoxin, estrogen concentrations
in the system, the abundance of specific ERs, as well as differences in how the toxin is
processed by the body. Zearalenone, for example, can be processed into two derivatives:
alpha- and beta-zearalenol [155]. Together these findings demonstrate the unpredictable
immunomodulatory effects of estrogen-like compounds produced by plants and fungi and
consumed through diets.

8. Conclusions

Traditionally the purpose of estrogens, and other sex hormones, was thought to
primarily be the regulation of the development of reproductive organs. It is now apparent
however, that these steroids exert a wide range of effects on other systems. In this review, we
have discussed some of the commonly observed ways estrogens alter the immune response.
In general, it has been shown that estrogens exhibit an anti-inflammatory effect that is
associated with improved outcomes during severe infection and wound healing and repair.
Differences in the degree to which this observation holds true are likely due to a combination
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of factors, including the specific pathogen or activator of inflammation, the concentrations
of estrogen, estrogenic compounds, and other hormones, as well as the types/abundance of
estrogen receptors that are present at the time and location of observation. Continued and
future work deciphering hormonal effects on human physiology and immune responses
has great potential to explain the heterogeneity in pathogenic responses and disease states
across individuals and may facilitate the development of more effective and personalized
interventions.
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