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Simple Summary: More than half of children with high-risk neuroblastoma will not survive despite 
aggressive treatment regimens. The discovery of suitable novel therapies that target high-risk dis-
ease remain limited. Oncolytic virotherapy employs common viruses, such as herpes simplex virus. 
These viruses are modified to solely target cancer cells and avoid damage to healthy cells. The pre-
vious work of others and ourselves has shown oncolytic herpes simplex viruses (oHSVs) are effec-
tive in targeting cultured neuroblastoma cancer cell lines, but to our knowledge, no one has demon-
strated the effects of oHSV in neuroblastoma patient-derived xenograft cells. Herein, we show that 
oHSV works well in high-risk neuroblastoma patient-derived xenografts and provide critical pre-
clinical evidence to translate this therapy to a clinical setting. 

Abstract: Cancer is the leading cause of death by disease in children, and over 15% of pediatric 
cancer-related mortalities are due to neuroblastoma. Current treatment options for neuroblastoma 
remain suboptimal as they often have significant toxicities, are associated with long-term side ef-
fects, and result in disease relapse in over half of children with high-risk disease. There is a dire 
need for new therapies, and oncolytic viruses may represent an effective solution. Oncolytic viruses 
attack tumor cells in two ways: direct infection of tumor cells leading to cytolysis, and production 
of a debris field that stimulates an anti-tumor immune response. Our group has previously shown 
that M002, an oncolytic herpes simplex virus (oHSV), genetically engineered to express murine in-
terleukin-12 (mIL-12), was effective at targeting and killing long term passage tumor cell lines. In 
the current study, we investigated M002 in three neuroblastoma patient-derived xenografts (PDXs). 
PDXs better recapitulate the human condition, and these studies were designed to gather robust 
data for translation to a clinical trial. We found that all three PDXs expressed viral entry receptors, 
and that the virus actively replicated in the cells. M002 caused significant tumor cell death in 2D 
culture and 3D bioprinted tumor models. Finally, the PDXs displayed variable susceptibility to 
M002, with a more profound effect on high-risk neuroblastoma PDXs compared to low-risk PDX. 
These findings validate the importance of incorporating PDXs for preclinical testing of oncolytic 
viral therapeutics and showcase a novel technique, 3D bioprinting, to test therapies in PDXs. Col-
lectively, our data indicate that oHSVs effectively target high-risk neuroblastoma, and support the 
advancement of this therapy to the clinical setting. 
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1. Introduction 
Pediatric cancer is the second leading cause of death in children [1]. Neuroblastoma, 

a tumor of neural crest origin, is the most common extracranial solid tumor of childhood 
and is responsible for more than one in eight pediatric cancer deaths. Advances in neuro-
blastoma treatment have resulted in improved outcomes for children with low-risk dis-
ease [2]. However, for patients with high-risk disease, long-term survival remains less 
than 50% [1,2]. Additionally, current therapies often result in detrimental long-term side 
effects in those who are cured. Clearly, further research is needed to identify novel and 
innovative therapies to attack this tumor. 

The use of immunotherapies to treat pediatric hematologic malignancies has been 
successful [3,4], but employing immunotherapy for the treatment of solid tumors remains 
challenging [5]. For neuroblastoma in particular, the immunosuppressive tumor microen-
vironment limits the efficacy of these treatments [6]. Oncolytic viruses offer an innovative 
approach to employ immunotherapy. Oncolytic viruses attack tumors by (i) direct cytol-
ysis as a result of viral replication and (ii) creation of a debris field that activates cytotoxic 
immune cells. Oncolytic viruses have achieved early clinical success in other pediatric 
solid tumors with immunosuppressive microenvironments such as glioblastoma [7] and 
are FDA-approved for use in melanoma [8], but the use of oncolytic herpes simplex vi-
ruses (oHSVs) for neuroblastoma remains limited to a single phase I clinical trial 
(NCT00931931) and failed to progress to phase II [9,10]. The absence of widespread use in 
pediatric solid tumors is partly due to the lack of a thorough understanding of the thera-
peutic response to oncolytic viruses and to the heterogeneity of neuroblastoma tumors. 

Researchers have been grappling to find cancer models that more closely recapitulate 
the heterogeneity of cancers seen in the human condition while continuing to provide a 
rapid and efficient evaluation of potential therapeutics. Patient-derived xenografts (PDXs) 
are one such model. PDXs are felt to be superior to continuously cultured cells as these 
cell lines alter their original properties, including phenotypes and genotypes, after being 
cultured in contrived conditions for long periods of time [11]. Further, cells in culture lack 
components of the tumor microenvironment that, in the case of immunotherapies, can 
significantly affect their efficacy [12]. PDXs for pediatric solid tumors do have some limi-
tations, such as poor engraftment rates and slow, inconsistent growth [13]. Thus, we em-
ployed 3D bioprinting technology to complement our in vitro studies of oHSV and serve 
as a surrogate to in vivo studies. Lastly, we and others have previously demonstrated that 
findings from in vitro studies with PDX cells were not always replicated in the in vivo 
PDX model [14]. Thus, it is critical to continue to explore and develop models that will 
help examine therapeutic effectiveness in a more reproducible environment. 

M002 is an oHSV that has been genetically engineered with a deletion in the γ134.5 
gene. This gene deletion renders the virus aneurovirulent, allowing it to replicate only in 
cancer cells. M002 is uniquely armed with murine interleukin (mIL)-12, designed to stim-
ulate a host immune response [15]. Our laboratory, in conjunction with our collaborators, 
has generated robust pre-clinical evidence that this unique oHSV functions to kill tumor 
cells in several pediatric solid tumors [16–21], including neuroblastoma [22]. The previous 
studies in neuroblastoma were limited to long-term passage cell lines, and there has yet 
to be an investigation of M002 in neuroblastoma PDX. Thus, in the current studies, we 
aimed to investigate the effects of M002 on human neuroblastoma PDXs. 
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2. Materials and Methods 
2.1. Cell Lines and Culture 

Vero cells and human neuroblastoma PDX cell lines were cultured in sterile incuba-
tors at 37 °C with 5% carbon dioxide (CO2). Vero cells were obtained from the American 
Type Culture Collection (ATCC; CCL-81, Manassas, VA, USA) and cultured in modified 
Eagle’s medium (MEM, Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) with 
7% fetal bovine serum (FBS, Hyclone, Suwanee, GA, USA), 2 µM L-glutamine (Thermo 
Fisher Scientific Inc.), and 1 µg/mL penicillin/streptomycin (Gibco, Thermo Fisher Scien-
tific Inc.). For all PDXs used in this study (COA3, COA6, and COA129), dissociated tumor 
cells were cultured in neurobasal (NB) medium (Life Technologies, Carlsbad, CA, USA) 
supplemented with B-27 without Vitamin A (Life Technologies), N2 (Life Technologies), 
amphotericin B (250 µg/mL, Thermo Fisher Scientific Inc.), gentamicin (50 µg/mL, Thermo 
Fisher Scientific Inc.), L-glutamine (2 mM, Thermo Fisher Scientific Inc.), epidermal 
growth factor (10 ng/mL, Miltenyi Biotec, San Diego, CA, USA), and fibroblast growth 
factor (10 ng/mL, Miltenyi Biotec). For cell quantification, single cell suspensions were 
created using trypsin with 1% EDTA (Gibco, Thermo Fisher Scientific Inc.) for adherent 
cells and accutase (Gibco, Thermo Fisher Scientific Inc.) for cells in suspension. Cells were 
then allowed to incubate in either accutase or trypsin for 10 min prior to centrifugation 
and resuspension in their respective medias. A 20 µL sample of the cells was mixed at a 
1:1 ratio with trypan blue (Gibco, Thermo Fisher Scientific Inc.) for dead cell detection, 
and subsequent cell counts were performed using a hemocytometer. 

2.2. Establishing Patient-Derived Xenografts 
All PDXs were established as previously described [23] using patient samples from 

Children’s Hospital of Alabama under University of Alabama at Birmingham (UAB) In-
stitutional Review Board-approved protocol (IRB 130627006). Tumors identified in pa-
tients and used in this study for experimentation include two high-risk neuroblastomas 
(COA3 and COA6) and a low-risk metastatic special (MS) neuroblastoma (COA129) that 
originated from a diverse group of patients. Briefly, following written informed consent 
of each patient’s guardian and assent from each patient as appropriate, a fresh tumor spec-
imen was obtained from surgical excision and temporarily placed in serum-free Roswell 
Park Memorial Institute 1640 (RPMI, 30–2001, ATCC) medium. The tumor specimen was 
separated and allocated as follows: (i) formalin fixed for paraffin embedding; (ii) placed 
in liquid nitrogen for storage at −80 °C; and (iii) placed in sterile media for implantation. 
Female NOD SCID mice (Envigo, Prattville, AL) were used for implantation following a 
UAB Institution Animal Care and Use Committee (IACUC) protocol, (IACUC-009186). 
Briefly, mice were anesthetized with 3% inhalational isoflurane, and 16 mm3 tumor pieces 
were placed into the subcutaneous space of the animals’ flanks. Animals were housed in 
a pathogen-free environment while being monitored routinely for overall health and tu-
mor growth through weekly tumor volume measurements. Tumor volumes were calcu-
lated using the formula (width2 × length)/2, and when volumes met IACUC parameters, 
tumors were harvested. Tumors were allocated as described above with an additional 
piece reserved for tumor dissociation and in vitro experimentation. Tumors were dissoci-
ated using a Tumor Dissociation Kit (Miltenyi Biotec) per manufacturer’s protocol and 
cultured as described above in NB media. 

2.3. Virus 
These studies used a genetically modified oHSV, M002, which has been extensively 

described [15]. This oncolytic virus is a herpes simplex virus (HSV)-1 F strain with a dele-
tion in the native thymidine kinase locus as well as a thymidine kinase gene inserted into 
deleted regions of both γ134.5 loci. There was an additional insertion of the murine IL-12 
(mIL-12) subunits that lies under the transcriptional control of the murine Early-growth 
response-1 promoter (Egr-1). There are two copies of the entire construct present, with a 
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single copy inserted into each of the γ134.5 loci. The virus will replicate and produce mIL-
12 when the native thymidine kinase gene is restored [15]. Titer of M002 was completed 
as previously described [16]. Briefly, Vero cells (1.5 × 105 cells per well) were plated in 24-
well plates and allowed 24 h to attach and form a confluent monolayer. Ten-fold dilutions 
of stock virus in infection medium (% FBS and 1% pen/strep in EMEM (30-2006, ATCC)) 
were applied to the Vero cells for 2 h, then the inoculum was removed and the plates were 
washed with media. After an additional 48 h of incubation, May–Grunwald stain (Sigma 
Aldrich, Millipore Sigma, St. Louis, MO, USA) in methanol was applied for 20 min and 
plates were washed and allowed to dry overnight. Plaques were counted and the titer was 
calculated and reported as plaque-forming units per milliliter (PFU/mL). 

2.4. Flow Cytometry 
Flow cytometry assessed the cell surface expression of the receptors responsible for 

M002 viral entry including: CD111 (poliovirus receptor-related 1, PVRL1, nectin-1), 
CD112 (nectin-2), syndecan, and Herpes Virus Entry Mediator (HVEM). PDX cells (106) 
were cultured overnight in 6-well non-adherent plates. Cells were harvested and centri-
fuged at 1200 rpm for 4 min. Cell pellets were washed and resuspended in autoMACS® 
running buffer (130-091-221, Miltenyi Biotec). Suspensions were blocked with 20 µL FcR 
Blocker (120-000-442, Miltenyi Biotec) for 15 min on ice. Cells only given blocker served 
as negative controls. After 15 min, 10 µL of phycoerythrin (PE) conjugated anti-human 
CD111 antibody (Miltenyi Biotec), PE anti-human CD112 antibody (Miltenyi Biotec), allo-
phycocyanin (APC) conjugated anti-human syndecan (Miltenyi Biotec), or APC anti-hu-
man HVEM (Miltenyi Biotec), were added for 20 min on ice in the dark. The stained cells 
were centrifuged, washed twice with autoMACS® buffer (Miltenyi Biotec), and reconsti-
tuted in 200 µL of sterile phosphate buffered saline (PBS) for analysis via Attune Next 
Su™ Flow Cytometer (Thermo Fisher Scientific). Data were analyzed with FlowJo v10.0.6 
(Tree Star Inc., Ashland, OR, USA) and represented at least three biologic replicates. 

2.5. Viral Replication 
Viral recovery experiments were performed as described [18]. Briefly, for single step 

studies, that assess a single growth cycle of the virus, neuroblastoma PDX cells (3 × 105) 
were infected at a multiplicity of infection (MOI) of 10 PFU/cell for 2 h in 200 µL of infec-
tivity media (EMEM (ATCC) with 1% FBS (Hyclone) and 1% pen/strep (Gibco)) and 
shaken on a rocker in an incubator at 37 °C with 5% CO2. Following infection, cells were 
spun down and resuspended in 1 mL of NB media (Life Technologies). At 12- and 24-h 
post-infection, the cells were harvested by adding equal volume of sterile milk and freez-
ing at −80 °C for at least 24 h. Multi-step viral recovery experiments were performed to 
assess viral replication over multiple growth cycles of the virus. For multi-step studies, 
PDX cells (3 × 105) were infected at a MOI of 0.1 PFU/cell for 2 h in 200 µL of infectivity 
media (EMEM (ATCC) with 1% FBS (Hyclone) and 1% pen/strep (Gibco)) and shaken on 
a rocker in an incubator at 37 °C with 5% CO2. Following infection, cells were spun down 
and resuspended in 1 mL of NB media (Life Technologies). At 6-, 12-, 24-, 48-, and 72-h 
post-infection, the cells and media were harvested by adding equal volume of sterile milk 
and freezing at −80 °C for at least 24 h. 

To determine the titer of progeny virions for both assays, plates were thawed at 37 
°C and sonicated for 30 s. Samples were flash frozen, thawed, and sonicated for two more 
cycles. Serial dilutions of the milk stocks were made (from 100–1012) in infectivity media. 
Vero cells (1.2 × 105) were grown to confluence in 24 well plates. Milk stock dilutions (200 
µL) were added to the Vero cell monolayers. Plates were rocked for 2 h in an incubator at 
37 °C with 5% CO2, and then the inoculum was removed and replaced with Vero cell me-
dia. Following 48 h of incubation, May–Grunwald stain in methanol was applied for 30 
min and plates were washed with distilled water for 10 min. Plates were allowed to dry 
overnight, plaques were counted, and the titer was calculated and reported as PFU/cell. 
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2.6. ELISA 
PDX cells (1.5 × 104) were plated in 96-well plates in triplicate for 24 h. Cells were 

treated with M002 at an MOI proven to adequately infect cells (0, 1 PFU/cell) for 24, 48, 
and 72 h. At each time point, plates were centrifuged, and the media collected and flash 
frozen. Production of murine IL-12 was quantified from the flash frozen samples using a 
total murine IL-12 ELISA kit (Thermoscientific, Rockford, IL, USA) according to manufac-
turer’s protocol. 

2.7. Cytotoxicity 
COA3 and COA6 cells (1.5 × 104) and COA129 cells (3.0 × 104) were plated in 96-well 

plates. Cells were treated with increasing MOI of M002 (0.0, 0.01, 0.05, 0.1, 0.5, 1.0 
PFU/cell). Following 24, 48, and 72 h of infection, a colorimetric assay was used to deter-
mine viability by adding 10 µL of sterile alamarBlue® dye (Invitrogen Life Technologies, 
Grand Island, NY, USA) to each well and reading absorbance at 542 and 595 nm using a 
kinetic microplate reader (BioTek Plate Reader, Gen5, BioTek Instruments, Winooski, VT, 
USA). Measurements were used to estimate the number of PFU to kill 50% of the cells by 
comparing the reduction in color with the reduction seen in the control group (100% via-
bility). Experiments were repeated with at least three biologic replicates and data reported 
as fold change ± standard error of the mean (SEM). 

2.8. Antibodies 
The following antibodies were used: rabbit monoclonal anti-Stat1 (Cell Signaling 

Technologies); mouse monoclonal β-actin (A1978) from Sigma Aldrich; and polyclonal 
rabbit anti-HSV from Biogenex (PU084-UP, Fremont, CA, USA). 

2.9. Immunoblotting 
PDX cells (2 × 106) were plated in non-adherent conditions in NB media with increas-

ing MOI of M002 (0, 0.1, 1.0 PFU/cell). At 24, 48, and 72 h, cells were washed with PBS, 
centrifuged, and flash frozen with liquid nitrogen. Whole cell lysates were made using 
radioimmunoprecipitation (RIPA) buffer (10 mmol/L Tris base pH 7.2, 150 mmol/L NaCl, 
1% Na-deoxycholate, 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS)) supplemented 
with phenylmethanesulfonylfluoride (PMSF, Sigma), protease inhibitor (Sigma), and 
phosphatase inhibitor (Sigma). Protein concentrations of the whole cell lysates were de-
termined with a Micro BCA Protein Assay Kit (Thermo Fisher Scientific Inc.), and equal 
amounts of proteins were loaded for gel electrophoresis. Proteins were mixed with 10 µL 
of 4× SDS and then separated on SDS polyacrylamide (SDS-PAGE) gels via electrophore-
sis. A Precision Plus Protein Kaleidoscope molecular weight marker (Bio-Rad, Hercules, 
CA, USA) was loaded adjacent to samples for protein kDa reference. Gels were transferred 
to a blotting membrane using Trans-Blot Turbo Transfer System (Bio-Rad) per manufac-
turer’s protocol. All immunoblots were washed in 1× tris-buffered saline, 0.1% Tween 20 
(TBST) buffer. Antibodies were used per manufacturers’ instructions and immunoblots 
developed with either Immobilon Classico or Crescendo Western HRP Substrate (EMD 
Millipore). Immunoblots were stripped with stripping buffer (Bio-Rad) at 65 °C for 15 min 
prior to re-probing. β-actin or GADPH was used to confirm equal protein loading. 
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2.10. RNA Sequencing 
COA3, COA6, and COA129, cells (107) were collected and an RNeasy kit (Qiagen, 

Hilden, Germany) was used to extract RNA per manufacturer’s instructions. Whole cell 
RNA sequencing was performed by the UAB Center for Genomic Studies. Fragments per 
kilobase of exon per million mapped fragments (FPKM) values were reported. 

2.11. Bioprinted Microtumors 
After PDX tumor dissociation and suspension in NB media for 24 h, COA6 and 

COA129 cells (108) were mixed in 1000 µL of bioink composed of 1% sodium alginate and 
6% gelatin (Provona® UV-MVG, Dupont Nutrition Norge As, Sandvika, Norway). The ho-
mogenous mixture was loaded into a 3 mL Cellink (Cellink, Boston, MA, USA) printing 
syringe. A Cellink BIO X™ printer (Cellink) was set to print at a pressure of 10 kPa for a 
1.2 s extrusion time through a 22-gauge needle. Individual prints were approximately 0.1 
cm3 and printed into a 5 µM pore Transwell® (Corning Life Sciences, Tewksbury, MA, 
USA) insert in a 24-well plate. Calcium chloride (100 µL) was added to each print for five 
minutes to achieve crosslinking. The crosslinking agent was washed from the prints with 
500 µL of sterile PBS and prints placed in 2 mL of NB media. Prints were incubated at 37 
°C in 5% CO2 for five days to form microtumors. Media was replaced daily. 

After 5 days, microtumors were directly injected with M002 (107 PFU/10 µL, n = 4) or 
an equal volume of PBS (n = 4, control) using a 30.5 gauge needle and syringe. Media 
surrounding the prints was collected, flash frozen, and replaced every day over a course 
of one week. At the conclusion of the experiment, microtumors were stained with calcein 
AM (1:1000, Thermo Fisher Scientific) for 30 min and imaged with a Cytation 5 Imaging 
Reader (BioTek) to assess viability. Images were analyzed using ImageJ software (Ver. 
1.49, http://imagej.nih.gov/ij, 12/15/21) and reported as mean integrated density ± SEM. 
Tumors were fixed in 80% ethanol for immunohistochemistry and media was utilized in 
multistep assays to assess titer of progeny virions in the pseudo-tumor microenviron-
ment. 

2.12. Immunohistochemistry 
Bioprinted microtumors were fixed in 80% ethanol and embedded into paraffin for 

sectioning. Sections of 6 µM were placed onto positive slides and processed as previously 
described [23]. The primary antibody, anti-HSV1 (1:100, PU084-UP, BioGenex), was 
added and incubated overnight in a humidity chamber at 4 °C. The slides were washed 
with PBS, and rabbit secondary antibody (R.T.U. biotinylated universal antibody, Vector 
Laboratories, Burlingame, CA, USA) was added for 30 min at 22 °C. Staining reaction was 
applied for 30 min at room temperature with VECTASTAIN Elite ABC reagent (PK-7100, 
Vector Laboratories) and Metal Enhanced DAB Substrate (Thermo Fisher Scientific) for 2 
min. All slides were counterstained with hematoxylin. For each microtumor, there was a 
negative control (rabbit IgG, 1 µg/mL, EMD Millipore). 

2.13. Genomic Analyses 
The R2: Genomic Analysis and Genomic Database Platform (https://r2.amc.nl, 

11/08/21) was used to compare the expression of STAT1 across different categories of neu-
roblastoma. The SEQC publicly available database was used as a reference. A one-way 
ANOVA test was done to determine statistical significance. 

2.14. Data analysis 
Experiments were repeated with at least three biologic replicates and data reported 

as mean ± standard error of the mean (SEM). To determine statistical significance, a Stu-
dent’s t-test or ANOVA was used, with p ≤ 0.05 considered statistically significant. 
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3. Results 
3.1. Expression of Viral Entry Mediated Receptors 

The expressions of viral entry mediated receptors increase cell susceptibility to infec-
tion by HSV-1. The four primary HSV-1 receptors are CD111 (anti-PVRL1, nectin-1) [24], 
CD112 (nectin-2) [25], syndecan (CD138, heparin sulfate proteoglycan) [26], and HVEM 
[27], with CD111 considered to be the most important [28]. These receptors are functional 
when present at the cellular membrane and thus are best detected via flow cytometry. We 
probed COA3, COA6, and COA129 neuroblastoma PDX cells with anti-human CD111, 
CD112, syndecan, and HVEM and found that each PDX expressed all four viral receptors 
(Figure 1A,B). 

 
Figure 1. Neuroblastoma PDXs express viral entry receptors. (A) Flow cytometry was used to detect 
the cell surface expression of the four main HSV receptors: CD111, CD112, syndecan, and HVEM in 
COA3, COA6, and COA129 human neuroblastoma PDX cells. All PDXs expressed all four receptors. 
(B) Representative histograms of CD111, CD112, syndecan, and HVEM cell surface expression and 
negative controls of COA6 are shown. Data reported as mean ± SEM and represent at least three 
biologic replicates. 

3.2. M002 Replication 
In vitro replication of M002 was investigated using single- and multi-step viral re-

covery experiments. For the single-step studies, neuroblastoma PDX cells were infected 
with a MOI of 10 PFU/cell. By 12 h post-infection, there were substantial viral titers present 
in all three PDX cell lines (Figure 2A). Viral titers significantly increased at 24 h in the 
COA6 while they decreased at 24 h in the COA129. For multi-step experiments, PDX cells 
were infected with M002 at MOI of 0.1 PFU/cell. At 6, 24, 48, and 72 h post-infection, viral 
replication was determined using plaque assays as previously described. At 6 h post in-
fection, all three PDXs had a viral titer approximately 104 PFU/mL (Figure 2B). Both COA3 
and COA6 maintained viral titers that were significantly higher than that of COA129 at 
12, 48, and 72 h. 
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Figure 2. M002 infects and replicates in neuroblastoma PDXs. (A) The ability of M002 to replicate in 
each of the PDX tumors was assessed using a single step assay. COA3, COA6, and COA129 were 
infected with M002 at an MOI of 10 PFU/cell, and cells and supernates were collected at 12 and 24 
h post infection. Viral titers were then determined via Vero monolayers. Viral titer increased over 
time in the COA3 and COA6 tumor cells, but not in the COA129 (** p ≤ 0.01, 12 h vs. 24 h). (B) Viral 
replication rate was then assessed using a multi-step assay. COA3, COA6, and COA129 were in-
fected with M002 at an MOI of 0.1 PFU/cell cells and supernates (due to the non-adherent condi-
tions) were collected at 6, 12, 24, 48, and 72 h. Viral titers were then determined via Vero monolayers. 
At 12, 48, and 72 h, COA3 and COA6 had significantly higher viral replication than that seen in 
COA129. Additionally, the rate of M002 replication in the COA129 decreased over time, while it 
tended to increase in the COA3 and COA6 PDXs. († p ≤ 0.05 COA3 vs. COA129, * p ≤ 0.05 COA6 vs. 
COA129). Replication rates between COA3 and COA6 were not significantly different. (C) ELISA 
was used to detect mIL-12. PDXs were treated with M002 (0, 1.0 PFU/cell) and the supernates col-
lected at 24, 48, and 72 h. There was significant production of mIL-12 in both the COA3 (left) and 
COA6 (middle), but nominal amounts in the COA129 (right) PDX tumor cells (* p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001, compared to 0 PFU/cell). Data are reported as mean ± SEM and represent at least three 
biologic replicates. A Student’s t-test was used for statistical analysis. 

3.3. mIL-12 
M002 is genetically engineered to produce mIL-12, a cytokine shown to stimulate an 

antitumor Th1 immune response, during replication [29]. Therefore, measuring the pro-
duction of mIL-12 is another method that may be utilized to document viral infection and 
replication in the PDX cells. PDX cells were infected with M002 (0, 1.0 PFU/cell) and the 
surrounding media collected at 24, 48, and 72 h post infection. There was a significant 
increase in the production of mIL-12 over 72 h at 1.0 PFU/cell (259 ± 19 pg/mL, p = 5.15 × 
10-4) in COA3 (Figure 2C, left panel) as well as in COA6 (281 ± 24 pg/mL, p = 0.046, Figure 
2C, middle panel). In COA129, there was limited production of mIL-12 at all timepoints 
(Figure 2C, right panel). Such quantities of mIL-12 from the COA3 and COA6 have been 
shown to generate an immune response in a murine sarcoma model and suggest potential 
for an immune cell attack on COA3 and COA6 [30]. These data indicate that M002 
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replicated better in the COA3 and COA6 PDXs than in the COA129 PDX and recapitulated 
the findings of the multi-step viral recovery experiments (Figure 2B). 

3.4. Cytotoxicity 
The objective for oncolytic virotherapy is tumor cell cytotoxicity. The primary mech-

anism through which M002 kills cells is by cellular burst from the lytic cycle. Since we 
showed that M002 effectively replicated in the neuroblastoma PDX cells, we measured the 
effects of M002 infection on viability. COA3, 6, and 129 cells were treated for 24, 48, or 72 
h with M002 at increasing MOI (0–10 PFU/cell) and viability measured with alamarBlue® 
assays. M002 treatment decreased viability of all three PDXs significantly (Figure 3A). The 
MOI of the virus that resulted in 50% of cell death for the COA3 cells was 0.50 PFU/cell, 
for the COA6 cells was 0.94 PFU/cell and for the COA129 cells was 3.96 PFU/cell. 

 
Figure 3. M002 decreased neuroblastoma PDX viability and affected STAT1 expression. (A) COA3, 
COA6, and COA129 were treated with increasing MOIs of M002 (0, 0.001, 0.01, 1, 5, 10) for 72 h and 
cell viability was measured with alamarBlue® assay. There was a significant decrease in viability in 
COA3 (left), COA6 (middle), and COA129 (right) with M002 treatment (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 
0.001, **** p ≤ 0.0001, compared to 0 PFU/cell). (B) RNA abundance of STAT1 was examined with 
sequencing in untreated COA3, COA6, and COA129 cells. There was more STAT1 RNA in COA129 
cells. (C) STAT1 expression was assessed following M002 infection. COA3, COA6, and COA129 cells 
(106) were treated with increasing MOI of M002 (0, 0.1, 1) for 72 h. STAT1 expression was analyzed 
via immunoblotting (separate blots for each PDX). There was a decrease in STAT1 expression in 
COA3 (left) and COA6 (middle), but an increase in STAT1 in COA129 (right) following infection 
with M002. Full Western blot scans provided and densitometry values calculated for each blot (Fig-
ure S1) Data are reported as mean ± SEM and represent at least three biologic replicates. A Student’s 
t-test was used for statistical analysis. (Figure S2) 

3.5. M002 Effects STAT1 Expression 
Cells have intrinsic anti-viral mechanisms, one of which is the STAT1 signaling path-

way. STAT1 responds to the recognition of virus by toll-like receptors and has been shown 



Cancers 2022, 14, 762 10 of 17 
 

 

to halt viral replication [31–33], which impedes the efficacy of an oHSV [34]. We investi-
gated baseline levels of STAT1 RNA in each of the untreated PDXs (Figure 3B). COA129 
had more STAT1 RNA at baseline compared to COA3 or COA6. We then examined STAT1 
expression following treatment with increasing MOIs of M002 (0, 0.1, 1 PFU/cell) at 72 h 
on three separate immunoblots (due to the intensity of STAT1 expression at baseline in 
the COA129) and found that in the COA3 and COA6 PDX cells, STAT1 decreased with 
M002 infection (Figure 3C, Figure S1), but in COA129 cells, STAT1 expression increased 
(Figure 3C, Figure S1). 

3.6. D Bioprinted PDX Tumors Respond to M002 Infection 
PDXs more accurately mimic the human cancer condition when compared to long-

term passage cell lines and thereby may better predict the clinical response to treatment 
[11,13]. A major disadvantage of PDXs is their inconsistent growth rates in animals that 
render their use for in vivo experiments challenging [35]. To overcome that obstacle, we 
employed a novel 3D bioprinted model to create PDX microtumors. Investigators have 
demonstrated that the 3D model may better replicate the human condition than tradi-
tional two-dimensional monolayer culture methods [36]. COA6 and COA129 micro-
tumors were printed using the BioX bioprinter (Cellink). After five days of growth, the 
microtumors were treated with a single intratumoral injection of M002 (107 PFU/10 µL 
PBS) or PBS (10 µL, control). The dose of virus was chosen based on previous intratumoral 
injections in in vivo flank tumor models [16,18,22]. One week after treatment, the micro-
tumors were stained with calcein AM to detect live cells. The amount and intensity of 
staining was analyzed and compared between microtumors treated with M002 and those 
treated with PBS. The mean integrated density (MID), which is the total pixels over total 
area, of the fluorescence was used as a measure of tumor viability. COA6 microtumors 
treated with M002 collectively had a significantly lower MID when compared to those 
treated with PBS (1610 ± 82 vs. 807 ± 102 pixels/mm2, M002 vs. PBS, p = 0.00084, Figure 4A, 
left panel). COA129 microtumors were affected in a similar fashion, with fewer viable cells 
following M002 treatment (2801 ± 328 vs. 1160 ± 355 pixels/mm2, M002 vs. PBS, p = 0.0146, 
Figure 4A, right panel). Representative fluorescent photomicrographs of control (top left 
panel) and treated (top right panel) COA6 (Figure 4B) microtumors are shown. Histologic 
sections of COA6 (Figure 4B) microtumors stained for HSV-1 demonstrate the presence of 
virus in the treated microtumors (bottom right panel, white arrows) and absence in the 
control microtumors. 

Since the M002 was injected directly into the microtumors and not into the media, 
we determined if progeny virions could be detected in the media as indirect evidence of 
viral replication and to quantify the amount of M002 in the tumor microenvironment ca-
pable of infecting surrounding tumor cells. The media surrounding the microtumors was 
collected and viral titer plaque assays performed. At 120 h post injection, progeny virions 
were detected in the media (Figure 4C) of only the COA6 tumors. Next, we sought to 
quantify mIL-12 in the media of these microtumors. Similar to viral progeny, at 120 h the 
COA6 microtumors produced a significant amount of mIL-12 in comparison to the 
COA129 microtumors (Figure 4D). 
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Figure 4. M002 effectively infected, replicated in, and killed neuroblastoma PDX cells ex vivo. (A) 
3D printed tumors of a high-risk neuroblastoma PDX (COA6) and low-risk MS neuroblastoma 
(CO129) were used. COA6 and COA129 microtumors were given intratumoral injections of M002 
(n = 4, MOI 107/10 µL in sterile PBS) or control (n = 4, 10 µL of sterile PBS). Following one week of 
infection, tumors were stained with calcein AM to detect viable tumor tissue (viability indicated by 
green, fluorescent staining) and analyzed with ImageJ to determine the mean integrated density 
(MID, pixels/mm2) for treated versus untreated tumors. Graphs indicating the significant decrease 
in MID for COA6 and COA129 are shown, representing the significantly decreased viability (* p ≤ 
0.05, *** p ≤ 0.001, treated vs. untreated). (B) Representative fluorescent photomicrographs of calcein 
AM stained COA6 untreated (top left panel) and treated (top right panel), scale bars represent 2 cm. 
COA6 microtumors were stained using immunohistochemistry for HSV (bottom panels). There was 
no HSV staining detected in the untreated microtumor (bottom left panel), but M002-treated micro-
tumors showed positive staining for HSV (brown staining, white arrow, bottom right panel), scale 
bars represent 100 µm. (C, D) Media surrounding the microtumors were collected to assess for the 
presence of M002 and mIL-12 in the tumor microenvironment. Neither M002 nor mIL-12 was de-
tected in the media of any COA129 microtumors, but there was a significant amount of (C) M002 
progeny virions and (D) soluble mIL-12 detected in the media surrounding the COA6 microtumors 
(** p ≤ 0.01, *** p ≤ 0.001, treated vs. untreated). A Student’s t-test was used for statistical analysis. 

4. Discussion 
Current therapy for high-risk neuroblastoma consists of cytotoxic chemotherapy, 

surgery, radiation, myeloablative chemotherapy with stem cell rescue, monoclonal anti-
body, and maintenance treatment. Despite this aggressive regimen, nearly half of these 
children will suffer from refractory disease or tumor relapse [2]. Oncolytic viral immuno-
therapy has potential to combat this aggressive malignancy. Oncolytic viruses have few 
side effects and have proven successful in numerous malignancies [37–39]. Our lab has 
previously shown that oHSV M002, effectively killed long-term passaged neuroblastoma 
cells and improved survival in mice bearing these tumors [22]. To expand upon and pro-
vide further justification for transition to a clinical trial, we investigated the use of M002 
in neuroblastoma PDXs. We have successfully established three neuroblastoma PDX cell 
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lines [40], two high-risk (COA3 and COA6) and one low-risk, MS neuroblastoma 
(COA129). 

Investigators have begun employing three-dimensional (3D) printing technology to 
bioprint microtumors in efforts to better replicate the human condition over traditional 
two-dimensional monolayer culture methods. Langer et al. showed that printed tumors 
demonstrated characteristics commonly seen with in vivo tumors including drug re-
sistance, tumor heterogeneity, and distinct tumor microenvironments [36]. The use of 3D 
technology has been more widespread in the adult oncology literature [12,41] and has had 
only limited reports in pediatric oncology. Pediatric cancer researchers have printed SH-
SY5Y neuroblastoma cells to create a neural network [42] and SK-N-BE neuroblastoma 
cells to study CAR-T cell therapy [43], but to our knowledge, no one has yet reported 
bioprinting neuroblastoma PDX cells. In the current investigations, we successfully cre-
ated bioprinted microtumors of the COA6 and COA129 PDXs. These microtumors were 
utilized as a surrogate for in vivo animal studies to substantiate the in vitro findings as 
we, along with others, have demonstrated that findings from in vitro studies with PDX 
cells were not always replicated in the in vivo PDX model [14]. The 3D architecture of 
tumors is crucial in their response to therapies [44], and although bioprinted tumors can-
not exactly replicate an in vivo environment, it was promising to see effects of M002 on 
3D microtumors that were similar to the previous in vivo findings with tumors from long-
term passage neuroblastoma cell lines [22]. Additionally, the 3D microtumors provided 
the opportunity to quantify the number of progeny virions and amount of mIL-12 present 
in the surrounding tumor environment which has not been possible using an in vivo 
model and has yet to be done with this virus. These discoveries will provide insight re-
garding mechanisms that may be leveraged to improve cytotoxicity of oHSV therapy, per-
haps through infection of tumor cells distant from the primary site or through stimulation 
of the immune system. 

Both in vitro and in the ex vivo 3D printed tumors, there was marked M002 infectiv-
ity of tumor cells, but less replication in the low-risk MS neuroblastoma PDX compared 
to the two high-risk PDXs. This finding was confirmed by the multi-step viral replication 
and mIL-12 ELISA assays. There was also a slight decrease in viral replication (Figure 2B) 
and mIL-12 production (Figure 2C) seen in the COA3 cells at later time points. We believe 
the findings in the COA3 and COA129 PDX cells are secondary to different mechanisms. 
Replication of this genetically engineered virus depends upon live cells for their intact 
DNA replication machinery and therefore, the more cells killed by M002 over time will 
result in fewer cells available for the virus to use to replicate. The viability studies showed 
that at 0.1 PFU/cell, only 57.8 ± 8.7% of the COA3 cells were alive at 72 h post infection 
compared to the COA129, where 88.1 ± 2.3% were viable at the same dose and timepoint. 
This finding led us to hypothesize that the decline in replication seen in the COA3 cells 
was due to a lack of viable cells, whereas the decline in COA129 was independent of tu-
mor cell death. Nevertheless, M002 did decrease COA129 cell viability. HSV-1 can also 
activate an apoptotic cascade leading to cell death [45,46], without a substantial lytic cycle 
cellular burst which may explain the decrease in the COA129 microtumor viability and 
absence of virions present in the surrounding media. These observations led us to formu-
late several hypotheses for specifically the decreased replication in COA129 tumor cells. 

An initial postulate for the differences in infectivity was related to the difference in 
the percentage of cells with viral entry receptors present. CD111 is the most efficient re-
ceptor for HSV-1 entry [28,47] and each PDX had varying levels of CD111 expression with 
COA129 having the smallest percentage of cells expressing CD111. Friedman et al. 
demonstrated in pediatric brain tumors that the sensitivity of tumors to M002 correlated 
with CD111 expression up to a certain level, but as noted in previous publications, the 
baseline expression of CD111 was a biomarker for M002 success [20,24]. These studies 
noted increased expression of CD111 in highly migratory and invasive tumors; thus, 
COA129 may have low CD111 expression due to its low-risk nature. Although the 
COA129 demonstrated less infectivity than both the COA3 and COA6, the COA3 tumors 
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also had lower levels of CD111 and proved to be equally susceptible to M002 infection as 
COA6. Therefore, we believe receptor concentrations may only be a small factor contrib-
uting to the noted differences seen between high-risk and low-risk neuroblastoma PDXs. 

Finally, we investigated STAT1 as a potential mechanism for variable M002 infectiv-
ity. STAT1 is a key participant in the interferon signaling cascade responsible for abrogat-
ing viral replication [32,33]. As noted, M002 is missing the γ134.5 gene, which Bin He’s 
laboratory determined is instrumental for HSV-1 to evade a cell’s interferon response and 
is critical for HSV-1 replication [48,49]. In support of these findings, Ghonime et al. found 
that glioblastoma (GBM) PDXs tumors with increased STAT1 activity were more resistant 
to oncolytic virotherapy [50], and concordantly, Kurokawa et al. showed similar findings 
with sustained interferon signaling [51]. In the current study, we found that STAT1 ex-
pression was higher at baseline in the COA129 PDX compared to the two high-risk PDXs. 
Furthermore, STAT1 expression increased with M002 infection in the COA129 PDX, sug-
gesting the presence of an intact antiviral response mechanism. The converse was ob-
served in the COA3 and COA6 PDXs, in which STAT1 expression decreased with M002 
infection. Other investigators have found that major histocompatibility complex (MHC) 
Class I antigen presentation, a downstream sequalae of STAT1 [52], is dysregulated in 
high-risk neuroblastoma, which could indicate the ability for increased viral replication 
over time as we saw with the two high-risk PDXs in the current study [53,54]. In contrast, 
MHC Class I antigen presentation is retained in MS neuroblastoma [53] which may ac-
count for decreased viral replication in the low-risk COA129 PDX. Additionally, based on 
a publicly available database, low-risk neuroblastoma patient specimens had statistically 
significantly more STAT1 expression as compared to high-risk neuroblastoma specimens 
(Figure S2). This difference makes M002 an even more attractive therapy for high-risk dis-
ease. 

Discovering significant differences in STAT1 in these neuroblastoma PDXs is an im-
portant finding, as this protein is targetable, thereby having the potential to be exploited 
to further augment tumor responses to oncolytic virotherapy. Other investigators have 
demonstrated that interruption of JAK/STAT signaling affected viral replication. In ma-
lignant peripheral nerve sheath tumors, Ghonime and Cassady interrupted STAT signal-
ing with the Jak inhibitor, ruxolitinib, and showed significantly increased oHSV replica-
tion and decreased tumor size in vivo [55]. Similar studies with ruxolitinib in malignant 
T-cell lymphoma [56] and non-small lung cancer cells [57] demonstrated improved viral 
replication and tumor cell killing by reovirus and vesicular stomatitis virus. Based on the 
current findings, our future investigations will focus on further validation of the role of 
STAT1 in conferring resistance to oHSV in neuroblastoma, and the utility of combining 
oHSV with small molecular inhibitors of STAT signaling. 

A benefit of M002 is its ability to activate an immune response not only through the 
creation of a debris field, but also through the production of the immunostimulatory cy-
tokine, mIL-12. The ability to study the immune system in conjunction with oncolytic vi-
ruses is a challenge and weakness for cancer immunotherapeutic studies, including this 
study, since it requires the use of syngeneic tumor models. With the advent of 3D bioprint-
ing, it will be possible to study an immune response to PDX microtumors. Tang et al. 
demonstrated this by successfully supplementing 3D GBM bioprints with macrophages 
and documented the ability of these macrophages to incorporate into the bioprint tumor 
microenvironment [58]. Future directions for our studies will involve the incorporation of 
immune cell components, such as NK cells and/or cytotoxic T-cells, into the 3D bioprints 
to assess the anti-tumor immune response in response to an IL-12 expressing virus. 

5. Conclusions 
The use of virotherapies to treat neuroblastoma is still limited and to date, there con-

tinues to be only a single clinical trial of oncolytic herpes viruses for the treatment of neu-
roblastoma [9,10]. The humanized version of M002, M032, is currently being studied in 
clinical trials (NCT02062827, NCT05084430) for treatment of adults with recurrent brain 
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tumors. The studies presented here expand upon previous work from our laboratory in-
vestigating M002 in neuroblastoma. However, the current investigations are novel in that 
they employed human PDXs from both high- and low-risk neuroblastoma tumors, which 
more closely resemble the true clinical condition, and utilized bioprinted microtumors as 
surrogates for in vivo studies that demonstrated decreased viability with M002 treatment. 
These findings provide critical validation of efficacy and justification for advancing this 
therapy to the clinical arena, especially for children with high-risk disease. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/cancers14030762/s1, Figure S1: Full Western blot scans are provided and densitometry 
performed for Figure 3C. Following infection with M002, there is a decrease in the expression of 
STAT1 in COA3 (A) and COA6 (B) with increasing MOIs (0, 0.1, 1 PFU) of M002. Conversely, there 
is an increase in STAT1 expression in COA129 (C) with M002 infection. (D) β – actin was utilized as 
a loading control for all blots. Figure S2: High-risk neuroblastoma expresses less STAT1.Using the 
SEQC publicly available database, STAT1 expression was compared across human neuroblastoma 
tumors that were classified as high-risk and non-high-risk. High-risk tumors were more likely to 
have significantly lower STAT1 in comparison to non-high-risk tumors. 
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